JPS61256224A - Optical fiber sensor - Google Patents

Optical fiber sensor

Info

Publication number
JPS61256224A
JPS61256224A JP60098433A JP9843385A JPS61256224A JP S61256224 A JPS61256224 A JP S61256224A JP 60098433 A JP60098433 A JP 60098433A JP 9843385 A JP9843385 A JP 9843385A JP S61256224 A JPS61256224 A JP S61256224A
Authority
JP
Japan
Prior art keywords
optical fiber
loop
point
fixed
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60098433A
Other languages
Japanese (ja)
Inventor
Hideo Kakuzen
覚前 英夫
Minoru Uesugi
上杉 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumiden Visitronics KK
Original Assignee
Sumitomo Electric Industries Ltd
Sumiden Visitronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumiden Visitronics KK filed Critical Sumitomo Electric Industries Ltd
Priority to JP60098433A priority Critical patent/JPS61256224A/en
Publication of JPS61256224A publication Critical patent/JPS61256224A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35345Sensor working in transmission using Amplitude variations to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35374Particular layout of the fiber

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To prevent the movement of a terminal part while keeping essential explosion-proof characteristics, by allowing an optical fiber to generate the partial change in the radius of curvature. CONSTITUTION:When displacement is imparted to a detection part 4, an optical fiber 1 takes a new loop or semi-loop, for example, drawn by a dotted line because shows a loop or semi-loop state and absorbs the change due to displacement. Therefore, the optical fiber 1 does not move with respect to the outside from a fixed end 2. That is, the optical fiber 1 forming the internal loop or semi-loop varies inside the fixed end 2 being a boundary but can hold a stationary state outside the fixed end 2 regardless of detection operation. Further, essential explosion-proof for detection by using light in the optical fiber is kept at it is.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバをセンサーとして特に本質防爆の
用途及び水中、液中で漏電、感電のおそFlなく利用で
きるもので、センサーとしては位置センサーで変形を感
知するセンサーで光を媒体としたものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention allows optical fibers to be used as sensors, particularly in inherently explosion-proof applications, underwater or in liquids, without the risk of electrical leakage or electric shock. This is a sensor that detects deformation using light as a medium.

(従来の技術) 本質防爆の点では従来は空気、気体を用いたものかある
が取扱いが不便であり、センサー自体の付属機器も大き
くなる。電気を用いたものでは、本質防爆の点で問題が
ある。また、感電、漏電を考慮しなければならない場合
がある。
(Prior art) In terms of intrinsic explosion-proofness, conventional methods have used air or gas, but they are inconvenient to handle, and the attached equipment of the sensor itself is also large. Those that use electricity have a problem in terms of intrinsic explosion-proofness. In addition, there are cases where it is necessary to consider electric shock and leakage.

さらに、従来は第8図のように光ファイバーを線状に配
置して、その光ファイバーの上に変位を与える場合、左
端の固定端2を設け、右端の9はファイバーのみを固定
して、自由にすべるようにしておくと、変位を与えるこ
とにより、第?図の如く点Pは固定点2に近づく。この
ため位置センサーとして、光ファイバを直線上で働かせ
た場合、変位を変えることにより、端末が引張られたり
、張力が加わったりする。(特願昭59−乙g’y3s
 @参照)(発明が解決しようとする問題点) ′ 上記の光フアイバ位置センサーで光を用いて本質防
爆の特性を維持しながら、前述の端子部の移動が発生し
ない位置センサーにすることである。
Furthermore, conventionally, when optical fibers are arranged linearly as shown in Fig. 8 and a displacement is applied to the optical fibers, a fixed end 2 at the left end is provided, and a fixed end 9 at the right end fixes only the fiber, allowing it to be freely moved. If you let it slide, by giving it a displacement, the second? As shown in the figure, point P approaches fixed point 2. For this reason, when an optical fiber is used as a position sensor in a straight line, changing its displacement causes the terminal to be pulled or tension to be applied. (Special application 1984-Otsug'y3s
(See @) (Problem to be Solved by the Invention) ' The purpose of the above-mentioned optical fiber position sensor is to use light to maintain the essentially explosion-proof characteristics and to create a position sensor in which the above-mentioned terminal portion does not move. .

(問題点を解決するための手段) 本発明の構成を第1図に基づいて説明する。(Means for solving problems) The configuration of the present invention will be explained based on FIG.

同図で1は光ファイバ、2はその固定端、4は光ファイ
バを掴んだ移動可能な検出部で、先ず光ファイバ1をル
ープ状又は半ルiブ状に配置し、この一部に設けた検出
部4を、固定端2の方向に又はそれとの距離が伸縮する
方向に移動できるようになっている。この距離を伸縮す
ると、その間に小さなループが出来、特にその先端部P
、の付近の曲率半径が異状に小さくなる。このため、こ
の点で光フアイバ1中を通過中の光の損失が発生する。
In the figure, 1 is an optical fiber, 2 is its fixed end, and 4 is a movable detection unit that grips the optical fiber. The detection unit 4 can be moved in the direction of the fixed end 2 or in a direction in which the distance thereto is expanded or contracted. When this distance is expanded or contracted, a small loop is created between them, especially at the tip P.
The radius of curvature near , becomes abnormally small. Therefore, at this point, a loss of light occurs while passing through the optical fiber 1.

これを11の光電変換素子、例えばアバランシヱホトダ
イオード(A P D ’: Avalar+che 
photo diode ) 。
This is converted into 11 photoelectric conversion elements, such as avalanche photodiodes (APD').
photo diode).

ホトセル、ソーラーセル等で光電変換し、更に増巾器1
2を通し、信号として、14の信号取出用配線によって
取り出す。なお、13は増巾器12への給電線である。
Photoelectric conversion is performed using photocells, solar cells, etc., and then an amplifier 1
2, and is extracted as a signal by the signal extraction wiring 14. Note that 13 is a power supply line to the amplifier 12.

また、10は光源でLED、LD、レーザー、キセノン
電球その他である。
Further, 10 is a light source such as an LED, LD, laser, xenon light bulb, or the like.

この様に、検出部4に変位を与えた際に光ファイバ1は
ループ又は半ループ状のため、例えば点線で画かれた新
しいループ又は半ループとなり、変位による変化を吸収
する。このために固定端2より外に対しては光ファイバ
1は動かなくて済む。
In this way, since the optical fiber 1 has a loop or half-loop shape when displacement is applied to the detection unit 4, it becomes a new loop or half-loop, for example, as indicated by a dotted line, and absorbs changes caused by the displacement. Therefore, the optical fiber 1 does not need to move beyond the fixed end 2.

即ち位置検出のこの稲光ファイバセンサーを製作する際
に、固定端を境にして、内部のループ及び半ループを形
成している光ファイバ1は、検出17$4が変位を起す
に従って変動するが固定端2より外側にする光ファイバ
は検出動作に関係なく静止の状態を保つことが出来る。
That is, when manufacturing this lightning fiber sensor for position detection, the optical fiber 1, which forms internal loops and half loops with the fixed end as the border, is fixed although it fluctuates as the detection 17$4 causes displacement. The optical fiber placed outside the end 2 can remain stationary regardless of the detection operation.

且つ光ファイバに光を用いて検出するため本質防爆はそ
のま\維持されている。
Moreover, since the detection is performed using light in an optical fiber, the inherent explosion-proof property is maintained.

(作用) 本発明の光ファイバセンサーの作用については「発明の
効果」の項で詳述する。
(Function) The function of the optical fiber sensor of the present invention will be described in detail in the section "Effects of the Invention."

(実施例) 第2図に具体例を示して説明する。(Example) A specific example will be explained with reference to FIG.

1は光ファイバ、3は固定端2より更にループ又は半ル
ープ側に配置した第2の固定端である。
1 is an optical fiber, and 3 is a second fixed end disposed further toward the loop or half-loop side than the fixed end 2.

5はガイドでガイド固定金具6に取付けられていて、こ
のガイド5の上に検出端4が光ファイバ1を掴む一方、
ガイド上を軽くすべる構造になっている。また検出J!
P4はリンク機構の一端にあり、検出時に位置の変化が
発生する構造にしてもよい。
5 is a guide attached to a guide fixture 6, and the detection end 4 grips the optical fiber 1 on this guide 5, while
It has a structure that allows it to slide lightly on the guide. Detection J again!
P4 is located at one end of the link mechanism, and may have a structure in which a change in position occurs upon detection.

7は光フアイバ用コネクターで、光ファイバの他の回路
、例えば第1図の回路内に組込む場合に便利な様に取付
けである。即ち第2図で検出部P4に外力による変位が
第2の固定端3の方向に生じた場合、第3図の様なルー
プが発生して、その光ファイバ1に起因した曲げにより
光フアイバ内の光量の変化が発生する。
Reference numeral 7 denotes an optical fiber connector, which is conveniently attached when the optical fiber is incorporated into another circuit, such as the circuit shown in FIG. That is, if the displacement of the detection part P4 due to an external force occurs in the direction of the second fixed end 3 in FIG. 2, a loop as shown in FIG. A change in the amount of light occurs.

光ファイバ1の材質としては、合成石英、多成分ガラス
、プラスチックファイバがあるが、合成石英の光ファイ
バが最も良い感度と強度を有している。例えば曲げの曲
率半径が3謁以上であれば、703゛回以上の繰返しに
耐える。光ファイバの構造としては、例えば/23 、
umφの外径の合成石英ガラスファイバの上に変成シリ
コンを一次被覆し、その上に緩衝層をシリコン樹脂で設
け、更にその上にナイロン被覆を施して、外径約09I
IIIIφとしたプラスチック被Fit 心Hの光ファ
イバを用いてもよいし、又他の例として、/2!;、l
tmφの光ファイバの外側にUV材料を塗布し、これを
UVキュアー(紫外線硬化)した心線、例えばUV材料
として、UVキュアポリブタジェンアクリレート系樹m
 、エポキシアクリレy F 、ウレタンアクリレート
等を用いることが出来る。
The material of the optical fiber 1 includes synthetic quartz, multi-component glass, and plastic fiber, but synthetic quartz optical fiber has the best sensitivity and strength. For example, if the radius of curvature of the bend is 3 or more, it can withstand 703 or more repetitions. For example, the structure of the optical fiber is /23,
A synthetic quartz glass fiber with an outer diameter of umφ is first coated with modified silicon, a buffer layer is provided on top of it with silicone resin, and a nylon coat is further applied on top of it, so that the outer diameter is about 09I.
It is also possible to use an optical fiber with a plastic fiber core H of IIIφ, or as another example, /2! ;,l
A UV material is coated on the outside of an optical fiber of tmφ, and the core wire is UV cured (ultraviolet curing).
, epoxy acrylate y F, urethane acrylate, etc. can be used.

またUV材料を塗布し、UVキュアーを行った場合の光
フアイバセンサ一部の光7アイパの外径發は、光フアイ
バ自体の外径が725μmφ、UVキュアー外径で03
〜0.9mφがよく、時にa3〜0Jflaφのものが
本目的の光ファイバセンサーに最適である。
In addition, the outer diameter of the Optical 7 Eyeper, which is a part of the optical fiber sensor when UV material is coated and UV cured, is that the outer diameter of the optical fiber itself is 725 μmφ, and the UV cure outer diameter is 0.3 μm.
~0.9mφ is good, and sometimes a3~0Jflaφ is optimal for the optical fiber sensor of this purpose.

又第1図、第2図、第3図及び第4図の例で、固定fJ
f62より外側の部分即ちコネクター等の取付側に於て
は、強度を上げるためにプラスチック。
In addition, in the examples of Figs. 1, 2, 3, and 4, the fixed fJ
The part outside f62, that is, the side where connectors etc. are installed, is made of plastic to increase strength.

ゴム等により補強被覆を行うことが出来る。A reinforcing coating can be provided using rubber or the like.

第4図は前述の光ファイバセンサーの固定端2の外側に
プラスチック被覆8を光ファイバにUVキュアー材被被
覆上に、又はプラスチック被覆心線の上に更に施したも
のである。γは光フアイバ用コネクターである。
FIG. 4 shows the above-described optical fiber sensor in which a plastic coating 8 is further applied to the outside of the fixed end 2 on the optical fiber coated with a UV curing material or on the plastic coated core wire. γ is an optical fiber connector.

また、検出1y4は前述の様な移動子の形状により、ガ
イド5上を移動してもよいが、定点に中心を持ち、この
まわりに回転する部品の中心点より離れた点で光ファイ
バ1を固定して回転運動を利用した方法及び構造も検出
部4と同様の効果があり、この力を利用することが出来
る。
Furthermore, the detection 1y4 may be moved on the guide 5 depending on the shape of the movable element as described above, but the optical fiber 1 is centered at a fixed point and is connected to the optical fiber 1 at a point away from the center point of the part rotating around this point. A method and structure in which the detector is fixed and uses rotational motion have the same effect as the detection unit 4, and this force can be utilized.

第5図で説明すると1.2.3は前述通りで、15が回
転子で、その中心が16で回転子の一端に光ファイバ1
を固定して回転子に回転運動を与えることにより検出出
来る。
To explain with reference to Fig. 5, 1.2.3 is as described above, 15 is a rotor, its center is 16, and an optical fiber 1 is connected to one end of the rotor.
It can be detected by fixing the rotor and applying rotational motion to the rotor.

第6図は第4図をわかり易くするために斜視図で表わし
たもので、各符号は前出説明図と同じである。
FIG. 6 is a perspective view of FIG. 4 to make it easier to understand, and each reference numeral is the same as in the previous explanatory drawing.

第7図は本発明の光ファイバセンサーの他の一例であり
、光ファイバ1がループ又は半ループ状に配置されてお
り、且つ4は検出部で光ファイバ1をガイドしながら捕
捉し、17の他の円型ガイドの廻りを移動出来るもので
ある。2は固定端で、検出部4が光ファイバ1をガイド
しながら凡の位置からSの位置へ、又はその逆の方向に
円型ガイド17の外周上を移動可能となっている。
FIG. 7 shows another example of the optical fiber sensor of the present invention, in which the optical fiber 1 is arranged in a loop or half-loop shape, and the detection part 4 captures the optical fiber 1 while guiding it, and the detection part 4 captures the optical fiber 1 while guiding it. It can be moved around other circular guides. Reference numeral 2 denotes a fixed end, which allows the detection unit 4 to move along the outer periphery of the circular guide 17 from the normal position to the S position, or vice versa, while guiding the optical fiber 1.

これにより、検出部4で固定している光ファイバの点と
固定端2との相対位置が検出部4の移動前后に於て変化
し、それに伴って光ファイバに局部的な曲率半径の変化
を与えるものである。尚、本方式の場合は検出部4が捕
捉する光フアイバ上の点が4の移動と共に移動するもの
であるが、該固定端と4の間では光ファイバ1は拘束さ
れている。また、その際にループが例えば第7図の点線
から実線のように変化し、光ファイバ1の検出部4附近
での変形による長さの過不足を吸収し、その変化の波及
はコネクター7の部分以遠には及ばない構造となってい
る。従って第7図で得られる効果は前述の例と同様のも
のである。
As a result, the relative position between the point of the optical fiber fixed by the detecting section 4 and the fixed end 2 changes before and after the detecting section 4 moves, causing a local change in the radius of curvature of the optical fiber. It is something to give. Incidentally, in the case of this method, the point on the optical fiber captured by the detection section 4 moves with the movement of the optical fiber 4, but the optical fiber 1 is restrained between the fixed end and the optical fiber 4. In addition, at this time, the loop changes, for example, from the dotted line to the solid line in FIG. It has a structure that does not extend beyond that part. Therefore, the effect obtained in FIG. 7 is similar to the previous example.

(発明の効果) 光ファイバにマイクロベンドの曲げを与えるとその点で
光の伝送損失が増加することはよく知られている。本発
明はその原理を利用して、例えば第1図の4の検出部を
外力により動かすことにより光ファイバに曲げを発生さ
せ、光の伝送損失が増加して信号を取り出し得る。
(Effects of the Invention) It is well known that when an optical fiber is subjected to a microbend, the transmission loss of light increases. The present invention makes use of this principle, for example, by moving the detection section 4 in FIG. 1 by an external force, the optical fiber is bent, the transmission loss of light increases, and a signal can be extracted.

しかしながら、この場合、光ファイバに曲げを与えるに
は、その曲げた側と反対側に於て光ファイバの長さに関
し、過不足が生じ光ファイバが過度に引張られたり、圧
縮されたりする。
However, in this case, in order to bend the optical fiber, the length of the optical fiber on the side opposite to the bent side may be too long or too short, causing the optical fiber to be excessively stretched or compressed.

具体的に説明すると、第8図で1が光ファイバで2が固
定端、9が移動子とすると、移動子9を図で左方向に移
動させると、第9図の如く光ファイバ1が曲げられるが
、光フアイバ上のP、点は当然移動する。即ち、曲げに
関係のない光ファイバが引張られるこ七になる。このた
め切断に至る場合もある。
Specifically, in FIG. 8, 1 is an optical fiber, 2 is a fixed end, and 9 is a movable element. When the movable element 9 is moved to the left in the figure, the optical fiber 1 bends as shown in FIG. However, the point P on the optical fiber naturally moves. That is, the optical fiber, which is not related to bending, is stretched. This may lead to amputation.

この様な問題点を解消さすための方法が本発明である。The present invention is a method for solving such problems.

即ち、光フアイバセンサ一本体内に光ファイバのループ
又は半ループを取り入れ、これにより曲げに関与する以
外の部分の動きの変化をセンサー外に波及しないように
して、センサ一本体を構成させたものである。
That is, a sensor body is constructed by incorporating a loop or half-loop of optical fiber into the body of an optical fiber sensor, thereby preventing changes in the movement of parts other than those involved in bending from spreading outside the sensor. It is.

具体的に本発明の詳細な説明すると、本発明のセンサー
を任意の回路の内部に組み込み、センサーを作動させた
場合、例えば第1図で固定端2と4の検出部の間の距離
は、検出を行う度に変化するものであるから、当然同辺
の光ファイバは、第1図ではそのループが実線から点線
の如く、又はその逆の状態に変化する。その変化が回路
内にループ又は半ループ状のたるみを有していない場合
は回路内の配線にその変化が波及する。時には、それが
光ファイバを極度に引張ったり圧縮したりする。
To specifically explain the present invention in detail, when the sensor of the present invention is incorporated into an arbitrary circuit and the sensor is activated, for example, the distance between the detection parts of the fixed ends 2 and 4 in FIG. Since it changes each time detection is performed, naturally the loop of the optical fibers on the same side changes from a solid line to a dotted line in FIG. 1, or vice versa. If the change does not have a loop or half-loop slack in the circuit, the change will spread to the wiring in the circuit. Sometimes it puts the optical fiber under extreme tension or compression.

しかし、前述のようにセンサ一本体内部にループ又は半
ループ状の光ファイバを設けておくことにより、センサ
ーの端末にあるコネクター7の場所では、も早や検出部
4の移動に伴う動きの波及は及ばず常に静止した状態を
取り得る。
However, by providing a loop or half-loop optical fiber inside the sensor body as described above, the movement caused by the movement of the detection unit 4 can quickly spread at the location of the connector 7 at the terminal of the sensor. It is possible to remain in a stationary state at all times.

即ち、この種の光ファイバセンサーを組み込んだ回路で
は、少なくともセンサ〒の両端に取付けられたコネクタ
ー7以遠に於ては検出部4の位置の変化により、その動
きや引張力、圧縮力による影響を受けない構造となって
いる。
In other words, in a circuit incorporating this type of optical fiber sensor, the influence of movement, tensile force, and compressive force due to changes in the position of the detecting section 4 is avoided, at least beyond the connectors 7 attached to both ends of the sensor. The structure is such that it cannot be received.

当然のことながら、ループや半ループにより光ファイバ
1の長さの過不足が吸収されるためである。従って、こ
れらのループや半ループを含んだ範囲をセンサーとして
扱うように、完成したセンサーの要件として、コネクタ
ー7、固定端2.検出部4.光ファイバのループ又は半
ループを含むものとすることにより、検出部の移動の悪
影響を当該センサーを取付けた回路に何ら及ぼすことな
く作動さすことが出来る。
Naturally, this is because the loop or half-loop absorbs excess or deficiency in the length of the optical fiber 1. Therefore, in order to treat the range including these loops and half-loops as a sensor, the requirements for a completed sensor include a connector 7, a fixed end 2. Detection unit 4. By including a loop or half-loop of optical fiber, the sensor can be operated without any adverse effects of movement of the detection unit on the circuit to which the sensor is attached.

以上の効果を更に具体的に説明すると、光ファイバセン
サーとして、一つの独立した機能を持たすと同時に、そ
れにより他に悪影響を及ぼさない構造として、上記の要
件を満したセンサーを一つの空間内で組立て、外部とは
コネクター7により接続するものとしておくと、検出用
光ファイバは該空間内(例えばセンサ〒ボックス内)で
は検出動作の度に動くが、外部との接続のコネクター7
は内部の動きとは無関係に静止状態に置き得る。
To explain the above effects in more detail, as an optical fiber sensor, a sensor that has one independent function and has a structure that does not adversely affect others can be installed in one space. Assuming that the connector 7 is used to connect to the outside during assembly, the detection optical fiber will move every time a detection operation is performed within the space (for example, inside the sensor box), but the connector 7 for connection to the outside will move.
can be left at rest independent of internal movement.

即ち、本センサーは該要件を満した機構を総合して持っ
て成り立っているものである。尚、コネクター7を固定
して、固定端2と兼用して光ファイバ1のづ1留めを行
ってもよい。
In other words, this sensor is made up of a combination of mechanisms that meet the requirements. Incidentally, the connector 7 may be fixed and used also as the fixed end 2 to fasten the optical fiber 1.

更に別な方向からの見方として、光ファイバによる位置
センサーとして光遮蔽型のセンサーがあるが、この場合
と比較では 光遮蔽型の場合には、 (イ) 光が空中を通過するため受光端における開口角
2反射による伝送損失が大きい。
From a different perspective, there is a light-shielding type sensor as a position sensor using an optical fiber, but in comparison with this case, in the case of a light-shielding type, (a) the light passes through the air, so the light at the receiving end is Transmission loss due to aperture angle 2 reflection is large.

(→ 受光端にレンズ系を必要とする場合も発生する。(→ There are cases where a lens system is required at the light receiving end.

(ハ)光遮蔽型は光フアイバ内を通過する光量の少ない
場合は作動が困難である。
(c) The light-shielding type is difficult to operate when the amount of light passing through the optical fiber is small.

以上の様に遮蔽型光センサーに対しては、センサ一本体
である光ファイバが連続したま−それ自体がセンサーヘ
ッドを形成しているために、光フアイバ中を流れる光量
が比較的少ない場合でも、安価に光センサーを実現する
ことが出来る。
As mentioned above, for shielded optical sensors, the optical fiber that is the main body of the sensor is continuous and forms the sensor head, so even if the amount of light flowing through the optical fiber is relatively small, , it is possible to realize an optical sensor at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、第2図は第1図にガイ
ドを設けた説明図、第3図は第2図のガイド上を検出部
をすべらせている説明図、第4図は光ファイバの固定端
の外側にプラスチック被覆を施し、光フアイバコネクタ
ーを取付けた説明図、第5図は検出部を動かすのに回転
子を用いる説明図、第6図は第4図の斜視図、第7図は
光ファイバをガイドにより捕捉しながらガイドと固定端
の位置を変化させる実施例、第8図、第9図は従来例に
関するもので、光ファイバにそれぞれ外力を受ける前後
の説明図である。 1・・・光ファイバ、2・・・固定端、3・・・第2の
固定端、4・・・光ファイバを掴んだ移動可能な検出部
、5・・・ガイド、6・・・ガイド固定金具、7・・・
光フアイバ用コネクター、8・・・プラスチック被覆、
9・・・ファイバのみを固定する点、10・・・光源、
11・・・光電変素子、12・・・増巾器、13・・・
給電線、14・・・信号取出用配線、15・・・回転子
、16・・・回転子の中心、17・・・円形ガイド。 ナ1記 第5図 す6図 7コオ7ター オ7図 才8図
Fig. 1 is a detailed explanatory diagram of the present invention, Fig. 2 is an explanatory diagram similar to Fig. 1 with a guide provided, Fig. 3 is an explanatory diagram of the detection unit sliding on the guide of Fig. 2, and Fig. 4 The figure shows a plastic coating on the outside of the fixed end of the optical fiber and an optical fiber connector attached to it, Figure 5 is an explanatory diagram of using a rotor to move the detection unit, and Figure 6 is a perspective view of Figure 4. Figures 7 and 7 show an example in which the positions of the guide and the fixed end are changed while the optical fiber is captured by the guide, and Figures 8 and 9 relate to conventional examples, and are explanations before and after the optical fiber is subjected to an external force, respectively. It is a diagram. DESCRIPTION OF SYMBOLS 1... Optical fiber, 2... Fixed end, 3... Second fixed end, 4... Movable detection unit that grips the optical fiber, 5... Guide, 6... Guide Fixing bracket, 7...
Optical fiber connector, 8...plastic coating,
9... Point for fixing only the fiber, 10... Light source,
11... Photoelectric conversion element, 12... Amplifier, 13...
Power supply line, 14... Wiring for signal extraction, 15... Rotor, 16... Center of rotor, 17... Circular guide. Figure 1, Figure 5, Figure 6, Figure 7, Figure 7, Figure 7, Figure 8.

Claims (1)

【特許請求の範囲】 1、光ファイバの内部に光を通過させながら、光ファイ
バにループ又は半ループ状の配置を形成させ、そのルー
プ又は半ループの少なくとも一端を固定して、又は該ル
ープの内部の点を固定して、更にその固定点より離れて
、ループ又は半ループ形成側で光ファイバを掴み、その
掴んだ点を前記固定点との距離が伸縮する方向に移動可
能ならしめ、その伸縮が発生する方向に前記掴んだ点を
移動するように外力又は変位を与え、よつて光ファイバ
に部分的に曲率半径の変化を生ぜしめることにより、内
部の光量の変化を検出する構成を特徴とする光ファイバ
センサー。 2、固定点より離れてループ又は半ループ形成側の光フ
ァイバをガイドにより捕捉しながらガイドと該固定点と
の位置を変化させ、よつて光ファイバに部分的に曲率半
径の変化を生ぜしめることを特徴とする特許請求の範囲
第1項記載の光ファイバセンサー。 3、光ファイバを掴む点をガイド上に設けて、そのガイ
ド上を、前記掴む点が移動することにより、該光ファイ
バループ又は半ループの端部の固定点又はその内部に固
定した点との距離を伸縮することを特徴とする特許請求
の範囲第1項又は第2項記載の光ファイバセンサー。 4、ループ及び半ループを形成する場所に、UVコート
光ファイバの心線を使用したことを特徴とする特許請求
の範囲第1項、第2項又は第3項記載の光ファイバセン
サー。 5、光ファイバを掴む点を回転子の一端に固定して、そ
の回転子がその中心のまわりに運動することにより生ず
る移動が該光ファイバループ又は半ループの端部の固定
点又はその内部に固定した点との距離を伸縮することを
特徴とする特許請求の範囲第1項、第2項、第3項又は
第4項記載の光ファイバセンサー。
[Claims] 1. While passing light inside the optical fiber, the optical fiber is formed into a loop or half-loop arrangement, and at least one end of the loop or half-loop is fixed, or the loop is fixing an internal point, grasping the optical fiber on the loop or half-loop forming side further away from the fixed point, and making the grasped point movable in a direction that expands and contracts the distance from the fixed point; It is characterized by a configuration in which a change in the internal light amount is detected by applying an external force or displacement to move the gripped point in the direction in which expansion and contraction occurs, thereby causing a partial change in the radius of curvature of the optical fiber. optical fiber sensor. 2. Changing the position of the guide and the fixed point while capturing the optical fiber on the loop or half-loop forming side away from the fixed point by the guide, thereby causing a partial change in the radius of curvature of the optical fiber. The optical fiber sensor according to claim 1, characterized in that: 3. A point for gripping the optical fiber is provided on a guide, and by moving the gripping point on the guide, the gripping point can be moved between a fixed point at the end of the optical fiber loop or a half loop or a point fixed inside the optical fiber loop. The optical fiber sensor according to claim 1 or 2, characterized in that the distance can be expanded or contracted. 4. The optical fiber sensor according to claim 1, 2, or 3, wherein a core wire of a UV-coated optical fiber is used at the location where the loop and half-loop are formed. 5. The point for gripping the optical fiber is fixed at one end of the rotor, and the movement caused by the movement of the rotor around its center is at or within the fixed point at the end of the optical fiber loop or half-loop. The optical fiber sensor according to claim 1, 2, 3, or 4, characterized in that the distance from the fixed point can be expanded or contracted.
JP60098433A 1985-05-09 1985-05-09 Optical fiber sensor Pending JPS61256224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098433A JPS61256224A (en) 1985-05-09 1985-05-09 Optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098433A JPS61256224A (en) 1985-05-09 1985-05-09 Optical fiber sensor

Publications (1)

Publication Number Publication Date
JPS61256224A true JPS61256224A (en) 1986-11-13

Family

ID=14219665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098433A Pending JPS61256224A (en) 1985-05-09 1985-05-09 Optical fiber sensor

Country Status (1)

Country Link
JP (1) JPS61256224A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101917U (en) * 1986-12-22 1988-07-02
JPH041540A (en) * 1990-04-12 1992-01-07 Fuji Electric Co Ltd Force sensor
JP2002116009A (en) * 2000-10-10 2002-04-19 Jgc Corp Device for measuring difference of point-to-point vertical displacement
JP2017198628A (en) * 2016-04-28 2017-11-02 株式会社コアシステムジャパン Displacement gauge
JP2017198629A (en) * 2016-04-28 2017-11-02 株式会社コアシステムジャパン Displacement gauge
JP2018096736A (en) * 2016-12-09 2018-06-21 株式会社コアシステムジャパン Displacement meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101917U (en) * 1986-12-22 1988-07-02
JPH041540A (en) * 1990-04-12 1992-01-07 Fuji Electric Co Ltd Force sensor
JP2002116009A (en) * 2000-10-10 2002-04-19 Jgc Corp Device for measuring difference of point-to-point vertical displacement
JP2017198628A (en) * 2016-04-28 2017-11-02 株式会社コアシステムジャパン Displacement gauge
JP2017198629A (en) * 2016-04-28 2017-11-02 株式会社コアシステムジャパン Displacement gauge
JP2018096736A (en) * 2016-12-09 2018-06-21 株式会社コアシステムジャパン Displacement meter

Similar Documents

Publication Publication Date Title
US4408495A (en) Fiber optic system for measuring mechanical motion or vibration of a body
US4183618A (en) Couplings and terminals for optical waveguides
FI75049C (en) MIKROBOEJKAENSLIG FIBEROPTISK KABEL.
CA1269267A (en) Two lens optical package and method of making same
ATE91020T1 (en) FIBER OPTIC SENSOR FOR SMALL TENSION OR COMPRESSION FORCES.
JPS61256224A (en) Optical fiber sensor
US4775233A (en) Method of the measurement of light from an optical cable and arrangement therefor
GB2185828A (en) Optical cable comprising non- metallic reinforced plastics tube
SE8603256L (en) PRESSURE DETECTION DEVICE
JP2006215248A (en) Coding member for optical communication cable and connector connecting structure of optical communication cable
CN107920716A (en) SHAPE DETECTION insertion apparatus
US4893786A (en) Cable conduit apparatus
CA1288084C (en) Light emitting device and light receiving device with optical fiber
DE3942556A1 (en) Temp.-insensitive light waveguide strain gauge - has central, prim. coated waveguide enclosed by crossed coils e.g. further light waveguides and protective casing
CN205449322U (en) Optical fiber grating sensor
US6718078B2 (en) High sensitivity fiber optic rotation sensor
JP2001033633A (en) Over or door opening and closing detecting device
JP3299767B2 (en) An optical signal transmission method using a multi-core plastic optical fiber.
KR100414857B1 (en) Pressure sensor using optical fiber
JPH0643056A (en) Optical fiber cable for pressure sensor
JP3163600B2 (en) Optical fiber cord with connector
JPS59124314A (en) Fiber scope
SU1539519A1 (en) Fibre-optic displacement transducer
JPS632009A (en) Optical fiber cable
JP5525237B2 (en) Optical fiber sensor and pressure sensor