JPS61255663A - High strength crystalline glass containing appatite and large amount uolustonite - Google Patents

High strength crystalline glass containing appatite and large amount uolustonite

Info

Publication number
JPS61255663A
JPS61255663A JP60095971A JP9597185A JPS61255663A JP S61255663 A JPS61255663 A JP S61255663A JP 60095971 A JP60095971 A JP 60095971A JP 9597185 A JP9597185 A JP 9597185A JP S61255663 A JPS61255663 A JP S61255663A
Authority
JP
Japan
Prior art keywords
glass
crystals
cao
crystallized glass
wollastonite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60095971A
Other languages
Japanese (ja)
Other versions
JPH0249262B2 (en
Inventor
敏宏 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP60095971A priority Critical patent/JPS61255663A/en
Priority to US06/857,369 priority patent/US4652534A/en
Publication of JPS61255663A publication Critical patent/JPS61255663A/en
Publication of JPH0249262B2 publication Critical patent/JPH0249262B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は人工歯根及び人工骨などのインブラント材料
として有用な高強度結晶化ガラスに関するものであって
、さらに詳しくは、アパタイト結晶と、多量のウオラス
トナイト結晶を含有していることを特徴とする高強度結
晶化ガラスとその製造法に係る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to high-strength crystallized glass useful as an implant material for artificial tooth roots and artificial bones, and more specifically, it relates to a high-strength crystallized glass useful as an implant material such as an artificial tooth root and an artificial bone. The present invention relates to a high-strength crystallized glass characterized by containing wollastonite crystals and a method for producing the same.

[従来の技術] 骨と化学結合をつくる(バイオアクティブ)セラミック
スとしては、アパタイト焼結体やNa20−Kl!OM
QO−cao−3iO2−F2O5結晶化ガラスが知ら
れている。またMQO−CaO−Pl! Os −8i
 02系ガラスを200メツシユ以下に粉砕し、そのガ
ラス粉末を成型後、ガラス粉末の焼結温度域で熱処理し
、次いでアパタイト結晶[Cai (PO4) a  
(06,5。
[Conventional technology] Examples of (bioactive) ceramics that create chemical bonds with bones include apatite sintered bodies and Na20-Kl! OM
QO-cao-3iO2-F2O5 crystallized glass is known. MQO-CaO-Pl again! Os-8i
02 series glass is crushed to 200 mesh or less, the resulting glass powder is molded, heat treated in the sintering temperature range of glass powder, and then apatite crystal [Cai (PO4) a
(06,5.

F)?]及びウオラストナイト結晶[cas +03 
]の生成温度域で熱処理して製造される結晶化ガラスも
知られている。この結晶化ガラスでは、アパタイト結晶
が生体親和性に寄与し、ウオラストナイト結晶が機械的
強度に寄与する。従って、機械的強度を上げるためには
、ウオラストナイト結晶の含有率を高めることが望まし
い。
F)? ] and wollastonite crystal [cas +03
] Crystallized glass produced by heat treatment in the formation temperature range is also known. In this crystallized glass, apatite crystals contribute to biocompatibility, and wollastonite crystals contribute to mechanical strength. Therefore, in order to increase mechanical strength, it is desirable to increase the content of wollastonite crystals.

ところで、これらのセラミックスの曲げ強度は、アパタ
イト焼結体で1000〜1400kg/ Cm2、N 
a 20−に20−MQO−CaOS i○2−F20
5結晶化ガラスで1ooo〜1500kg/cm2、M
 Q 0−cao−F20s −8i 02系結晶化ガ
ラステ1200〜1400kg/Cm2程度である。し
かし、この値は人工歯根又は人工骨としては必ずしも充
分に満足できる程のものではない。
By the way, the bending strength of these ceramics is 1000 to 1400 kg/Cm2, N for apatite sintered bodies.
a 20- to 20-MQO-CaOS i○2-F20
5 Crystallized glass 1ooo~1500kg/cm2, M
Q 0-cao-F20s -8i 02 series crystallized glass te is about 1200 to 1400 kg/Cm2. However, this value is not necessarily sufficiently satisfactory for an artificial tooth root or artificial bone.

本発明の目的は優れた生体親和性を備え、しかも従来品
よりもさらに高強度である結晶化ガラスとその製造法を
提供することにある。
An object of the present invention is to provide a crystallized glass having excellent biocompatibility and higher strength than conventional products, and a method for producing the same.

[問題点を解決するための手段] この発明の結晶化ガラスは、重量百分率で、45≦Ca
O≦56.1≦P205 <10.30≦3 i 02
 ≦50 0≦F2≦5、O≦NazO≦5 0≦K2O≦5、0≦5、OsLf 20≦50≦Aj2zO3≦5、OsT i 02≦5
0≦ZrO2≦5.0≦S rO≦50≦Nb2O5≦5、OsTa205 ≦5の
範囲で上記成分を含有し、CaQ、F2O5及びS!0
2の含有量合計が95%以上である組成を有し、アパタ
イト結晶とウオラストナイト結晶を含有することを特徴
とするものである。
[Means for solving the problems] The crystallized glass of the present invention has a weight percentage of 45≦Ca.
O≦56.1≦P205 <10.30≦3 i 02
≦50 0≦F2≦5, O≦NazO≦5 0≦K2O≦5, 0≦5, OsLf 20≦50≦Aj2zO3≦5, OsT i 02≦5
Contains the above components in the range of 0≦ZrO2≦5.0≦S rO≦50≦Nb2O5≦5, OsTa205≦5, CaQ, F2O5 and S! 0
It has a composition in which the total content of 2 is 95% or more, and is characterized by containing apatite crystals and wollastonite crystals.

そして、上記の如き本発明の結晶化ガラスは、重量百分
率で 45≦Cao≦56.1≦P205 <10.30≦S
iO2≦50 0≦F2≦5.0≦Na2O≦5 0≦K2O≦5、0≦5.0≦L iz O≦50≦A
j220i≦5.0≦TiO2≦50≦ZrO2≦5.
0≦S rO≦50≦Nb2O5≦5.0≦Taz Os≦5の
範囲で上記成分を含有し、CaO1P205及びSiO
2の含有量合計が95%以上である組成を有する200
メツシユ以下のガラス粉末を成型し、これをガラス粉末
の焼成温度域で熱処理し、次いでアパタイト結晶及びウ
オラストナイト結晶の生成温度域で熱処理することによ
って製造することができる。
The crystallized glass of the present invention as described above has a weight percentage of 45≦Cao≦56.1≦P205 <10.30≦S
iO2≦50 0≦F2≦5.0≦Na2O≦5 0≦K2O≦5, 0≦5.0≦L iz O≦50≦A
j220i≦5.0≦TiO2≦50≦ZrO2≦5.
Contains the above components in the range of 0≦S rO≦50≦Nb2O5≦5.0≦Taz Os≦5, and contains CaO1P205 and SiO
200 having a composition in which the total content of 2 is 95% or more
It can be manufactured by molding glass powder of a mesh size or smaller, heat-treating it at a firing temperature range for glass powder, and then heat-treating it at a temperature range for forming apatite crystals and wollastonite crystals.

次に本発明に係る結晶化ガラスの組成に関し、その量的
限定理由を述べる。
Next, the reasons for quantitative limitations regarding the composition of the crystallized glass according to the present invention will be described.

CaOが45%未満では、ガラス粉末の焼結性が極端に
悪くなるため、高強度な結晶化ガラスを得ることができ
ない。またCaOが56%を越えるとガラスの失透傾向
が著しくなる。従ってCaOの含量は45〜56χに限
定される。F20sが1%未満では、ガラスの失透傾向
が著しく、10%以上ではウオラストナイトの析出量が
少なくなるので、F2O5の含量は1%以上10%未満
に限定される。
If CaO is less than 45%, the sinterability of the glass powder becomes extremely poor, making it impossible to obtain high-strength crystallized glass. Moreover, when CaO exceeds 56%, the tendency of the glass to devitrify becomes significant. Therefore, the content of CaO is limited to 45-56χ. If F20s is less than 1%, the tendency of the glass to devitrify is significant, and if it is 10% or more, the amount of wollastonite precipitated decreases, so the content of F2O5 is limited to 1% or more and less than 10%.

SiO2が30%未満ではガラス粉末の焼結性が悪くな
り、かつウオラストナイトの析出量も少なくなる。また
S!02が50%を越えるとガラスが失透しやすくなる
。従って、S i 02の含量は30〜50xに限定さ
れる。
If SiO2 is less than 30%, the sinterability of the glass powder will be poor and the amount of wollastonite precipitated will also be reduced. S again! When 02 exceeds 50%, the glass tends to devitrify. Therefore, the content of S i 02 is limited to 30-50x.

さらに、上記した必須成分に加えて本発明の結晶化ガラ
スは、人体に有害でないF2 、Naz 01KzO,
Lf20、Afz Oa 、Ti0z、ZrO2,5r
O1Nb20s 、Ta205の1種又は2種以上を5
%以内の範囲で含有することができる。これらの任意成
分の合計が5%より多いときには、アパタイト結晶及び
ウオラストナイト結晶の生成量が低下してしまう場合が
あるので、好ましくは5%以下とするのがよい。
Furthermore, in addition to the above-mentioned essential components, the crystallized glass of the present invention contains F2, Naz 01KzO,
Lf20, Afz Oa, Ti0z, ZrO2,5r
O1Nb20s, one or more of Ta205
It can be contained within a range of %. If the total amount of these optional components is more than 5%, the amount of apatite crystals and wollastonite crystals produced may decrease, so it is preferably 5% or less.

本発明に係る結晶化ガラスを製造するにあたっては、上
に限定した組成範囲の母ガラスを−H200メツシュ以
下の粒度に粉砕後、得られたガラス粉末を所望の形状に
成型し、しかる後その成型体を焼結させてからこれに結
晶化処理を施すことが肝要である。融液を直接所定の形
状のガラスに成型し、これを加熱処理した場合には、ウ
オラストナイト結晶がガラス表面からのみ析出し、内部
に亀裂が生じた機械的強度の低い結晶化ガラスしか得ら
れない。また、母ガラスを粉砕しても、その粒度が20
0メツシュ以上であると、結晶化ガラス中に気孔が残存
しやすく、この場合にも機械的強度の大きい結晶化ガラ
スを得ることができない。
In producing the crystallized glass according to the present invention, the mother glass having the composition range limited above is pulverized to a particle size of -H200 mesh or less, the obtained glass powder is molded into a desired shape, and then the molding is performed. It is important to sinter the body and then subject it to the crystallization process. If the melt is directly molded into glass in a predetermined shape and then heat-treated, wollastonite crystals will precipitate only from the glass surface, resulting in only crystallized glass with low mechanical strength and cracks inside. I can't do it. Also, even if the mother glass is crushed, the particle size will be 20
If the mesh size is 0 or more, pores tend to remain in the crystallized glass, and in this case also, it is impossible to obtain a crystallized glass with high mechanical strength.

つまり、気孔が少なく、結晶が均一に分布した高強度結
晶化ガラスを得るためには、粒度200メツシユ以下の
微細な母ガラス粉末を用いることが重要である。
In other words, in order to obtain high-strength crystallized glass with few pores and uniform crystal distribution, it is important to use fine mother glass powder with a particle size of 200 mesh or less.

本発明の方法によれば、粒度200メツシユ以下の母ガ
ラス粉末は任意の公知手段で所望の形状に成型され、し
かる後その成型体は前記ガラス粉末の焼結温度域で熱処
理され、次いでアパタイト結晶及びウオラストナイト結
晶が析出する温度域で熱処理される。前者の熱処理は気
孔率が小さく、機械的強度の大きい結晶化ガラスを得る
ために重要であり、後者の熱処理はガラスからアパタイ
ト結晶及び多量のウオラストナイト結晶を析出(生成)
させるために重要である。
According to the method of the present invention, a mother glass powder with a particle size of 200 mesh or less is molded into a desired shape by any known means, and then the molded body is heat-treated in the sintering temperature range of the glass powder, and then apatite crystals are formed. and heat treatment in a temperature range where wollastonite crystals precipitate. The former heat treatment is important for obtaining crystallized glass with low porosity and high mechanical strength, while the latter heat treatment precipitates (generates) apatite crystals and a large amount of wollastonite crystals from the glass.
It is important to

ガラス粉末の焼結温度域は、ガラス粉末成型体を一定速
度で加熱し、その間の熱収縮を測定することにより求め
ることができる。熱収縮の開始温度から終了温度までが
焼結温度域である。
The sintering temperature range of the glass powder can be determined by heating the glass powder molded body at a constant rate and measuring the thermal contraction during the heating. The sintering temperature range is from the start temperature to the end temperature of thermal contraction.

また、アパタイト結晶及びウオラストナイト結晶の析出
温度域は、ガラス粉末の示差熱分析により求められる。
Further, the precipitation temperature range of apatite crystals and wollastonite crystals is determined by differential thermal analysis of glass powder.

示差熱分析曲線に於ける発熱ピークの温度で熱処理した
ガラス粉末のX線回折データを解析することにより、そ
れぞれの発熱ピークに対応する析出結晶を同定し、その
発熱温度から、発熱終了温度までをそれぞれの結晶の析
出温度域とする。
By analyzing the X-ray diffraction data of glass powder heat-treated at the temperature of the exothermic peak in the differential thermal analysis curve, we can identify the precipitated crystals corresponding to each exothermic peak, and calculate the temperature from the exothermic temperature to the end temperature of the exothermic peak. The precipitation temperature range for each crystal.

[実施例] 酸化物、炭酸塩、リン酸塩、水和物、フッ化物などを原
料に用いて、次表に示す組成に相当するガラスのバッチ
を調合し、これを白金ルツボに入れて1450〜155
0℃で1時間溶融した。次いで融液を水中に投入して急
冷し、乾燥後、ボットミルに入れて300メツシユ以下
の粒度に粉砕した。このガラス粉末に結合剤として5 
wt%のパラフィンを加え、金型に入れて約1000k
g/ clの圧力を加えて成型した。
[Example] Using oxides, carbonates, phosphates, hydrates, fluorides, etc. as raw materials, a batch of glass corresponding to the composition shown in the following table was prepared, and this was placed in a platinum crucible at 1450 ~155
Melt for 1 hour at 0°C. Next, the melt was poured into water to be rapidly cooled, dried, and then placed in a bot mill to be ground to a particle size of 300 mesh or less. 5 as a binder to this glass powder.
Add wt% paraffin, put it in a mold and heat it for about 1000k
It was molded by applying a pressure of g/cl.

得られた成型体を電気炉に入れ、室温から一定の昇温速
度3℃/分で加熱し、それぞれ表に示した温度で2時間
保持して成型体の焼結と結晶化を行なった。この後、炉
内で室温まで冷却し、結晶化ガラスを得た。
The obtained molded body was placed in an electric furnace, heated from room temperature at a constant temperature increase rate of 3° C./min, and held at each temperature shown in the table for 2 hours to sinter and crystallize the molded body. Thereafter, it was cooled to room temperature in a furnace to obtain crystallized glass.

こうして製造された各結晶化ガラスの破面をSENで観
察したところ、いずれも気孔の少ない緻密な組織であっ
た。また、これら結晶化ガラスを粉砕し、粉末X線回折
を行った結果、すべてにアパタイト、α−ウオラストナ
イト、β−ウオラストナイトが析出していることを認め
た。さらに、結晶化ガラスを300番のダイヤモンド砥
石で直径4〜5Ill11の丸棒に加工し、3点曲げ試
験を行なった。ガラス組成、熱処理温度及び強度試験の
結果を次表に示す。
When the fracture surfaces of each of the crystallized glasses produced in this manner were observed using SEN, they all had dense structures with few pores. Further, as a result of pulverizing these crystallized glasses and performing powder X-ray diffraction, it was found that apatite, α-wollastonite, and β-wollastonite were precipitated in all of them. Further, the crystallized glass was processed into a round bar with a diameter of 4 to 5 Ill11 using a No. 300 diamond grindstone, and a three-point bending test was conducted. The glass composition, heat treatment temperature, and strength test results are shown in the table below.

表から明らかなように、本発明の結晶化ガラスは170
0〜2100kM clという高い値の曲げ強度を有し
ている。(以下余白)
As is clear from the table, the crystallized glass of the present invention has 170
It has a high bending strength of 0 to 2100 kM cl. (Margin below)

Claims (1)

【特許請求の範囲】 1 重量百分率で、 45≦CaO≦56、1≦P_2O_5<10、30≦
SiO_2≦50 0≦F_2≦5、0≦Na_2O≦5 0≦K_2O≦5、0≦Li_2O≦5 0≦Al_2O_3≦5、0≦TiO_2≦5・0≦Z
rO_2≦5、0≦SrO≦5 0≦Nb_2O_5≦5、0≦Ta_2O_5≦5の範
囲で上記成分を含有し、CaO、P_2O_5及びSi
O_2の含有量合計が95%以上である組成を有し、ア
パタイト結晶とウォラストナイト結晶を含有しているこ
とを特徴とする高強度結晶化ガラス。 2 重量百分率で、 45≦CaO≦56、1≦P_2O_5<10、30≦
SiO_2≦50 0≦F_2≦5、0≦Na_2O≦5 0≦K_2O≦5、0≦Li_2O≦5 0≦Al_2O_3≦5、0≦TiO_2≦50≦Zr
O_2≦5、0≦SrO≦5 0≦Nb_2O_5≦5、0≦Ta_2O_5≦5の範
囲で上記成分を含有し、CaO、P_2O_5及びSi
O_2の含有量合計が95%以上である組成を有する2
00メッシュ以下のガラス粉末を成型し、これをガラス
粉末の焼結温度域で熱処理し、次いでアパタイト結晶及
びウォラストナイト結晶の生成温度域で熱処理すること
を特徴とする高強度結晶化ガラスの製造方法。 3 前記の結晶生成温度域が850〜1200℃の範囲
にある特許請求の範囲第2項記載の方法。
[Claims] 1 In weight percentage: 45≦CaO≦56, 1≦P_2O_5<10, 30≦
SiO_2≦50 0≦F_2≦5, 0≦Na_2O≦5 0≦K_2O≦5, 0≦Li_2O≦5 0≦Al_2O_3≦5, 0≦TiO_2≦5・0≦Z
Contains the above components in the range of rO_2≦5, 0≦SrO≦5, 0≦Nb_2O_5≦5, 0≦Ta_2O_5≦5, CaO, P_2O_5 and Si
A high-strength crystallized glass having a composition in which the total content of O_2 is 95% or more, and containing apatite crystals and wollastonite crystals. 2 Weight percentage: 45≦CaO≦56, 1≦P_2O_5<10, 30≦
SiO_2≦50 0≦F_2≦5, 0≦Na_2O≦5 0≦K_2O≦5, 0≦Li_2O≦5 0≦Al_2O_3≦5, 0≦TiO_2≦50≦Zr
Contains the above components in the range of O_2≦5, 0≦SrO≦5, 0≦Nb_2O_5≦5, 0≦Ta_2O_5≦5, and contains CaO, P_2O_5 and Si.
2 having a composition in which the total content of O_2 is 95% or more
Production of high-strength crystallized glass characterized by molding glass powder of 0.00 mesh or less, heat-treating it in the sintering temperature range of glass powder, and then heat-treating it in the formation temperature range of apatite crystals and wollastonite crystals. Method. 3. The method according to claim 2, wherein the crystal formation temperature range is from 850 to 1200°C.
JP60095971A 1985-04-30 1985-05-08 High strength crystalline glass containing appatite and large amount uolustonite Granted JPS61255663A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60095971A JPS61255663A (en) 1985-05-08 1985-05-08 High strength crystalline glass containing appatite and large amount uolustonite
US06/857,369 US4652534A (en) 1985-04-30 1986-04-30 High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60095971A JPS61255663A (en) 1985-05-08 1985-05-08 High strength crystalline glass containing appatite and large amount uolustonite

Publications (2)

Publication Number Publication Date
JPS61255663A true JPS61255663A (en) 1986-11-13
JPH0249262B2 JPH0249262B2 (en) 1990-10-29

Family

ID=14152068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60095971A Granted JPS61255663A (en) 1985-04-30 1985-05-08 High strength crystalline glass containing appatite and large amount uolustonite

Country Status (1)

Country Link
JP (1) JPS61255663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311545A (en) * 1986-06-30 1988-01-19 Kyocera Corp Calcium phosphate crystallized glass body
US11796922B2 (en) * 2019-09-30 2023-10-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311545A (en) * 1986-06-30 1988-01-19 Kyocera Corp Calcium phosphate crystallized glass body
US11796922B2 (en) * 2019-09-30 2023-10-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor devices

Also Published As

Publication number Publication date
JPH0249262B2 (en) 1990-10-29

Similar Documents

Publication Publication Date Title
US4652534A (en) High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same
US4560666A (en) High strength glass-ceramic containing apatite and alkaline earth metal silicate crystals and process for producing the same
US4643982A (en) High-strength glass-ceramic containing anorthite crystals and process for producing the same
JPS63270061A (en) Surface modification of inorganic bio-compatible material
JPS6210939B2 (en)
JPH0436107B2 (en)
Moguš-Milanković et al. Iron phosphate glass-ceramics
JPS61255663A (en) High strength crystalline glass containing appatite and large amount uolustonite
JPH0555150B2 (en)
Hamzawy et al. Characterization and bioactivity in high cristobalite-nepheline-apatite glass and glass ceramics
JPS61251532A (en) High-strength crystallized glass containing apatite and large amount of wollastonite and production thereof
KR920000150B1 (en) Crystalized glass for human body and preparation method
JPH0153211B2 (en)
KR940003461B1 (en) Method for glass ceramic withused living body material
JPH0247417B2 (en)
JPH01115360A (en) Inorganic living body material and preparation thereof
JPS6323144B2 (en)
JPH0247418B2 (en)
JPS6382670A (en) Inorganic vital material
JPH0191865A (en) Inorganic biomaterial and its manufacture
JPH0247419B2 (en)
JPS63318950A (en) Preparation of crystallized glass for living body
JPH046659B2 (en)
Satyanarayana et al. Effect Kinetics, of K Structural, 2O on the Micro Crystallization Structural and Mechanical Properties of Lithium Disilicate and Glass (Li Ceramics
JPS6096543A (en) Production of crystallized calcium phosphate glass