JPS61256967A - Manufacture of mn-zn ferrite - Google Patents

Manufacture of mn-zn ferrite

Info

Publication number
JPS61256967A
JPS61256967A JP60097191A JP9719185A JPS61256967A JP S61256967 A JPS61256967 A JP S61256967A JP 60097191 A JP60097191 A JP 60097191A JP 9719185 A JP9719185 A JP 9719185A JP S61256967 A JPS61256967 A JP S61256967A
Authority
JP
Japan
Prior art keywords
ferrite
mol
basic composition
magnetic properties
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60097191A
Other languages
Japanese (ja)
Other versions
JPH0238537B2 (en
Inventor
末永 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60097191A priority Critical patent/JPS61256967A/en
Publication of JPS61256967A publication Critical patent/JPS61256967A/en
Publication of JPH0238537B2 publication Critical patent/JPH0238537B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 利用産業分野 この発明は、fan  Zn系フェライトの製造方法に
係り、高い焼結温度でも粗大結晶組織を生成することな
く、すぐれた磁気特性、特に低磁気損失特性を有する!
’In  Zn系フェライトの製造方法に関する。
[Detailed description of the invention] Industrial field of application The present invention relates to a method for manufacturing fan Zn-based ferrite, which does not produce a coarse crystal structure even at high sintering temperatures and has excellent magnetic properties, especially low magnetic loss properties. !
'Relating to a method for manufacturing In Zn-based ferrite.

背景技術 t”tn −Zn系フェライトは、通信機器、電子計算
機、VTR,1気ヘツド等、各種民生用機器に多用され
、それぞれの用途に応じた改良が施されている。
BACKGROUND ART -Zn-based ferrites are widely used in various consumer devices such as communication equipment, electronic computers, VTRs, and single-temperature heads, and have been improved according to their respective uses.

今日の機器の小型化並びに高性能化のため、ますます、
磁気損失の少ない磁性材料が求められている。
Due to the miniaturization and higher performance of today's equipment,
There is a need for magnetic materials with low magnetic loss.

かかるMn −Zn系フェライトにおいて、残預損。In this Mn-Zn ferrite, there is a residual loss.

ヒスブリシス損、渦電流損の少ない材料を得る方法とし
て、従来、アルカリ金属、アルカリ土類金属の酸化物あ
るいはAl2O3、”1ro2及びCaOを含有する1
1n −Zn系フェライトが提案され、ざらには、Ca
Oと5LO2の複合添加により、電気抵抗を大きくし、
磁気特性を向上させる手段がよく知られていた。しかし
、材料の密度を向上させるために、焼結温度を高くする
と、異常な焼結反応が起り、焼結組織が大きな結晶と小
さな結晶との混在状態を呈し、磁気特性の劣化を招来し
やすい問題があった。
Conventionally, as a method for obtaining materials with low hysteresis loss and eddy current loss, alkali metal or alkaline earth metal oxides or 1 containing Al2O3, 1ro2 and CaO have been used.
1n-Zn-based ferrite has been proposed, and roughly speaking, Ca
The combined addition of O and 5LO2 increases the electrical resistance,
Means of improving magnetic properties were well known. However, when the sintering temperature is raised to improve the density of the material, an abnormal sintering reaction occurs, and the sintered structure becomes a mixture of large and small crystals, which tends to deteriorate magnetic properties. There was a problem.

一般に、tan  Zn系フェライトの製造において、
基本組成の原料に対して、添加物を仮焼前の混合時に、
あるいは基本組成の仮焼原料の粉砕時に、単独酸化物の
形にて単体あるいは複合添加し、その後に成型、焼成あ
るいはざらに、熱間静水圧プレス処理されていた。しか
し、従来製造方法においては、上記組成のフェライトの
高密度化を計り、磁気特性を向上させるには限度があり
、今日切望されている高密度でかつ磁気特性のすぐれた
低磁気損失特性を有する? −Zn系フェライトが得ら
れなかった。
Generally, in the production of tan Zn-based ferrite,
Additives are added to the raw materials of the basic composition before calcination,
Alternatively, when pulverizing a calcined raw material having the basic composition, it is added singly or in combination in the form of a single oxide, and then molded, calcined, or roughened, and hot isostatically pressed. However, with conventional manufacturing methods, there is a limit to the ability to increase the density of ferrite with the above composition and improve its magnetic properties. ? -Zn-based ferrite was not obtained.

発明の目的 この発明は、上述のMn  Zn系フェライトの現状に
鑑み、高い焼結温度でも粗大結晶組織を生成することな
く、高密度でかつ、すぐれた磁気特性が得られ、特に低
磁気損失特性を有するtln −Zn系フェライトを目
的として、Mn−Zn系フェライトの磁気特性を向上さ
せることができる製造方法を目的としている。
Purpose of the Invention In view of the above-mentioned current state of Mn-Zn-based ferrite, the present invention provides a ferrite that has high density and excellent magnetic properties without forming a coarse crystal structure even at high sintering temperatures, and in particular has low magnetic loss properties. The purpose of the present invention is to provide a manufacturing method capable of improving the magnetic properties of Mn-Zn ferrite.

発明の構成と効果 この発明は、一般に実施されているtan −ZTI系
フェライトの製造工程、すなわち、基本組成の原料に対
して、添加物を仮焼前の混合時に添加するか、あるいは
基本組成原料粉砕時に添加し、ついで成型、焼結あるい
は、ざらに熱間静水圧プレス処理する工程において、特
に、添加物原料の配合処理について種々検討した結果、
CaOと、アルカリ金属、アルカリ土類金属あるいは7
.r、Hの珪酸塩の1種と5LO2,V2O5,Coo
 、 CLLO、Nb2O5、ZrO2のうち少なくと
も1種とからなる添加物原料を、基本組成の仮焼原料の
粉砕時に配合添加し、これを微粉砕したのち、成型、焼
結あるいは、ざらに、熱間静水圧プレス処理することに
より、従来の製造方法に比べて一段と磁気特性が向上し
たin  Zn系フェライトが得られることを知見した
ものである。
Structure and Effects of the Invention The present invention utilizes the commonly practiced tan-ZTI ferrite manufacturing process, that is, adding additives to the raw material of the basic composition during mixing before calcination, or adding additives to the raw material of the basic composition. As a result of various studies on the blending process of additive raw materials, especially in the process of adding during pulverization and then molding, sintering, or rough hot isostatic pressing, we found that:
CaO and alkali metals, alkaline earth metals or 7
.. One type of silicate of r, H and 5LO2, V2O5, Coo
, CLLO, Nb2O5, and at least one of ZrO2 are mixed and added at the time of pulverizing the calcined raw material of the basic composition, and after pulverizing this, molding, sintering, roughing, hot It has been discovered that by hydrostatic pressing, in Zn-based ferrite with much improved magnetic properties can be obtained compared to conventional manufacturing methods.

すなわち、この発明は、 Fe2O350〜70モル%。That is, this invention: Fe2O350-70 mol%.

?010〜40モル%。? 010-40 mol%.

ZnO5〜30モル%。ZnO 5-30 mol%.

からなる基本組成に対し、 CaO0.01wt%〜0.2wt%と、アルカリ金属
、アルカリ土類金属あるいはZr、Aiの珪酸塩の1種
o、 oo5wt%〜0.2wt%と、Sin、 0.
001wt%〜0.2wt%、V2O50,01wt%
〜2vIt%、Al2203 0.01 wt%〜2w
t%、Coo  0.01wt%〜2wt%、CuO0
.01wt%〜0.2wt%、Nb2O50.01wt
%〜0.2wt%、1r020.01 Wt91o〜0
.2Wi%のうち少なくとも1種を、 上記基本組成の仮焼原料に配合添加し、微粉砕したのち
成型、焼結することを特徴とするt’tn −ZTIフ
ェライトの製造方法でおる。
With respect to the basic composition consisting of: 0.01 wt% to 0.2 wt% of CaO, 5 wt% to 0.2 wt% of silicates of alkali metals, alkaline earth metals, or Zr and Al, and 0.01 to 0.2 wt% of CaO.
001wt%~0.2wt%, V2O50.01wt%
~2vIt%, Al2203 0.01 wt% ~2w
t%, Coo 0.01wt%~2wt%, CuO0
.. 01wt%~0.2wt%, Nb2O50.01wt
%~0.2wt%, 1r020.01 Wt91o~0
.. A method for producing t'tn-ZTI ferrite is characterized in that at least one of 2Wi% is blended and added to the calcined raw material having the above basic composition, which is pulverized, then molded and sintered.

この発明において、すぐれた磁気特性のInn  Zn
系フェライトが得られる理由は、以下のとおりである。
In this invention, Inn Zn with excellent magnetic properties
The reason why the system ferrite can be obtained is as follows.

水系フェライトの透磁率を大きくし、保磁力を小ざくし
、かつ磁気損失を小さくするため、添加物として、Ca
0.5LO2とアルカリ金属あるいはアルカリ土類金属
の酸化物、またはM2O3、ZrO2などを複合添加し
、焼結密度を上げるため、高温度で焼結するが、前記添
加物は、結晶粒界に遍在して、高い電気抵抗を有する層
が形成される。しかしながら、5LO2は一般に粗大結
晶組織を誘起し易く、高い電気抵抗層を消滅するため、
磁気損失を劣化させていたのである。そこで、この5L
O2を、添加物のアルカリ金属、アルカリ土類金属ある
いは7.r、Hの珪酸塩の形にて添加すると、高温度の
焼結においても、粗大結晶組織が生成され難くなリ、均
一な結晶組織が得られ、すぐれた磁気特性が得られるの
である。
In order to increase the magnetic permeability of water-based ferrite, reduce coercive force, and reduce magnetic loss, Ca is added as an additive.
0.5LO2 and oxides of alkali metals or alkaline earth metals, or M2O3, ZrO2, etc. are added in combination and sintered at high temperatures to increase the sintered density. As a result, a layer with high electrical resistance is formed. However, since 5LO2 generally tends to induce a coarse crystal structure and eliminates a high electrical resistance layer,
This caused magnetic loss to deteriorate. Therefore, this 5L
7. O2 as an additive alkali metal, alkaline earth metal or 7. When R and H are added in the form of silicate, coarse crystal structures are not easily generated even during high-temperature sintering, and a uniform crystal structure can be obtained, resulting in excellent magnetic properties.

この発明においてアルカリ金属の珪酸塩は、Naz 5
Lns、KzSLOsが好ましく、また、アルカリ土類
金属の珪酸塩としては、Ca S L Os、MgS*
03、Ba5LO3、Sr S L 03が好ましい。
In this invention, the alkali metal silicate is Naz 5
Lns, KzSLOs are preferable, and as alkaline earth metal silicates, CaSLOs, MgS*
03, Ba5LO3, Sr S L 03 are preferred.

組成の限定理由 この発明による酸化物磁性材料において、基本組成並び
に添加物の組成を限定した理由を以下に説明する。
Reason for Limiting the Composition The reason for limiting the basic composition and the composition of additives in the oxide magnetic material according to the present invention will be explained below.

Mn −Zn系フェライトの基本組成を、Fe2O35
0〜70モル%、 l−1no 10〜40モル%、 
ZnO!l+〜30モル%とした理由は、これ以外の組
成では、透磁率が極めて小ざくなり、また、保磁力も大
きくなりすぎて軟質磁性材料として実用的でないためで
おる。
The basic composition of Mn-Zn ferrite is Fe2O35
0 to 70 mol%, l-1no 10 to 40 mol%,
ZnO! The reason why the range is 1+ to 30 mol % is that if the composition is other than this, the magnetic permeability will be extremely small and the coercive force will also be too large to be practical as a soft magnetic material.

CaOは、低磁気損失を得るために添加するが、0.0
1 wt%未満では電気抵抗が小さくなり、所要の磁気
特性が得られず、また、0.2wt%を越える添加では
、焼結密度が低下し、高密度化のため焼結温度を高くす
ると、異常組織が発生しゃすくなるため、0.01 w
t%から0.2wt%wt%とする。
CaO is added to obtain low magnetic loss, but 0.0
If it is less than 1 wt%, the electrical resistance becomes small and the required magnetic properties cannot be obtained, and if it exceeds 0.2 wt%, the sintered density decreases, and if the sintering temperature is increased to increase the density, 0.01 w because abnormal tissues are more likely to occur.
t% to 0.2wt%wt%.

アルカリ金属、アルカリ土類金属または/V、Zrの珪
酸塩の1種を添加することは、この発明の特徴であり、
5LO2の形で添加するために生成する粗大結晶組織が
防止され、すぐれた磁気特性が得られるため添加するが
、0.005wt%未満では上記効果が少なく、また、
0.2wt%を越えると、高密度化のために焼成温度を
高くした際に逆に粗大結晶組織を生成してしまうため、
0.005wt%〜0.2vt%の添加とする。
It is a feature of this invention that one type of silicate of alkali metal, alkaline earth metal or /V, Zr is added,
When added in the form of 5LO2, coarse crystal structures are prevented and excellent magnetic properties are obtained, so it is added, but if it is less than 0.005 wt%, the above effects are small, and
If it exceeds 0.2 wt%, a coarse crystal structure will be generated when the firing temperature is increased to increase the density.
The addition amount is 0.005wt% to 0.2vt%.

また、5LO2o、ooiwt%未満、V2O50.0
1wt%未満、/Vz030.01 wt%未満、Co
o  0.01wt%未満、CIO0.01wt%未満
、Nbzos  0.01wt%未満、Zr0z 0.
01wt%未満では、添加効果がほとんどなく、所要の
磁気特性が得られず、S′、、02が0.2wt%を越
え、v2o5が2wt%を越え、M2O3が2wt%を
越え、Coo カ2wt%を越え、CLLOが0.2w
t%を越え、Nb 205が0.2wt%を越え、Zr
0tが0.2wt%を越える場合は、焼結時に粗大結晶
が発生し、磁気損失が多くなるため好ましくない。よっ
て、5LO20、001wt%〜0.2wt%、V2O
50,01wt%〜2wt%、M2O30,01V+I
t%〜2wt%、Coo  0.01vt%〜2wt%
、CILO0.01wt%〜0.2vt%、l”1)2
05 0.01W℃%〜0.2wt%、ZrO20,0
1W[%〜0.2wt%に限定する。
Also, 5LO2o, less than ooiwt%, V2O50.0
Less than 1wt%, /Vz030.01wt%, Co
o Less than 0.01wt%, CIO less than 0.01wt%, Nbzos less than 0.01wt%, Zr0z 0.
If the amount is less than 01wt%, there is almost no addition effect and the required magnetic properties cannot be obtained, S',,02 exceeds 0.2wt%, v2o5 exceeds 2wt%, M2O3 exceeds 2wt%, and Coo 2wt%. %, CLLO is 0.2w
t%, Nb 205 exceeds 0.2wt%, Zr
If 0t exceeds 0.2 wt%, coarse crystals will be generated during sintering and magnetic loss will increase, which is not preferable. Therefore, 5LO20, 001wt%~0.2wt%, V2O
50,01wt%~2wt%, M2O30,01V+I
t%~2wt%, Coo 0.01vt%~2wt%
, CILO0.01wt%~0.2vt%, l”1)2
05 0.01W℃%~0.2wt%, ZrO20.0
1W[% to 0.2wt%.

また、この発明における主原料、添加物には、焼成によ
り酸化物となる化合物を使用することができる。
Further, as the main raw materials and additives in this invention, compounds that become oxides upon firing can be used.

実施例 Fe2O353モル%、 trio 31モル%、 Z
TIo 16モル%。
Example Fe2O3 53 mol%, trio 31 mol%, Z
TIo 16 mol%.

からなる基本組成の原料を配合、混合したのち、850
℃で仮焼成した。
After blending and mixing raw materials with a basic composition of 850
Temporary firing was performed at ℃.

上記の基本組成仮焼原料を、ボールミルで粉砕する際に
、基本組成に対して、第1表に示す如く、CaOに、Z
r S i 04、M2O33SjO2、Na25LO
3、K2SL03、Ca!1tos、r11gSj03
、Ba5LO3、Sr S L 03の1種と、5io
=、 V2O5,Coo 、 CLLO、FJb20s
 、 ZrO2のうち少なくとも1種との複合添加の形
で、添加物原料を配合、混合粉砕した。
When the calcined raw material with the above basic composition is pulverized in a ball mill, as shown in Table 1, CaO, Z
r S i 04, M2O33SjO2, Na25LO
3, K2SL03, Ca! 1tos, r11gSj03
, Ba5LO3, one type of Sr S L 03, and 5io
=, V2O5,Coo, CLLO, FJb20s
, ZrO2, and at least one of ZrO2 was mixed and ground.

その後、外径36mmX内径24mmX高ざ6mm寸法
のリング状に成型し、さらに、酸素濃度を制御した窒素
ガス雰囲気で、1250℃、3時間の条件で焼成した。
Thereafter, it was molded into a ring shape with dimensions of 36 mm in outer diameter, 24 mm in inner diameter, and 6 mm in height, and was further fired at 1250° C. for 3 hours in a nitrogen gas atmosphere with controlled oxygen concentration.

得られた焼成品の磁気特性を測定し、その結果を第1表
に示す。
The magnetic properties of the obtained fired product were measured and the results are shown in Table 1.

また、比較のため、第1表に示す如く、添加物原料を単
独酸化物の形にて、基本組成の仮焼原料の粉砕時に、添
加粉砕する以外は、基本組成、添加物配合量及び成型、
焼成条件を本発明例(陽1〜34)と同一条件として、
焼成した比較焼成品(No、35〜55)の磁気特性を
測定し、測定結果を第1表に示す。
For comparison, as shown in Table 1, the additive raw materials were added in the form of a single oxide, and the basic composition, additive blending amount, and molding were performed when the calcined raw materials of the basic composition were crushed. ,
The firing conditions were the same as those of the present invention examples (positive numbers 1 to 34),
The magnetic properties of the comparative fired products (No. 35 to 55) were measured, and the measurement results are shown in Table 1.

なお、第1表におけるコア損失は、上記リング状焼成品
を巻線し、100kHzの交流電流を流し、2000G
のときのコア損失を測定した。
In addition, the core loss in Table 1 is calculated by winding the ring-shaped fired product, passing an alternating current of 100 kHz, and heating it at 2000 G.
The core loss was measured.

第1表と第2表より明らかな如く、この発明の特徴であ
る添加物原料、CaOとアルカリ金属、アルカリ土類金
属、”lr、Mとの珪酸塩の1種と5LO2、v2o5
、N1t03、Coo 、 CLLO、Nb2O5、Z
r0zの少なくとも1種の複合添加の形にて、基本組成
粉砕時に添加配合することにより、M++ −ZTI系
フエライトは、高密度化と共にコア損失の低減、磁気特
性の改善に著しい効果があることが分る。
As is clear from Tables 1 and 2, the additive raw materials, which are the characteristics of this invention, include CaO, an alkali metal, an alkaline earth metal, a type of silicate of "lr, M, and 5LO2, v2o5.
, N1t03, Coo, CLLO, Nb2O5, Z
By adding and blending the basic composition at the time of pulverization in the form of a composite addition of at least one type of r0z, M++-ZTI ferrite has a remarkable effect on increasing density, reducing core loss, and improving magnetic properties. I understand.

以下余白Below margin

Claims (1)

【特許請求の範囲】 Fe_2O_350モル%〜70モル%、 MnO10〜40モル%、 Zn5〜30モル%、 からなる基本組成に対し、 CaO0.01wt%〜0.2wt%と、 アルカリ金属、アルカリ土類金属あるいはZr、Alの
珪酸塩の1種0.005wt%〜0.2wt%と、Si
O_20.001wt%〜0.2wt%、V_2O_5
0.01wt%〜2wt%、 Al_2O_30.01wt%〜2wt%、CoO0.
01wt%〜2wt%、 CuO0.01wt%〜0.2wt%、 Nb_2O_50.01wt%〜0.2wt%、ZrO
_20.01wt%〜0.2wt%のうち少なくとも1
種を、 上記基本組成の仮焼原料に配合添加し、微粉砕したのち
成型、焼結することを特徴とするMn−Zn系フェライ
トの製造方法。
[Claims] With respect to the basic composition consisting of Fe_2O_350 mol% to 70 mol%, MnO 10 to 40 mol%, Zn 5 to 30 mol%, CaO 0.01 wt% to 0.2 wt%, and an alkali metal, alkaline earth. 0.005 wt% to 0.2 wt% of metal or silicate of Zr or Al, and Si
O_20.001wt% ~ 0.2wt%, V_2O_5
0.01wt%~2wt%, Al_2O_30.01wt%~2wt%, CoO0.
01wt%~2wt%, CuO0.01wt%~0.2wt%, Nb_2O_50.01wt%~0.2wt%, ZrO
_At least 1 from 20.01wt% to 0.2wt%
A method for producing Mn-Zn ferrite, which comprises adding seeds to a calcined raw material having the above-mentioned basic composition, pulverizing the mixture, and then molding and sintering it.
JP60097191A 1985-05-08 1985-05-08 Manufacture of mn-zn ferrite Granted JPS61256967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60097191A JPS61256967A (en) 1985-05-08 1985-05-08 Manufacture of mn-zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60097191A JPS61256967A (en) 1985-05-08 1985-05-08 Manufacture of mn-zn ferrite

Publications (2)

Publication Number Publication Date
JPS61256967A true JPS61256967A (en) 1986-11-14
JPH0238537B2 JPH0238537B2 (en) 1990-08-30

Family

ID=14185687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60097191A Granted JPS61256967A (en) 1985-05-08 1985-05-08 Manufacture of mn-zn ferrite

Country Status (1)

Country Link
JP (1) JPS61256967A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351607A (en) * 1986-08-21 1988-03-04 Nippon Ferrite Ltd Mn-zn ferrite
JPS63222018A (en) * 1987-03-09 1988-09-14 Taiyo Yuden Co Ltd Ferrite composition
JPS63319254A (en) * 1987-06-20 1988-12-27 Tokin Corp Oxide magnetic material generating low magnetic loss
JPH01143307A (en) * 1987-11-30 1989-06-05 Tokin Corp Low-loss oxide magnetic material
JPH0254901A (en) * 1988-08-19 1990-02-23 Mitsubishi Electric Corp Low-loss oxide magnetic material
JPH02124724A (en) * 1988-11-02 1990-05-14 Taiyo Yuden Co Ltd Mn-zn ferrite material
EP0551907A2 (en) * 1992-01-14 1993-07-21 Matsushita Electric Industrial Co., Ltd. An oxide magnetic material
WO2002081130A1 (en) * 2001-04-02 2002-10-17 Mitsubishi Materials Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
EP1547988A1 (en) * 2002-09-26 2005-06-29 TDK Corporation Ferrite material
JP2005272196A (en) * 2004-03-24 2005-10-06 Jfe Steel Kk Manganese-cobalt-zinc-based ferrite
JP2005317924A (en) * 2004-03-31 2005-11-10 Neomax Co Ltd Stacked inductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251726U (en) * 1988-10-06 1990-04-12

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950072A (en) * 1982-09-11 1984-03-22 住友特殊金属株式会社 Oxide magnetic material and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950072A (en) * 1982-09-11 1984-03-22 住友特殊金属株式会社 Oxide magnetic material and manufacture

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351607A (en) * 1986-08-21 1988-03-04 Nippon Ferrite Ltd Mn-zn ferrite
JPS63222018A (en) * 1987-03-09 1988-09-14 Taiyo Yuden Co Ltd Ferrite composition
JPS63319254A (en) * 1987-06-20 1988-12-27 Tokin Corp Oxide magnetic material generating low magnetic loss
JPH0457628B2 (en) * 1987-06-20 1992-09-14 Tokin Corp
JPH01143307A (en) * 1987-11-30 1989-06-05 Tokin Corp Low-loss oxide magnetic material
JPH0254901A (en) * 1988-08-19 1990-02-23 Mitsubishi Electric Corp Low-loss oxide magnetic material
JPH02124724A (en) * 1988-11-02 1990-05-14 Taiyo Yuden Co Ltd Mn-zn ferrite material
EP0551907A3 (en) * 1992-01-14 1994-07-13 Matsushita Electric Ind Co Ltd An oxide magnetic material
EP0551907A2 (en) * 1992-01-14 1993-07-21 Matsushita Electric Industrial Co., Ltd. An oxide magnetic material
US5518642A (en) * 1992-01-14 1996-05-21 Matsushita Electric Industrial Co., Ltd. Oxide magnetic material
EP0716053A2 (en) * 1992-01-14 1996-06-12 Matsushita Electric Industrial Co., Ltd. An oxide magnetic material
EP0716053A3 (en) * 1992-01-14 1996-07-03 Matsushita Electric Ind Co Ltd
WO2002081130A1 (en) * 2001-04-02 2002-10-17 Mitsubishi Materials Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
WO2002081129A1 (en) * 2001-04-02 2002-10-17 Mitsubishi Materials Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
US7371271B2 (en) 2001-04-02 2008-05-13 Mitsubishi Materials Pmg Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
EP1547988A1 (en) * 2002-09-26 2005-06-29 TDK Corporation Ferrite material
EP1547988A4 (en) * 2002-09-26 2007-12-05 Tdk Corp Ferrite material
JP2005272196A (en) * 2004-03-24 2005-10-06 Jfe Steel Kk Manganese-cobalt-zinc-based ferrite
JP2005317924A (en) * 2004-03-31 2005-11-10 Neomax Co Ltd Stacked inductor

Also Published As

Publication number Publication date
JPH0238537B2 (en) 1990-08-30

Similar Documents

Publication Publication Date Title
JP3968188B2 (en) Ferrite
JPS61256967A (en) Manufacture of mn-zn ferrite
EP1101736A1 (en) Mn-Zn ferrite and production thereof
JPH0430726B2 (en)
KR100420897B1 (en) Process for preparation of oxide magnetic compact
JPH0521859B2 (en)
JPH081844B2 (en) High frequency low loss ferrite for power supply
JPH0430727B2 (en)
US3492236A (en) Ferromagnetic core and process for its production
US5387356A (en) Process of producing calcined materials for ferrite magnet
JP5845137B2 (en) Method for producing Mn-Zn ferrite
JP2914554B2 (en) Method for producing high permeability MnZn ferrite
JPS6177304A (en) Manufacture of mn-zn ferrite
JP3467329B2 (en) Manufacturing method of sintered core and sintered core
JPS60132302A (en) Oxide magnetic material
JPH05267040A (en) Low-loss mn-zn ferrite
JP3499283B2 (en) High permeability oxide magnetic material
JPS59174573A (en) Oxide magnetic material for permanent magnet
JPH0555463B2 (en)
JP2620959B2 (en) Low loss oxide magnetic material
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
JPS5815037A (en) Magnetic manganese-zinc ferrite material and its manufacture
JP3552794B2 (en) Method for producing low-loss oxide magnetic material
JP3617070B2 (en) Low loss ferrite manufacturing method
JPH08148323A (en) Production of oxide magnetic material and molding