JPS61255262A - Intake apparatus of internal-combustion engine - Google Patents

Intake apparatus of internal-combustion engine

Info

Publication number
JPS61255262A
JPS61255262A JP60096619A JP9661985A JPS61255262A JP S61255262 A JPS61255262 A JP S61255262A JP 60096619 A JP60096619 A JP 60096619A JP 9661985 A JP9661985 A JP 9661985A JP S61255262 A JPS61255262 A JP S61255262A
Authority
JP
Japan
Prior art keywords
fuel
intake
air
jetted
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60096619A
Other languages
Japanese (ja)
Inventor
Manabu Kato
学 加藤
Shunichi Aoyama
俊一 青山
Takashi Fujii
敬士 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60096619A priority Critical patent/JPS61255262A/en
Publication of JPS61255262A publication Critical patent/JPS61255262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To improve response performance by reducing the adhering of fuel onto the inner wall of a suction port by suppressing the spread of the fuel mist by the air stream jetted out of a nozzle in transient operation, etc. CONSTITUTION:When the intake pressure in an intake-pipe engagement part 15A sharply increases, and the variation rate becomes over a set value, a solenoid valve 9 is opened for the sufficient time for the acceleration operation by the judgement of a control unit 16. Therefore, the high-pressure air stored in a surge tank 10 is supplied into an air injection nozzle 8, and jetted out into an intake port 2A from the opened port part. Since the jetted-out air flows in the direction of convergence in the direction of center shaft in fuel injection from a fuel injection valve 3, said jetted-out air crosses with the outer contour part of the jetted fuel, and the spread of fuel is suppressed. Therefore, the fuel quantity adhering onto the inner wall of the suction port 2 markedly reduces, and a large portion is inhaled into a combustion chamber 5 by the direct aid of inhaled air stream, and the delay of inhaling of the increased quantity of jetted fuel can be suppressed.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は、気筒毎に2つの吸気弁を備えた内燃機関の吸
気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an intake system for an internal combustion engine having two intake valves for each cylinder.

〈従来の技術〉 従来のこの種の吸気装置としては、例えば第3図に示す
ようなものがある(特願昭59−236797号参照)
<Prior art> As a conventional intake device of this type, there is one shown in FIG. 3, for example (see Japanese Patent Application No. 59-236797).
.

その概要を説明すると、気筒毎に2つの吸気弁IA、I
Bとこれら吸気弁に至る吸気ポート2A。
To explain the outline, two intake valves IA and I for each cylinder.
B and the intake port 2A leading to these intake valves.

2Bを有し、一方の吸気ボー1−2Aに燃料を噴射する
燃料噴射弁3と、他方の吸気ポート2Bに介装される開
閉弁4とを備えている。そして、機関の低速域では前記
開閉弁4を閉じて一方の吸気ボー1−2Aのみから燃焼
室5の周壁に沿って吸気を流入させることにより、スワ
ールを強化して低速域での燃焼性改善を図る一方、中・
高速域では開閉弁4を開いて2つの吸気ポー)2A、2
Bから吸気を流入させることにより、スワールを弱めつ
つ吸気充填効率を高めて出力向上を図っている。
2B, and includes a fuel injection valve 3 that injects fuel into one intake port 1-2A, and an on-off valve 4 interposed in the other intake port 2B. In the low speed range of the engine, the on-off valve 4 is closed to allow intake air to flow in from only one intake bow 1-2A along the peripheral wall of the combustion chamber 5, thereby strengthening the swirl and improving combustibility in the low speed range. While aiming for
In the high speed range, the on-off valve 4 is opened and the two intake ports) 2A, 2
By letting the intake air flow in from B, the swirl is weakened and the intake air filling efficiency is increased to improve the output.

また、前記開閉弁4の開時は、燃料は一方の吸気ポート
2Aのみに供給されるのに対し、空気は2つの吸気ポー
)2A、2Bから略半分ずつ供給されるため、吸気ボー
)2A内の混合気濃度が大きい。
Further, when the on-off valve 4 is open, fuel is supplied only to one intake port 2A, whereas air is supplied approximately half from the two intake ports 2A and 2B, so that the intake port 2A The mixture concentration in the tank is high.

このため、このものにおいては、燃料噴射弁3の燃料噴
霧角θを大きくして燃料の微粒化を促進しつつ吸気ポー
ト2人内壁に付着する燃料量を増大させることにより、
燃料の吸気ポート2人内での滞留時間を増大しつつ、吸
気ボー)2A壁からの放熱により燃料の気化を促進させ
て出力性能向上、未燃HC,煤等の排出量低減を図って
いる。
Therefore, in this device, the fuel spray angle θ of the fuel injection valve 3 is increased to promote atomization of the fuel and increase the amount of fuel adhering to the inner wall of the two intake ports.
While increasing the residence time of fuel in the intake port 2, heat radiation from the intake port 2A wall promotes fuel vaporization, improving output performance and reducing emissions of unburned HC, soot, etc. .

尚、間中、6A、6Bは排気弁、7A、7Bは排気ポー
トである。
In addition, 6A and 6B are exhaust valves, and 7A and 7B are exhaust ports.

〈発明が解決しようとする問題点〉 しかしながら、このように燃料噴霧角θを大とする構成
では、吸入空気流量が急激に変化する加速等の過渡運転
時は吸気ボー)2A内壁に付着した燃料が空気に対して
遅れて吸入されるため、混合気濃度の変化が大きく、応
答性に劣るという問題を生じる。
<Problems to be Solved by the Invention> However, in such a configuration where the fuel spray angle θ is large, during transient operation such as acceleration where the intake air flow rate changes rapidly, the fuel adhering to the inner wall of the intake bow 2A Since the gas is inhaled with a delay compared to the air, there is a large change in the mixture concentration, resulting in a problem of poor responsiveness.

また、冷却水温度が低い冷機時は、吸気ポート内壁に付
着した燃料の気化性が悪いため、前記応答性の低下はよ
り著しくなる。
Further, when the engine is cold and the cooling water temperature is low, the fuel adhering to the inner wall of the intake port has poor vaporization properties, so the decrease in responsiveness becomes more significant.

本発明は、上記の問題点に着目してなされたもので、機
関の過渡運転時等は燃料の噴霧角を小さくすることがで
き、もって吸気ポート内壁へ付着する燃料量を減少する
ことにより、上記問題点を解決した内燃機関の吸気装置
を提供することを目的する。
The present invention has been made in view of the above-mentioned problems, and it is possible to reduce the fuel spray angle during transient engine operation, thereby reducing the amount of fuel adhering to the inner wall of the intake port. It is an object of the present invention to provide an intake system for an internal combustion engine that solves the above problems.

く問題点を解決するための手段〉 このため、本発明は、気筒毎に2つの吸気弁と、これら
吸気弁に至る吸気ポートと、前記2つの吸気ポートの一
方に燃料を噴射する燃料噴射弁と、他方の吸気ポートに
介装され機関運転条件に応じて開閉制御される開閉弁と
を備えてなる内燃機関の吸気装置において、前記燃料噴
射弁の燃料噴霧角を前記一方の吸気ポート内壁全周に向
けて燃料を噴射するように設定すると共に、空気圧源か
ら供給された高圧空気を燃料噴射弁の噴孔側端部の外周
から燃料噴霧と交差する方向に向けて噴出させる空気噴
射ノズルと、前記空気圧力源から空気噴射ノズルへの高
圧空気の供給を機関運転条件に応じて制御する手段とを
設けた構成とする。
Means for Solving the Problems> For this reason, the present invention provides two intake valves for each cylinder, intake ports leading to these intake valves, and a fuel injection valve that injects fuel into one of the two intake ports. and an on-off valve installed in the other intake port and controlled to open and close according to engine operating conditions, wherein the fuel spray angle of the fuel injection valve is adjusted to the entire inner wall of the one intake port. An air injection nozzle that is set to inject fuel toward the circumference of the fuel injection valve and injects high-pressure air supplied from an air pressure source from the outer periphery of the injection hole side end of the fuel injection valve in a direction that intersects with the fuel spray. and means for controlling the supply of high-pressure air from the air pressure source to the air injection nozzle in accordance with engine operating conditions.

く作用〉 このようにすれば、例えば冷機時や過渡運転時等には空
気噴射ノズルから空気を噴出させて燃料の拡がりを抑制
し、吸気ポート内壁に付着する燃料量を減少することに
より、空気に対する燃料の吸入遅れを小さくでき、混合
気濃度の急激な変化を抑制して運転性を安定させること
ができる。
In this way, for example, when the machine is cold or during transient operation, air is injected from the air injection nozzle to suppress the spread of fuel and reduce the amount of fuel adhering to the inner wall of the intake port. It is possible to reduce the delay in fuel intake relative to the engine speed, suppress rapid changes in the air-fuel mixture concentration, and stabilize drivability.

また、それ以外の定常運転時は、空気噴射ノズルからの
空気噴出を停止することにより吸気ポート内壁への燃料
の付着量を増大し、燃料の気化性を促進して出力、燃費
、排気特性等を良好に維持することができる。
In addition, during other steady operation, by stopping the air jet from the air injection nozzle, the amount of fuel adhering to the inner wall of the intake port is increased, promoting the vaporization of the fuel and improving output, fuel efficiency, exhaust characteristics, etc. can be maintained in good condition.

〈実施例〉 以下、本発明の実施例を図に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

但し、第3図に示したものと同一の構成要素には同一符
号を付して説明する。
However, the same components as shown in FIG. 3 will be described with the same reference numerals.

第1図及び第2図は一実施例を示し、気筒毎に2つの吸
気弁IA、IBと吸気ポート2A、2Bを備え、かつ、
一方の吸気ボー)2Aに燃料を噴射する燃料噴射弁3、
及び他方の吸気ボー)2Bに機関の低速域で閉し中・高
速域で開くように制御される開閉弁4を備えることは前
記先願例と同様である。
FIGS. 1 and 2 show an embodiment in which each cylinder is provided with two intake valves IA, IB and intake ports 2A, 2B, and
A fuel injection valve 3 that injects fuel into one intake bow) 2A,
It is the same as in the example of the prior application that the other intake valve 2B is provided with an on-off valve 4 that is controlled to close in the low speed range of the engine and open in the middle and high speed ranges.

また、燃料噴射弁3単独での燃料噴霧角θを大きく設定
して、燃料を吸気ボー)2A内壁の全周に向けて噴射す
るようにしであることも同様である。
Similarly, the fuel spray angle θ of the fuel injection valve 3 alone is set to a large value so that fuel is injected toward the entire circumference of the inner wall of the intake bow 2A.

そして、本発明に係る構成として燃料噴射弁3の噴孔側
端部外周の燃料噴霧が直接光たらない位置に、2重管構
造からなる空気噴射ノズル8が装着される 前記ノズル8の吸気ボー)2Aに臨む先端開口部は、噴
出空気流を燃料噴射中心軸方向に集束させるよう内側に
新曲されている。
As a configuration according to the present invention, an air injection nozzle 8 having a double pipe structure is installed at a position on the outer periphery of the injection hole side end of the fuel injection valve 3 where the fuel spray does not directly shine. ) The tip opening facing 2A is curved inward so as to focus the ejected air flow in the direction of the central axis of the fuel injection.

空気噴射ノズル8の内外管壁間の環状空間は、電磁弁9
及びサージクンク10を介装した空気供給通路11を介
して電動式の空気ポンプ12に接続される。
The annular space between the inner and outer pipe walls of the air injection nozzle 8 is connected to a solenoid valve 9.
It is connected to an electric air pump 12 via an air supply passage 11 with a surge connector 10 interposed therebetween.

ここで、空気ポンプ12は、機関の吸入空気流量を検出
するエアフロメータ13と、絞り弁14との間の吸気管
15内から空気の一部を吸入してり一−ジタンク10内
に蓄圧するようになっている。
Here, the air pump 12 sucks a part of air from the intake pipe 15 between the air flow meter 13 that detects the intake air flow rate of the engine and the throttle valve 14, and stores the air in the air tank 10. It looks like this.

また、前記電磁弁9は、コントロールユニット16から
の出力により開閉制御される。コン1〜ロールユニツト
16には、絞り弁14下流の吸気管集合部15Aの吸気
圧力P1を検出する吸気圧センサ17及び吸気ポンプ2
A近傍のウォータジャケット内の冷却水温度を検出する
水温センサ18からの信号が入力される。これら人力信
号に応じてコントロールユニット16は、吸気圧力P、
の変化率dP+/dtが、冷却水温度Tが低い稈小さな
値に設定される設定値K (T)以−]二となった時に
、常閉の電磁弁9を所定時間開とするように制御する。
Further, the solenoid valve 9 is controlled to open and close by an output from a control unit 16. The controller 1 to the roll unit 16 include an intake pressure sensor 17 that detects the intake pressure P1 of the intake pipe collection section 15A downstream of the throttle valve 14, and an intake pump 2.
A signal from a water temperature sensor 18 that detects the temperature of cooling water in the water jacket near A is input. In response to these human signals, the control unit 16 controls the intake pressure P,
The normally closed solenoid valve 9 is opened for a predetermined time when the rate of change dP+/dt reaches a set value K (T) or below, which is set to a small value when the cooling water temperature T is low. Control.

ここで、吸気圧センサ17. 水温センサ18.コント
ロールユニソ目6.電磁弁9等が、空気圧源(空気ポン
プ12゜サージタンク10)から空気噴射ノズル8への
空気の供給を機関運転条件に応じて制御する手段を構成
する。
Here, intake pressure sensor 17. Water temperature sensor 18. Control Uniformes 6. The electromagnetic valve 9 and the like constitute means for controlling the supply of air from the air pressure source (air pump 12° surge tank 10) to the air injection nozzle 8 according to engine operating conditions.

次に、本実施例の一連の作用を説明する。定常または定
常に近い運転時は吸気管集合部15Aの吸気圧力P1の
変化率dI)、/dtが小さく、コントロールユニット
16の判定により電磁弁9は閑に保持される。したがっ
て、空気噴射ノズル8からの空気の噴出は停止され、噴
霧角θを大きく設定された燃料噴射弁は微粒化を促進さ
れると共に、燃料の多くが吸気ポート2A内壁に付着し
て吸気ボー1〜2人内の滞在時間が長引き、暖機後は、
吸気ポート2A壁面からの放熱量を増大すること等によ
り気化が促進される。
Next, a series of operations of this embodiment will be explained. During steady or near-steady operation, the rate of change dI), /dt of the intake pressure P1 in the intake pipe gathering portion 15A is small, and the solenoid valve 9 is kept silent as determined by the control unit 16. Therefore, the jetting of air from the air injection nozzle 8 is stopped, and the fuel injection valve with a large spray angle θ is promoted to atomize, and most of the fuel adheres to the inner wall of the intake port 2A, causing the intake bow 1. ~ After the two people stay for a long time and warm up,
Vaporization is promoted by increasing the amount of heat radiation from the wall surface of the intake port 2A.

このため、混合気の性状が良化し、安定した燃焼性が得
られ、出力、燃費を向−にできると共に、未燃HCや煤
等の排出量も低減できる。
Therefore, the properties of the air-fuel mixture are improved, stable combustibility is obtained, output and fuel efficiency can be improved, and emissions of unburned HC, soot, etc. can also be reduced.

一方、過渡運転時、例えば加速運転時においては、加速
初回に絞り弁14が2激に開かれ、吸気管保合部15A
内の吸気圧力P1が急激に増大する。
On the other hand, during transient operation, for example during acceleration operation, the throttle valve 14 is opened twice at the first acceleration, and the intake pipe retaining portion 15A
The intake pressure P1 within the engine rapidly increases.

したがって、その変化率dpt/dtが増大して設定イ
直K(T)ヲー1二回ると、コントロールユニット判定
により電磁弁9が加速運転を行うに十分な所定時間t1
開かれる。
Therefore, when the rate of change dpt/dt increases and the setting value K(T) turns twice, the control unit determines that the solenoid valve 9 is in an accelerated operation for a predetermined time t1.
be opened.

この結果、サージタンク10内に蓄圧されていた高圧空
気が空気噴射ノズル8に供給され、その開口部から吸気
ボー1−2A内に前記所定時間t1噴出する。該噴出空
気は前記したように燃料噴射中心軸方向に簗束する方向
に流れるため、噴射燃料の外かく部分と交差して燃料の
拡がりを抑え、実質的な燃料噴霧角θ゛を図示の如く減
少させて吸気ボー)2A内壁へ付着する燃料量を大幅に
減少させる。したがって、大部分の燃料が直接吸入空気
流に乗って燃焼室5内に吸入され、吸入空気流量の増大
に対して増量された噴射燃料の吸入遅れを可及的に抑制
できるため、応答性即ち加速性を確保できるのである。
As a result, the high pressure air stored in the surge tank 10 is supplied to the air injection nozzle 8, and is ejected from the opening into the intake bow 1-2A for the predetermined time t1. As described above, the ejected air flows in the direction of the fuel injection center axis, so it intersects with the outer part of the injected fuel, suppresses the spread of the fuel, and adjusts the actual fuel spray angle θ゛ as shown in the figure. (intake bow) greatly reduces the amount of fuel adhering to the inner wall of 2A. Therefore, most of the fuel is directly drawn into the combustion chamber 5 along with the intake air flow, and the intake delay of the injected fuel, which has been increased in response to the increase in the intake air flow rate, can be suppressed as much as possible. This makes it possible to ensure acceleration.

ここで、前記設定値K(T)は、冷却水温度Tが低い程
小さく設定されているため、吸気ポート2A内壁に付着
した燃料の気化が良好に行われない冷却水温度の低温時
には、比較的緩やかな加速時でも空気噴出が行われて、
燃料の壁面付着を抑制することにより、応答性を確保す
ることができる。
Here, the set value K(T) is set smaller as the cooling water temperature T is lower, so when the cooling water temperature is low and the fuel adhering to the inner wall of the intake port 2A is not well vaporized, the lower the cooling water temperature T is, the lower the cooling water temperature T is. Even during gradual acceleration, air is ejected,
Responsiveness can be ensured by suppressing fuel adhesion to the wall surface.

尚、燃料の微粒化は、主として燃料噴射弁3から噴射さ
れた当初の角度に支配されるので、噴射後に拡がりを抑
制しても殆ど微粒化を阻害することはない。また、噴出
空気による噴1・1燃料の拡がりの抑制は、噴出空気流
の方向の他、1ノ゛−ジタンク10に蓄圧される空気の
設定圧力によっても51;J整できる。
Note that atomization of the fuel is mainly controlled by the initial angle at which the fuel is injected from the fuel injection valve 3, so even if the spread is suppressed after injection, atomization will hardly be inhibited. Furthermore, the suppression of the spread of the jet 1/1 fuel by the jetted air can be adjusted by 51;J not only by the direction of the jetted air flow but also by the set pressure of the air accumulated in the jet 1 tank 10.

さらに、空気ポンプ12の吸入口をエアフロメータ13
下流の吸気通路に接続しているため、空気噴射ノズル8
からの噴出空気量も吸入空気流量の中に計測され、混合
比への影響を防止できる。
Furthermore, the inlet of the air pump 12 is connected to the air flow meter 13.
Since it is connected to the downstream intake passage, the air injection nozzle 8
The amount of air blown out from the pump is also measured in the intake air flow rate, which prevents it from affecting the mixing ratio.

尚、dP、/dtの代わりに絞り弁14の開度を検出し
、その単位時間当りの変化量即ち変化率を尽準値と比較
して空気噴出を行う加速条件を判定するようにしてもよ
いことは勿論である。
Note that instead of dP and /dt, the opening degree of the throttle valve 14 may be detected and the amount of change per unit time, that is, the rate of change, may be compared with the exhaust standard value to determine the acceleration conditions for air jetting. Of course it's a good thing.

〈発明の効果〉 以上説明したように、本発明によれば、定常に近い運転
時は噴射燃料の多くを吸気ポート内壁に付着させること
により、混合気性状を良好にして燃焼性を向−ヒできる
と共に、過渡運転時等はノズルから噴出された空気流に
より燃料噴射ブrの燃料噴霧の拡がりを抑制し、吸気ポ
ート内壁への燃料付着量を減少させて良好な応答性を確
保することができ、加速性能等を向」二できる。
<Effects of the Invention> As explained above, according to the present invention, most of the injected fuel adheres to the inner wall of the intake port during near-steady operation, thereby improving the air-fuel mixture properties and improving combustibility. At the same time, during transient operation, the air flow ejected from the nozzle suppresses the spread of the fuel spray caused by the fuel injection bubbler, reducing the amount of fuel adhering to the inner wall of the intake port and ensuring good response. It is possible to improve acceleration performance, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概要構成を示す図、第2図
は同上実施例の燃焼室周辺の構成を示す横断面図、第3
図は先願例を示す要部横断面図である。 IA、IB・・・吸気弁  2A、2B・・・吸気ポー
ト  3・・・燃料噴射弁  4・・・開閉弁  8・
・・空気噴射ノズル  9・・・電磁弁  10・・・
サージタンク  11・・・空気供給通路  12・・
・空気ポンプI6・・・コントロールユニット  17
・・・吸気圧センサ18・・・水温センサ
FIG. 1 is a diagram showing a general configuration of an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the configuration around the combustion chamber of the same embodiment, and FIG.
The figure is a cross-sectional view of a main part showing an example of a prior application. IA, IB...Intake valve 2A, 2B...Intake port 3...Fuel injection valve 4...Opening/closing valve 8.
...Air injection nozzle 9...Solenoid valve 10...
Surge tank 11...Air supply passage 12...
・Air pump I6...Control unit 17
... Intake pressure sensor 18 ... Water temperature sensor

Claims (1)

【特許請求の範囲】[Claims] 気筒毎に2つの吸気弁と、これら吸気弁に至る吸気ポー
トと、前記2つの吸気ポートの一方に燃料を噴射する燃
料噴射弁と、他方の吸気ポートに介装され機関運転条件
に応じて開閉制御される開閉弁とを備えてなる内燃機関
の吸気装置において、前記燃料噴射弁の燃料噴霧角を前
記一方の吸気ポート内壁全周に向けて燃料を噴射するよ
うに設定すると共に、空気圧源から供給された高圧空気
を燃料噴射弁の噴孔側端部の外周から燃料噴霧と交差す
る方向に向けて噴出させる空気噴射ノズルと、前記空気
圧力源から空気噴射ノズルへの高圧空気の供給を機関運
転条件に応じて制御する手段とを設けたことを特徴とす
る内燃機関の吸気装置。
Each cylinder has two intake valves, an intake port leading to these intake valves, a fuel injection valve that injects fuel into one of the two intake ports, and a fuel injection valve installed in the other intake port that opens and closes depending on engine operating conditions. In an intake system for an internal combustion engine comprising a controlled on-off valve, the fuel spray angle of the fuel injection valve is set to inject fuel toward the entire circumference of the inner wall of the one intake port, and An air injection nozzle that injects the supplied high-pressure air from the outer periphery of the nozzle hole side end of the fuel injection valve in a direction intersecting the fuel spray, and an engine that supplies high-pressure air from the air pressure source to the air injection nozzle. An intake system for an internal combustion engine, characterized in that it is provided with means for controlling according to operating conditions.
JP60096619A 1985-05-09 1985-05-09 Intake apparatus of internal-combustion engine Pending JPS61255262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096619A JPS61255262A (en) 1985-05-09 1985-05-09 Intake apparatus of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096619A JPS61255262A (en) 1985-05-09 1985-05-09 Intake apparatus of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61255262A true JPS61255262A (en) 1986-11-12

Family

ID=14169861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096619A Pending JPS61255262A (en) 1985-05-09 1985-05-09 Intake apparatus of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61255262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097720A (en) * 2010-11-05 2012-05-24 Toyota Motor Corp Control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097720A (en) * 2010-11-05 2012-05-24 Toyota Motor Corp Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JPS5950850B2 (en) Internal combustion engine intake system
JPS5514937A (en) Fuel injection system internal combustion engine
JPS61255262A (en) Intake apparatus of internal-combustion engine
JPH05263698A (en) Fuel pressure control device of internal combustion engine of fuel injection type
JPH10115269A (en) Fuel injection device for engine
JPS6296776A (en) Fuel feeder for itnernal combustion engine
JPH05340326A (en) Fuel supply device for internal combustion engine
CA1208088A (en) Internal combustion engine
JPS6113109B2 (en)
JPH1026026A (en) Spark ignition engine
JPH0216057Y2 (en)
JPS603341Y2 (en) Internal combustion engine mixture supply system
JP3264069B2 (en) Fuel injection device for internal combustion engine
JPS6245068Y2 (en)
JPH0519578Y2 (en)
JPH0610807A (en) Fuel supply device for internal combustion engine
JP2906895B2 (en) Fuel supply device for internal combustion engine
JPS649465B2 (en)
JPS61226559A (en) Mixture gas controller for internal-combustion engine
JPH0932702A (en) Fuel injection device of engine
JPS58204958A (en) Fuel feed device for internal-combustion engine
JPS60222558A (en) Fuel controlling device of engine
JP2004183593A (en) Air intake device for internal combustion engine
JPH0797970A (en) Air-assisted fuel injection device
JPH0216329A (en) Intake device of engine