JPS61254026A - Parallel operation control system of ac output converter - Google Patents

Parallel operation control system of ac output converter

Info

Publication number
JPS61254026A
JPS61254026A JP60092691A JP9269185A JPS61254026A JP S61254026 A JPS61254026 A JP S61254026A JP 60092691 A JP60092691 A JP 60092691A JP 9269185 A JP9269185 A JP 9269185A JP S61254026 A JPS61254026 A JP S61254026A
Authority
JP
Japan
Prior art keywords
output
parallel operation
operation control
current
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60092691A
Other languages
Japanese (ja)
Other versions
JPH0532977B2 (en
Inventor
隆夫 川畑
重紀 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60092691A priority Critical patent/JPS61254026A/en
Priority to US06/826,930 priority patent/US4677535A/en
Priority to CA502029A priority patent/CA1271808C/en
Priority to KR1019860002306A priority patent/KR900008391B1/en
Priority to DE19863611885 priority patent/DE3611885A1/en
Priority to CH1507/86A priority patent/CH670731A5/de
Priority to GB8609366A priority patent/GB2175155B/en
Publication of JPS61254026A publication Critical patent/JPS61254026A/en
Publication of JPH0532977B2 publication Critical patent/JPH0532977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔麦茶上の重用分野〕 本発明は複数台の交流出力変換装置を共通の負荷に対し
て並列運転する電源システムの交流出力変換装置の並列
運転制御方式に関する0〔従来の技術〕 第5図は例えば特公昭53−3633フ号及び特公昭5
6−13101号に示された従来の交流出力変換装置の
並列運転制御方式を示すものである0 図において1号インバータ1は図示を省略した同一構成
の2号インバータ2と共に出力母線3を通して並列運転
を行い負荷4に電力を供給している0 1号インバータ1はインバータ本体100、出カドラン
ス101.フィルタ用リアクトN102゜フィルタ用コ
ンデンサ103を主要構成要素とし、直流電源5の電力
を交流に変換し、出力開閉器104を通して出力母線3
へ接続されている。
DETAILED DESCRIPTION OF THE INVENTION [Important fields of use in barley tea] The present invention relates to a parallel operation control system for AC output converters in a power supply system in which a plurality of AC output converters are operated in parallel for a common load. ] Fig. 5 shows, for example, the Japanese Patent Publication No. 53-3633 and the Japanese Patent Publication No. 5
6-13101. In the figure, the No. 1 inverter 1 is operated in parallel with the No. 2 inverter 2 of the same configuration (not shown) through the output bus 3. The No. 1 inverter 1, which performs the following and supplies power to the load 4, has an inverter main body 100, an output transformer 101. Filter reactor N102゜ Filter capacitor 103 is the main component, converts the power of DC power supply 5 to AC, and connects it to output bus 3 through output switch 104.
connected to.

次に動作について説明する。Next, the operation will be explained.

fず、1号インバータ1と2号インバータ2とが並列運
転を行うためには、1号インバータ1の出力電流工□か
らCT(変流器)106によシ検出信号11.を得る。
In order for No. 1 inverter 1 and No. 2 inverter 2 to operate in parallel, a detection signal 11. get.

同じく2号機から得られた検出信号I2&との差、即ち
横流に相当する信号ΔIを横流検出器107により得る
。次に移相器108によシ、直交する2つの電圧ベクト
ルEムとEBを作り、前記Δl信号から演算回路109
,110によりそれぞれ無効電力対応成分ΔQと有効電
力対応成分Δpt−得る。インバータは電圧設定回路 
  1111と電圧帰還回路112の信号にもとづき。
The cross-current detector 107 obtains a difference from the detection signal I2& obtained from the second car, that is, a signal ΔI corresponding to the cross-flow. Next, the phase shifter 108 generates two orthogonal voltage vectors Em and EB, and the arithmetic circuit 109 generates them from the Δl signal.
, 110, a reactive power corresponding component ΔQ and an active power corresponding component Δpt- are obtained, respectively. The inverter is a voltage setting circuit
1111 and voltage feedback circuit 112.

電圧制御回路113が、PWM回路114をかいして、
インバータ本体100のパルス巾変調を行ない、内部発
生電圧を制御する。
The voltage control circuit 113 uses the PWM circuit 114 to
Pulse width modulation of the inverter main body 100 is performed to control the internally generated voltage.

一方前述の無効電流対応成分ΔQは電圧制御回路113
へ補助信号的に与えられ、インバータ本体10Gの内部
発生電圧を数チ程度調節することにより、無効電力対応
成分ΔQを零にするように動作する。
On the other hand, the above-mentioned reactive current corresponding component ΔQ is the voltage control circuit 113
By adjusting the internally generated voltage of the inverter main body 10G by several orders of magnitude, it operates to reduce the reactive power corresponding component ΔQ to zero.

一方前述の有効電力対応成分ΔPはPLL回路を構成す
るアンプ115を通し、基準発揚器105の周波数の微
調整を行なうことによりインバータ本体100の内部発
生電圧の位相を制御し、該ΔPを零にするように動作す
る。
On the other hand, the aforementioned active power corresponding component ΔP passes through the amplifier 115 constituting the PLL circuit, and by finely adjusting the frequency of the reference oscillator 105, the phase of the internally generated voltage of the inverter main body 100 is controlled, and the ΔP is made zero. It works like that.

このようにして、電圧と位相とを制御することによル、
無効及び有効電力対応成分ΔQとΔPとをともに零にす
ることによって、2台のインバータ間の横流がたくな9
.安定な負荷の分担が行なわれる。
In this way, by controlling the voltage and phase,
By reducing both the reactive and active power components ΔQ and ΔP to zero, cross current between the two inverters is prevented9.
.. Stable load sharing takes place.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の交流出力変換装置の並列運転制御方式は以上のよ
うに構成されでいるので、並列運転方式を適用したイン
バータシステムが、予定通り正常に運転するか否かを試
験・点検することが必要でこれが正常に運転するか否か
は第5図の1号及び2号インバータ1と2とを出力母線
3に接続し。
Since the conventional parallel operation control method for AC output converters is configured as described above, it is necessary to test and inspect whether the inverter system to which the parallel operation method is applied operates normally as planned. To check whether this operates normally, connect the No. 1 and No. 2 inverters 1 and 2 shown in FIG. 5 to the output bus 3.

実際に運転してみるしか方法はない。しかし衆知の通り
一般のインバータは過電流耐量が150チ程度しかない
ため、第5図のシステムを実際に運転しながら制御回路
の異常の有無を調査した〕、制御の応答性を調節し念り
することは非常に困難であるという問題点があった。
The only way is to actually try driving it. However, as is well known, general inverters have an overcurrent tolerance of only about 150 Ω, so we investigated whether there were any abnormalities in the control circuit while actually operating the system shown in Figure 5], and carefully adjusted the response of the control. The problem was that it was extremely difficult to do so.

それは、実際には第5図の制御回路のそれぞれの要素を
完全に試験調整し、ま九、要素間の配線の誤9なども皆
無であることを確認したのち始めて第5図のシステム全
体の運転試験を行う。このように充分慎重な確認の上並
列運転を行なっても、予想外の不良により過大な横流が
流れ、インバータが転流失敗して損傷を受けることが少
くない〇このことは故障(4IK再現性の悪い時々発生
する接触不良などの故障)が生じ大ときの調査や定期点
検などの作業が非常に困難であることを意味する0 fた、高調波横流による制御不能現象ではそれぞれのイ
ンバータの出力電流エエに含まれる予想外の高調波横流
によシ、検出された横流信号ΔIに大きな比率の高調波
が含まれ、それが電流の直交成分の検出に誤差を与え、
制御不能になる等の問題点があり九。
In reality, the entire system shown in Figure 5 was only constructed after completely testing and adjusting each element of the control circuit shown in Figure 5 and confirming that there were no wiring errors between elements. Conduct a driving test. Even if parallel operation is performed after careful confirmation, an unexpected failure may cause an excessive cross current to flow, causing the inverter to fail in commutation and damage. In addition, uncontrollable phenomena due to harmonic cross currents may cause the output of each inverter to Due to the unexpected harmonic cross current contained in the current, the detected cross current signal ΔI contains a large proportion of harmonics, which causes an error in the detection of the orthogonal component of the current.
There are problems such as loss of control.

本発明は上記のような問題点を解決する念めに成された
もので実際に主回路を並列運転することなく、制御回路
のみで並列運転制御の試験調整を可能とし、ま九主回路
間の高調波横流が存在しても安定な並列運転の負荷分担
を可能とする交流出力変換装置の並列運転制御方式を提
供することを目的とする。
The present invention has been developed to solve the above-mentioned problems, and it is possible to test and adjust parallel operation control using only the control circuit without actually operating the main circuits in parallel. An object of the present invention is to provide a parallel operation control system for AC output converters that enables stable parallel operation load sharing even in the presence of harmonic cross currents.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る交流出力変換装置の並列運転制御方式は
複数台の可制御電圧、及び可制御周波数の交流出力変換
装置を共通の負荷に対して並列運転する九め、谷、々の
変換装置の少くとも1つの変換ポールの出力端子から第
1のインピーダンス要素を介して他の全ての変換装置の
第2のインピーダンス要素を介した出力端子とを相互に
並列接続して模擬母線に接続すると共に、前記第2のイ
ンピーダンス要素に流れる電流が所定の値になるように
各々の変換装置の電圧と周波数とを制御するようにした
ものである。
The parallel operation control method for AC output converters according to the present invention is a method for controlling the parallel operation of AC output converters with a plurality of controllable voltages and controllable frequencies in parallel operation for a common load. Connecting the output terminal of at least one conversion pole through the first impedance element to the output terminals of all other conversion devices through the second impedance element in parallel with each other and connecting to the simulated bus, The voltage and frequency of each conversion device are controlled so that the current flowing through the second impedance element becomes a predetermined value.

〔作用〕[Effect]

この発明に係る交流出力変換装置の並列運転制御方式に
よれば、1号及び2号インバータに共通の負荷を駆動す
る出力母線以外に第2のインピーダンス要素を介し光模
擬母線を設け、該模擬母線同志を前記第1及び第2イン
バータ間で互いに接続し、負荷電流を含まない横流のみ
が流れる該模擬母線の電流を検出して出力変換装置間の
電流バランスを制御する。
According to the parallel operation control method of the AC output converter according to the present invention, an optical simulated bus is provided via a second impedance element in addition to the output bus that drives the load common to the No. 1 and No. 2 inverters, and the simulated bus The first and second inverters are connected to each other, and the current of the simulated bus through which only a cross current that does not include load current flows is detected to control the current balance between the output converters.

〔音今台実施例〕[Otokodai example]

以下、この発明の一実施例を図について説明する。図中
第5図と同一の部分は同一の符号をもって図示し間第1
図において、インバータ本体100の出力端子にトラン
ス120を接続する。そして、そのトランス120の2
次側にリアクトル121(第2のインピーダンス要素)
とスイッチ122を通し℃模擬母線Tへ接続する。
An embodiment of the present invention will be described below with reference to the drawings. In the figure, the same parts as in Fig. 5 are indicated by the same reference numerals.
In the figure, a transformer 120 is connected to the output terminal of the inverter main body 100. And that transformer 120 no 2
Reactor 121 (second impedance element) on the next side
and a switch 122 to connect to the °C simulated bus T.

ここで、トランス120は、インバータ100の容量が
数十KVA程度のものであっても、数百VA程度の小形
のもので良い。!!九七の2次側の電圧は自由に選定す
ることが出来るので、例えば1oovに選定される。
Here, the transformer 120 may be small, with a capacity of about several hundred VA, even if the capacity of the inverter 100 is about several tens of KVA. ! ! Since the voltage on the secondary side of the 97 can be freely selected, it is selected to be, for example, 1oov.

次に動作について説明する。Next, the operation will be explained.

インバータ本体100の定格電流に対応して。Corresponding to the rated current of the inverter main body 100.

リアクトル121の定格電流相当電流をIAとすると1
本体のリアクト/1102(第1のインピーダンス要素
)とトランス101の合成インピーダンスが仮りに10
%とすれば、リアクトル121とトランス120の合成
インピーダンスは10Ωに設定される。また両者のイン
ピーダンス戸も出来るだけ合わせることが望ましい。
If the current equivalent to the rated current of the reactor 121 is IA, then 1
If the combined impedance of the reactor/1102 (first impedance element) of the main body and the transformer 101 is 10
%, the combined impedance of the reactor 121 and transformer 120 is set to 10Ω. It is also desirable to match the impedance of both doors as much as possible.

このように設定すると、第1図の模擬母線Tへ接続され
た回路は、並列運転を行う主回路に対し。
With this setting, the circuit connected to the simulated bus T in Fig. 1 will be connected to the main circuit that operates in parallel.

それから負荷とフィルタのコンデンサを除外し念モデル
を構成している。即ち、主回路の等価回路は第3図aで
示されるが5モデNtfi同図すの等価回路で表わされ
る。第3図aの場合には電流11に負荷電流と横流の両
者が含まれるが、同図すの場合には横流だけであるので
、第5図の横流検出回路107t−設けることなく、横
流△Iに対応する第1図の電流工□。を得ることができ
るので、CT123により例えばlA10.IAに変換
して、横流信号Δ工とし、以後第5図の説明と同じ制御
動作を行なわせることができる。
Then, the load and filter capacitors are excluded to form a hypothetical model. That is, the equivalent circuit of the main circuit is shown in FIG. In the case of FIG. 3a, the current 11 includes both the load current and the cross current, but in the case of the same figure, there is only the cross current, so the cross current detection circuit 107t in FIG. Current work □ in Figure 1 corresponding to I. can be obtained by CT123, for example, lA10. It is possible to convert it into IA and use it as a cross-current signal Δ, and thereafter perform the same control operation as explained in FIG. 5.

また、第2図は第1図の要部の波形図を示したもので、
Lは基本波横流成分、bは基本波横流によるへPgi号
、Cは基本波横流による△Q傷信号dは第5詞波検流成
分s end第5pi波による△P信号、fは第5調波
による△Q傷信号夫々示す。
In addition, Figure 2 shows a waveform diagram of the main part of Figure 1.
L is the fundamental wave cross current component, b is the Pgi signal due to the fundamental wave cross current, C is the △Q damage signal due to the fundamental wave cross current, d is the △P signal due to the 5th wave galvanometric component s end, 5th pi wave, f is the 5th wave Each of the △Q flaw signals due to harmonics is shown.

但し△Pは有効電力対応成分、ΔQは無効電力対応成分
である。
However, ΔP is a component corresponding to active power, and ΔQ is a component corresponding to reactive power.

第4図に他の実施例を示す。簡単のため、第1図と同一
の部分は省略し、横流対応信号の検出部分だけの回路図
を示す。ここではU、V、W相の変換ポール134,1
35,136のうち該134とコンデンサ132,13
3とで構成した直流電源の中点Nの間にトランス120
の一次を接続し。
FIG. 4 shows another embodiment. For simplicity, parts that are the same as those in FIG. 1 are omitted, and only the circuit diagram for detecting the cross current corresponding signal is shown. Here, the U, V, W phase conversion pole 134,1
134 out of 35,136 and capacitors 132, 13
A transformer 120 is connected between the midpoint N of the DC power supply consisting of
Connect the primary of.

υ相を代表相として取扱っている。The υ phase is treated as a representative phase.

また、第5図と同一の符号は同一機能を表わすので説明
を省略する。そして第4図では主回路との相似性をよ)
高めるため、フィルタコンデンサ103に相当するコン
デンサ125を設けている。
Further, since the same reference numerals as in FIG. 5 represent the same functions, the explanation will be omitted. Figure 4 shows the similarity with the main circuit)
In order to increase the power consumption, a capacitor 125 corresponding to the filter capacitor 103 is provided.

また、2号インバータ2の同じコンデンサとの共振を防
ぐため、ダンピング抵抗126を設けている。このダン
ピング抵抗126は図示の抵抗124のように、スイッ
チ122と直列に設けることもできる。
Further, in order to prevent resonance with the same capacitor of the No. 2 inverter 2, a damping resistor 126 is provided. This damping resistor 126 can also be provided in series with the switch 122, like the illustrated resistor 124.

尚、必要に応じ、主回路にはない共振フィルタ用のリア
クトル130とコンデンサ131を設けることにより、
高調波をさらに充分に除去し、高調波の影響を受けない
制御信号を得ることが容易となる。
In addition, by providing a reactor 130 and a capacitor 131 for the resonance filter, which are not included in the main circuit, as necessary,
It becomes easier to remove harmonics more fully and obtain a control signal that is not affected by harmonics.

以上説明した第4図の構成は、第1の特長と、して制御
回路を試験調整するとき出力開閉器104を閉じ鼠こと
なく、スイッチ1′22だけを閉じて模擬母線7を通し
て、あらかじめ並列運転の予備試験を行うことができる
ため試験調整や点検が容易となるという大きな利点を実
現できる。
The first feature of the configuration shown in FIG. 4 explained above is that when testing and adjusting the control circuit, without closing the output switch 104, only the switch 1'22 is closed and the simulated bus 7 is connected. Since a preliminary test of operation can be performed, test adjustment and inspection can be easily performed, which is a great advantage.

また、第2の特長としてはインバータの主回路のフィル
ターコンデンサ103相互間に流れる高調波横流の影響
を受けない信号を検出することができるので、安定な制
御系の設計が容易である。
The second feature is that it is possible to detect a signal that is not affected by harmonic cross current flowing between the filter capacitors 103 in the main circuit of the inverter, so it is easy to design a stable control system.

そして、上記の例でil、インバータの主回路は3相で
あるが、模擬母線回路は単相である。仁れは通常の場合
、インバータポール相を別個に制御せず、一括制御する
ので、負荷バランスは代表とする一相について行なえば
よいためである。なお、3相全てKついて、第4図に示
す回路を設ければ。
In the above example, the main circuit of the inverter is three-phase, but the simulated bus circuit is single-phase. This is because, in normal cases, the inverter pole phases are not individually controlled but are collectively controlled, so load balancing only needs to be performed for one representative phase. In addition, if all three phases are connected to K and the circuit shown in FIG. 4 is provided.

よシ速応性に優れた負荷バランスを行うことが可能であ
る。
It is possible to perform load balancing with excellent quick response.

なか、上記説明では、同じ定格の定電圧定周波・正弦波
出力の電圧形インバータを例に説明し九   〇が、本
発明の原理Fi、電流形インバータやサイグロコンバー
タなど、他の形式の変換装置にも全く同様に適用しうる
。また、定周波でなく、可変周波数・可変電圧の矩形波
出力インバータにも適用しうるし、異なる容量の変換装
置の間にも適用し、うろことは云うまでもない0 〔発明の効果〕 以上のよ5KCの発明によれば主回路を直列に接続する
ことなく、並列運転用制御回路の試験調整t−看なうこ
とができるとともに、主回路相互間の高調波横流の影響
を受けない制御回路を掛は算器を用いず、同期整流回路
によって構成することができるので制御回路が安価に構
成できて高信頼度化が実現できる効果がある。
In the above explanation, a voltage source inverter with constant voltage, constant frequency, and sine wave output of the same rating is used as an example. The same applies to devices as well. In addition, it can be applied not only to constant frequency but also to variable frequency/variable voltage rectangular wave output inverters, and it can also be applied to converters of different capacities. According to the invention of Yo5KC, it is possible to test and adjust control circuits for parallel operation without connecting the main circuits in series, and the control circuit is not affected by harmonic cross current between the main circuits. Since the multiplication can be constructed using a synchronous rectifier circuit without using a calculator, the control circuit can be constructed at low cost and has the effect of achieving high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のシステム構成を示すブロ
ック図、第2図は横流の直交成分を検出する第1図の回
路の要部の説明図、第3図は第1図の原理を説明するた
めの等価回路図、第4図は本発明の他の実施例を示す回
路図、第5図は従来の代表的実施例を示すプルツク図で
ある0図において、1は1号インバータ、2は2号イン
バータ%3は出力母線、4は負荷、5と6は直流電源、
7は模擬母線、100はインバータ本体。 101は出カドランス、102はフィルタ用リアクトル
、103はフィルタ用コンデンサ、106はCT、10
7は横流検出回路、120はトランス、121はリアク
トル、122はスイッチ、123はCT、125と13
1は高調波フィルタ用コンデンサ、13Gは共振フィル
タ用リアクト/l/、124と126はダンピング抵抗
、134,135及び136はインバータポールである
。 特許出願人  三菱電機株式会社 第2図 第3図 103:フィルタ用コンテ゛S/+y 手続補正書(自発)
Fig. 1 is a block diagram showing the system configuration of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the main part of the circuit of Fig. 1 for detecting orthogonal components of a cross current, and Fig. 3 is the principle of Fig. 1. 4 is a circuit diagram showing another embodiment of the present invention, and FIG. 5 is a pull diagram showing a conventional typical embodiment. , 2 is the No. 2 inverter, %3 is the output bus, 4 is the load, 5 and 6 are the DC power supply,
7 is a simulated bus bar, and 100 is the inverter main body. 101 is an output transformer, 102 is a filter reactor, 103 is a filter capacitor, 106 is a CT, 10
7 is a cross current detection circuit, 120 is a transformer, 121 is a reactor, 122 is a switch, 123 is a CT, 125 and 13
1 is a harmonic filter capacitor, 13G is a resonant filter reactor /l/, 124 and 126 are damping resistors, and 134, 135 and 136 are inverter poles. Patent applicant Mitsubishi Electric Corporation Figure 2 Figure 3 103: Filter container S/+y Procedural amendment (voluntary)

Claims (6)

【特許請求の範囲】[Claims] (1)複数台の可制御電圧及び可制御周波数の交流出力
変換装置の第1のインピーダンス要素を介して共通の出
力母線の負荷を並列運転する交流出力変換装置の並列運
転制御方式において、前記夫々の交流出力変換装置の少
くとも1つの変換ポールの出力端子から第2のインピー
ダンス要素を介して全ての交流出力変換装置の該第2の
インピーダンス要素を介した出力端子に互いに並列に模
擬母線を介して接続すると共に、前記第2のインピーダ
ンス要素に流れる電流が所定の値に保持されるように前
記夫々の交流出力変換装置の電圧と周波数とを制御する
ようにしたことを特徴とする交流出力変換装置の並列運
転制御方式。
(1) In a parallel operation control method for AC output converters in which loads on a common output bus are operated in parallel through the first impedance element of a plurality of controllable voltage and controllable frequency AC output converters, each of the above-mentioned from the output terminal of at least one conversion pole of the AC output conversion device through the second impedance element to the output terminal of all the AC output conversion devices via the second impedance element through the simulated bus bar in parallel with each other. The AC output conversion device is characterized in that the voltage and frequency of each of the AC output conversion devices are controlled so that the current flowing through the second impedance element is maintained at a predetermined value. Parallel operation control method for equipment.
(2)前記第2のインピーダンス要素として、絶縁トラ
ンスとリアクトルとを用い、前記模擬母線に対して各々
の交流出力変換装置を絶縁して接続するようにしたこと
を特徴とする特許請求の範囲第1項記載の交流出力変換
装置の並列運転制御方式。
(2) An isolation transformer and a reactor are used as the second impedance element, and each AC output converter is connected to the simulated bus bar in an insulated manner. Parallel operation control method for the AC output converter according to item 1.
(3)前記各々の交流出力変換装置から模擬母線に流入
する電流が零となるように前記各々の交流出力変換装置
を制御するようにしたことを特徴とする特許請求の範囲
第1項記載の交流出力変換装置の並列運転制御方式。
(3) Each of the AC output conversion devices is controlled so that the current flowing into the simulated bus bar from each of the AC output conversion devices is zero. Parallel operation control method for AC output converter.
(4)前記各々の交流出力変換装置の第2のインピーダ
ンス要素に流れる電流を主に電圧により変化する成分と
、主に位相により変化する成分との2成分に分解し、前
記夫々の成分について他の交流出力変換装置の同一成分
とバランス制御することを特徴とする特許請求の範囲第
1項記載の交流出力変換装置の並列運転制御方式。
(4) Decompose the current flowing through the second impedance element of each AC output converter into two components: a component that changes mainly due to voltage, and a component that changes mainly due to phase, and calculate other components for each of the above components. 2. A parallel operation control method for an AC output converter according to claim 1, wherein balance control is performed with the same component of an AC output converter.
(5)前記交流出力変換装置の主回路の出力電流に比例
する電流を変流器により模擬母線に電流源として与え、
実負荷の増減に対応して変化する負荷対応電流を前記模
擬母線に与えるようにしたことを特徴とする特許請求の
範囲第1項記載の交流出力変換装置の並列運転制御方式
(5) applying a current proportional to the output current of the main circuit of the AC output converter to the simulated bus as a current source by a current transformer;
2. A parallel operation control method for an AC output converter according to claim 1, wherein a load-corresponding current that changes in response to an increase or decrease in an actual load is applied to said simulated bus.
(6)前記模擬母線にコンデンサ及び必要に応じてリア
クトルからなる高調波フィルタを設け、該高調波フィル
タの前記コンデンサと他の交流出力変換装置との同一コ
ンデンサとの共振を防止するため両者のコンデンサ間に
ダンピング抵抗を直列に設けたことを特徴とする特許請
求の範囲第1項記載の交流出力変換装置の並列運転制御
方式。
(6) A harmonic filter consisting of a capacitor and, if necessary, a reactor is provided on the simulated bus, and in order to prevent resonance between the capacitor of the harmonic filter and the same capacitor of another AC output converter, both capacitors are provided. 2. A parallel operation control method for an AC output converter according to claim 1, characterized in that a damping resistor is provided in series between them.
JP60092691A 1985-04-30 1985-04-30 Parallel operation control system of ac output converter Granted JPS61254026A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60092691A JPS61254026A (en) 1985-04-30 1985-04-30 Parallel operation control system of ac output converter
US06/826,930 US4677535A (en) 1985-04-30 1986-02-07 Power conversion system
CA502029A CA1271808C (en) 1985-04-30 1986-02-17 Power conversion system
KR1019860002306A KR900008391B1 (en) 1985-04-30 1986-03-27 Power conversion system
DE19863611885 DE3611885A1 (en) 1985-04-30 1986-04-09 RECTIFIER SYSTEM WITH A MULTIPLE NUMBER OF RECTIFIER UNITS
CH1507/86A CH670731A5 (en) 1985-04-30 1986-04-16
GB8609366A GB2175155B (en) 1985-04-30 1986-04-17 Power conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092691A JPS61254026A (en) 1985-04-30 1985-04-30 Parallel operation control system of ac output converter

Publications (2)

Publication Number Publication Date
JPS61254026A true JPS61254026A (en) 1986-11-11
JPH0532977B2 JPH0532977B2 (en) 1993-05-18

Family

ID=14061512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092691A Granted JPS61254026A (en) 1985-04-30 1985-04-30 Parallel operation control system of ac output converter

Country Status (7)

Country Link
US (1) US4677535A (en)
JP (1) JPS61254026A (en)
KR (1) KR900008391B1 (en)
CA (1) CA1271808C (en)
CH (1) CH670731A5 (en)
DE (1) DE3611885A1 (en)
GB (1) GB2175155B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260665A (en) * 1992-03-09 1993-10-08 Mitsubishi Electric Corp Parallel operation controller for ac output converter

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805081A (en) * 1987-06-29 1989-02-14 Spellman High Voltage Electronics Corp. Multi-mode control systems for high-frequency resonant inverters
US4816982A (en) * 1987-11-23 1989-03-28 Viteq Corporation AC to DC power converter with integrated line current control for improving power factor
US4943902A (en) * 1987-11-23 1990-07-24 Viteq Corporation AC to DC power converter and method with integrated line current control for improving power factor
US4964029A (en) * 1988-05-18 1990-10-16 Viteq Corporation AC to DC power converter with input current waveform control for buck-boost regulation of output
JP2526992B2 (en) * 1988-05-30 1996-08-21 三菱電機株式会社 AC output converter parallel operation system
US4956600A (en) * 1988-07-01 1990-09-11 Viteq Corporation High frequency current detector for a low frequency line
US5200643A (en) * 1989-02-21 1993-04-06 Westinghouse Electric Corp. Parallel electric power supplies with current sharing and redundancy
JP2798988B2 (en) * 1989-07-28 1998-09-17 株式会社東芝 Adjustable AC power supply for air conditioner
AU627363B2 (en) * 1989-09-28 1992-08-20 Ivg Australia Pty. Limited Differential gear mechanism
JP2679411B2 (en) * 1990-12-19 1997-11-19 三菱電機株式会社 Parallel operation control device for AC output converter
JPH04299027A (en) * 1991-03-27 1992-10-22 Toshiba Corp Inverter device
KR960000802B1 (en) * 1991-04-22 1996-01-12 미쓰비시 뎅끼 가부시끼가이샤 Parallel operation system of ac output inverters
US5142468A (en) * 1991-05-16 1992-08-25 General Atomics Power conditioning system for use with two PWM inverters and at least one other load
JPH04361308A (en) * 1991-06-07 1992-12-14 Toshiba Corp Reactive system power controller
US5343023A (en) * 1991-08-23 1994-08-30 Miller Electric Mfg. Co. Induction heater having a power inverter and a variable frequency output inverter
US5434771A (en) * 1991-09-12 1995-07-18 Sundstrand Corporation Adaptive harmonic distortion control for parallel connected inverters
TW245848B (en) * 1991-09-18 1995-04-21 Toshiba Kk
US5193054A (en) * 1991-10-24 1993-03-09 Sundstrand Corporation DC content control in a dual VSCF converter system
US5245525A (en) * 1991-10-24 1993-09-14 Sundstrand Corporation DC current control through an interphase transformer using differential current sensing
JP3019570B2 (en) * 1992-01-08 2000-03-13 富士電機株式会社 Control method of CVCF inverter
JP2758782B2 (en) * 1992-05-22 1998-05-28 三菱電機株式会社 Power supply
JP2771394B2 (en) * 1992-07-02 1998-07-02 甲府日本電気株式会社 Parallel operation power supply control method
JP3226257B2 (en) * 1995-12-25 2001-11-05 株式会社東芝 Control device for power converter
BR9701473A (en) * 1996-04-22 1998-09-08 Illinois Tool Works System and method for inductive heating of a workpiece and system for continuous segmented inductive heating of a workpiece
US6577095B1 (en) * 1996-05-14 2003-06-10 Whedco, Inc. Brushless alternating current electric servo motor drive
US5952733A (en) * 1997-12-05 1999-09-14 Intel Corporation Power distribution system for electronic devices
US6560128B1 (en) * 1999-02-12 2003-05-06 Satcon Power Systems Canada Ltd. Ferroresonance-suppressing static transfer switch
WO2001033909A2 (en) 1999-11-03 2001-05-10 Nexicor Llc Hand held induction tool
EP1120897A3 (en) * 2000-01-06 2004-01-21 Axel Akerman A/S Independent load sharing between parallel inverter units in an AC power system
JP2002034160A (en) * 2000-07-12 2002-01-31 Sawafuji Electric Co Ltd Parallel operation device for inverter
US20020024828A1 (en) * 2000-08-31 2002-02-28 Hidetake Hayashi Inverter suitable for use with portable AC power supply unit
CN1305199C (en) * 2000-09-29 2007-03-14 山洋电气株式会社 Uniterruption power supply unit, changer and parallet work type changer
CN1170354C (en) * 2001-12-25 2004-10-06 艾默生网络能源有限公司 Parallelly connected reverse converter system
US7492059B2 (en) * 2003-10-16 2009-02-17 Microsemi Corp.—Analog Mixed Signal Group Ltd. High power architecture for power over ethernet
EP1575156B1 (en) * 2004-02-16 2015-06-17 Vacon Oyj Synchronization of parallel-connected inverter units or frequency converters
CN100488017C (en) * 2005-12-15 2009-05-13 中国科学院电工研究所 Device for eliminating loop in inverter parallel running system
DE102008037064A1 (en) * 2008-08-08 2010-02-11 Bayerische Motoren Werke Aktiengesellschaft Circuit arrangement for an electric drive
RU2460194C1 (en) * 2011-01-12 2012-08-27 Государственное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Method to control static stabilised sources of ac voltage operating in parallel for common load in case of its asymmetry
RU2507670C2 (en) * 2011-11-22 2014-02-20 Федеральное государственное унитарное предприятие Производственное объединение "Север" System of generation of electric energy of three-phase alternating current
RU2522896C2 (en) * 2012-05-31 2014-07-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Device of alternate current generator frequency transformation
RU2517199C1 (en) * 2013-06-05 2014-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарева" Method to arrange grouped operation of reversible converters
US10103665B2 (en) * 2017-01-06 2018-10-16 General Electric Company Protection for redundancy of isolated inverter blocks
RU2752248C1 (en) * 2020-12-07 2021-07-23 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» Method for controlling mode of parallel operation of synchronous generators in electrical networks

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675037A (en) * 1971-06-01 1972-07-04 Bell Telephone Labor Inc Technique for synchronous parallel operation of static inverters
BE792925A (en) * 1971-12-21 1973-04-16 Siemens Ag EQUIREMENT DEVICE POWER DISTRIBUTION OF ELECTRIC MACHINES CONNECTED IN PARALLEL
DE2319319C3 (en) * 1973-04-17 1979-12-06 Brown, Boveri & Cie Ag, 6800 Mannheim Power supply system made up of alternating current generators working in parallel
US3864620A (en) * 1973-09-11 1975-02-04 Westinghouse Electric Corp Arrangement of parallel static ac power sources proportions
DE2451098C3 (en) * 1974-10-28 1978-03-09 Siemens Ag, 1000 Berlin Und 8000 Muenchen Device for monitoring two power units working in parallel
US4276590A (en) * 1979-04-30 1981-06-30 The Perkin-Elmer Corporation Current sharing modular power system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260665A (en) * 1992-03-09 1993-10-08 Mitsubishi Electric Corp Parallel operation controller for ac output converter

Also Published As

Publication number Publication date
CH670731A5 (en) 1989-06-30
KR900008391B1 (en) 1990-11-17
CA1271808A (en) 1990-07-17
KR860008644A (en) 1986-11-17
GB2175155B (en) 1989-07-05
US4677535A (en) 1987-06-30
GB2175155A (en) 1986-11-19
GB8609366D0 (en) 1986-05-21
CA1271808C (en) 1990-07-17
JPH0532977B2 (en) 1993-05-18
DE3611885A1 (en) 1986-11-06
DE3611885C2 (en) 1991-06-06

Similar Documents

Publication Publication Date Title
JPS61254026A (en) Parallel operation control system of ac output converter
Jacobina et al. Modeling and control of unbalanced three-phase systems containing PWM converters
JP6422216B2 (en) Apparatus and method for controlling circulating current in an inverter system
EP2401805B1 (en) A hybrid distribution transformer with an integrated voltage source converter
KR100491437B1 (en) Controller for multiplex winding motor
US5656924A (en) System and method for providing harmonic currents to a harmonic generating load connected to a power system
Jacobina et al. Fault-tolerant reversible AC motor drive system
JP3588932B2 (en) Power converter, control method therefor, and uninterruptible power supply using this power converter
JPS6253180A (en) Controller for parallel operation of ac output converter and commercial power supply
CN103684003B (en) Electric power coversion system
US9929668B1 (en) Powder conditioner with reduced capacitor voltage ripples
US4719557A (en) Apparatus for generating a symmetrical three-phase voltage system with a neutral wire capable of carrying current
Bellan et al. Consistent circuit technique for zero-sequence currents evaluation in interconnected single/three-phase power networks
Mihalache Improved load disturbance rejection method for 400 Hz GPU inverters
JPH07163153A (en) Control method for single-phase three-wire inverter
Mendalek et al. A non-linear optimal predictive control of a shunt active power filter
US4757415A (en) Power active filter employing positive sequence filtering
US6205042B1 (en) Indirect calculation of bus voltage for voltage source inverter
JP2778976B2 (en) Harmonic suppression device using both AC filter and active filter for power
JPS61254027A (en) Parallel operation control system of ac output converter
JPH07135735A (en) Active filter device
JPH0532978B2 (en)
Eren et al. Arm cortex M4 microprocessors based±100 kVAR energy quality regulator for reactive power/neutral current compensation, load balancing and harmonic mitigation
Bojoi et al. Improved current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame
JPH0496635A (en) Parallel operation apparatus of uninterruptible power supplies(ups)