JPS61253345A - Sour resisting steel material superior in weld zone stress corrosion cracking resistance - Google Patents

Sour resisting steel material superior in weld zone stress corrosion cracking resistance

Info

Publication number
JPS61253345A
JPS61253345A JP9627285A JP9627285A JPS61253345A JP S61253345 A JPS61253345 A JP S61253345A JP 9627285 A JP9627285 A JP 9627285A JP 9627285 A JP9627285 A JP 9627285A JP S61253345 A JPS61253345 A JP S61253345A
Authority
JP
Japan
Prior art keywords
corrosion cracking
steel material
stress corrosion
steel
sour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9627285A
Other languages
Japanese (ja)
Other versions
JPH064902B2 (en
Inventor
Nobuji Nomura
野村 亘史
Tetsuo Takeda
武田 哲雄
Makio Iino
飯野 牧夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60096272A priority Critical patent/JPH064902B2/en
Publication of JPS61253345A publication Critical patent/JPS61253345A/en
Publication of JPH064902B2 publication Critical patent/JPH064902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To develop sour resisting steel material superior in weld zone stress corrosion cracking resistance under wet hydrogen sulfide environment, by regulating components in steel material and adjusting the structure of weld heat affected zone at welding to bainitic structure. CONSTITUTION:Steel material contg. by weight 0.02-0.05% C, 0.10-0.50% Si, 0.6-1.2% Mn, <=0.05% Al, 0.02-0.10% Nb, 0.001-0.003% B, 0.01-0.04% Ti, 0.001-0.010% Ca, and impurities regulated to <=0.02% P, <=0.005% S, or ingot of steel to which one or 2 kinds among 0.1-0.7% Ni, 0.2-0.8% Cr, 0.1-0.5% Cu, 0.1-0.7% Mo, 0.02-0.1% V, 0.01-0.08% W are added further for improving strength is rolled to steel material having a desired size and shape. The titled steel material used for line pipe, petrochemical plant, etc., is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶接部応力腐食割れ抵抗の優れた鋼材に係り、
特に湿潤硫化水素環境下で使用されるラインパイプ、石
油化学プラント、LPGタンク等に使用される溶接部応
力腐食割れ抵抗の優れた耐サワー用鋼材に関するもので
ある。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a steel material with excellent weld stress corrosion cracking resistance;
In particular, the present invention relates to a sour-resistant steel material with excellent weld stress corrosion cracking resistance for use in line pipes, petrochemical plants, LPG tanks, etc. used in humid hydrogen sulfide environments.

(従来の技術及び問題点) 近年原油、ガスの輸送、貯蔵に当り使用される鋼材は応
力腐食割れを起こす可能性が高まってきている。原因は
、良質な石油資源の減少に伴ない原油中の硫化水素含有
量が多くなってきているためである。すなわち、鋼材が
腐食する際に原油中に硫化水素が含まれていると、腐食
により発生する水素が原子状になり鋼中に侵入し易くな
ることからいわゆる硫化物反応力腐食割れを起し易くな
ってくる。
(Prior Art and Problems) In recent years, the possibility of stress corrosion cracking occurring in steel materials used for transporting and storing crude oil and gas has increased. The cause is that the hydrogen sulfide content in crude oil is increasing as high-quality petroleum resources decrease. In other words, if hydrogen sulfide is contained in crude oil when steel corrodes, the hydrogen generated by the corrosion becomes atomic and more likely to penetrate into the steel, resulting in so-called sulfide reaction corrosion cracking. It's coming.

かくの如き硫化物応力腐食割れについて、従来鋼につい
て整理してみると、高張力鋼では硬さと硫化物応力腐食
割れの関係について多くの研究がある。この場合、硬さ
とは溶接部を示す場合は溶接熱影響部硬さであり、溶接
部を含まない場合は母材の硬さであるが、硬さがHv;
250程度を境にして割れ感受性が変化し% Hv;2
s o以下に制御して使用することによって硫化物応力
腐食割れを防げることが知られている。この硬さを呈す
る組織の内容については、高張力鋼であることから通常
焼入焼戻し処理によ私製造せざるを得ないため、組織は
焼戻しマルテンサイトである。
Regarding sulfide stress corrosion cracking like this, if we look at conventional steels, there has been a lot of research on the relationship between hardness and sulfide stress corrosion cracking in high-strength steel. In this case, hardness refers to the weld heat-affected zone hardness when it refers to a weld, and refers to the hardness of the base metal when it does not include a weld, but the hardness is Hv;
The cracking sensitivity changes after about 250% Hv; 2
It is known that sulfide stress corrosion cracking can be prevented by controlling the s o or less. The content of the structure exhibiting this hardness is tempered martensite, since it is a high-strength steel and must be manufactured by ordinary quenching and tempering treatment.

これら高張力鋼の使用分野としては通常油井管であるが
、従来の技術としては例えば特開昭58−91150号
公報に見られるように焼入、焼戻し処理鋼についてMn
およびP等の偏析部に生ずる硬さの高い部分の解消とL
a添加による粒界脆化の防止による硫化物応力腐食割れ
抵抗の増大を図るものがある。又、特開昭58−107
476号公報には均−硬さ分布を得るための最適成分系
を有する焼入、焼戻し処理鋼についての提案がある。
The field of use of these high tensile strength steels is usually oil country tubular goods, but as a conventional technique, for example, as seen in Japanese Patent Application Laid-Open No. 58-91150, Mn
Elimination of high hardness areas that occur in segregated areas such as P and L
There is a method of increasing sulfide stress corrosion cracking resistance by preventing grain boundary embrittlement by adding a. Also, JP-A-58-107
No. 476 proposes a quenched and tempered steel having an optimum composition system for obtaining a uniform hardness distribution.

しかしながら、母材の硬さはHv230以下で問題ない
ものの、強度的に見た場合高張力鋼に対してもう少し強
度の低い鋼の溶接熱影響部の硬さと硫化物応力腐食割れ
の関係についてはあまシ研究されていない。
However, although there is no problem if the hardness of the base metal is Hv230 or less, the relationship between the hardness of the weld heat affected zone and sulfide stress corrosion cracking of steel, which has a slightly lower strength than high-strength steel, is not clear. has not been studied.

(問題点を解決するための手段、作用)本発明の要旨は
、重11Xで(30,02〜へ05%、sio、1〜0
.5%、 Mn 0.6〜1.2%、At≦0.05%
、Nbo、02〜0.1%、BO,OO1〜0.003
%、Ti0.01〜0.04%。
(Means and effects for solving the problem) The gist of the present invention is to
.. 5%, Mn 0.6-1.2%, At≦0.05%
, Nbo, 02-0.1%, BO, OO1-0.003
%, Ti0.01-0.04%.

Oa 0.001〜0.010%を含み、P≦0.02
%、S≦0.005%に制限し、又はこれに加えてさら
にN i O,1〜0.7%、 Or 0.2〜0.8
%、Ou0.1〜0.5%、Mo0.1〜α7%。
Contains Oa 0.001-0.010%, P≦0.02
%, S≦0.005%, or in addition to this, N i O, 1 to 0.7%, Or 0.2 to 0.8
%, Ou0.1-0.5%, Mo0.1-α7%.

Vo、02〜0.1X 、 Wo、01〜0.08X 
(7) ウチ! り 選ハした1種または2種以上を含
み、残部鉄及び不可避的な不純物から成ることを特徴と
する溶接部応力腐食割れ抵抗の優れた耐サワー用鋼材で
ある。
Vo, 02~0.1X, Wo, 01~0.08X
(7) Home! This is a sour-resistant steel material with excellent weld stress corrosion cracking resistance, which is characterized by containing one or more selected materials, with the balance consisting of iron and unavoidable impurities.

本発明者らは、高張力鋼に比べ炭素含有量及びその他の
合金元素添加量が少い成分系から成る鋼について硬さと
組織を詳細に検討し、これと硫化物応力腐食割れ性との
関係づけを行った。その結果、サワー環境で使用される
ラインパイプ用鋼、貯蔵に使用されるタンク用鋼等の鋼
材で、溶接熱影響部の応力腐食割れ抵抗の優れた鋼材を
見出した。この鋼材を通常の鋼材と区別して溶接部応力
腐食割れ抵抗の優れた耐サワー用鋼材と言うことが出来
る。
The present inventors investigated in detail the hardness and microstructure of steels consisting of component systems with lower carbon content and other alloying element additions than high-strength steels, and determined the relationship between this and sulfide stress corrosion cracking resistance. I attached the details. As a result, we found a steel material with excellent stress corrosion cracking resistance in the weld heat affected zone, such as steel for line pipes used in sour environments and steel for tanks used for storage. This steel can be distinguished from ordinary steel and can be called a sour-resistant steel with excellent resistance to stress corrosion cracking in welds.

即ち、本発明者らは種々検討を重ねた結果、溶接熱影響
部の組織を上部ベーナイト組織を生成させずに微細なベ
ーナイト組織にしたときにHv=300程度まで応力腐
食割れを生じない鋼が得られることを見出し、溶接部応
力腐食割れ抵抗の優れた耐サワー用鋼材を得ることが出
来るという知見を得た。
That is, as a result of various studies, the present inventors have found that there is a steel that does not cause stress corrosion cracking up to Hv=300 when the structure of the weld heat affected zone is made into a fine bainite structure without forming an upper bainite structure. We have found that it is possible to obtain a sour-resistant steel material with excellent stress corrosion cracking resistance at welds.

本発明は以上の如き知見に基いてなされたものである。The present invention has been made based on the above findings.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

先ず本発明鋼材における基本成分の限定理由について説
明する。
First, the reason for limiting the basic components in the steel material of the present invention will be explained.

0は強度を得るために添加するが、溶接粗粒化部の組織
を微細なベーナイトとするために添加量範囲が決定され
る。0.02%未満では上部ベーナイト組織となシ組織
が粗くなる。また、0・05%超となると組織がマルテ
ンサイト組織となシ、マルテンサイト組織では硫化物応
力腐食割れが起る。したがってOは0.02〜0.05
%とした。
0 is added to obtain strength, but the addition amount range is determined in order to make the structure of the weld coarse grained part into fine bainite. If it is less than 0.02%, the upper bainite structure and the bainite structure will become coarse. Moreover, when it exceeds 0.05%, the structure becomes a martensitic structure, and sulfide stress corrosion cracking occurs in the martensitic structure. Therefore, O is 0.02 to 0.05
%.

Siは脱酸の九めに添加す為。0.40%未満では脱酸
が不十分であ、9.0.05%超では脱酸は十分となる
が鋼を脆化させる。したがってSiは0.10〜o、s
 O%とした。
Si is added at the ninth stage of deoxidation. If it is less than 0.40%, deoxidation is insufficient, and if it exceeds 9.0.05%, deoxidation is sufficient, but the steel becomes brittle. Therefore, Si is 0.10~o,s
It was set as 0%.

廚は強度を得るためでもあるが、添加によって溶接粗粒
化部の組織を微細なベーナイトにするために添加量範囲
が決定される。0.60%未満では上部ベーナイト組織
となり組織が粗くなる。また、1.2%超となると組織
がマルテンサイト組織となシ、硫化物応力腐食割れが起
る。したがって廚社0.6〜1.2%とした。
The addition amount is also to obtain strength, but the addition amount range is determined so that the structure of the coarse grained part of the weld becomes fine bainite. If it is less than 0.60%, it becomes an upper bainite structure and the structure becomes coarse. Moreover, when it exceeds 1.2%, the structure becomes martensitic and sulfide stress corrosion cracking occurs. Therefore, it was set at 0.6 to 1.2%.

、aは脱酸のために添加する。しかし0.05チ超とな
るとかえって酸化物を形成し、鋼の清浄度を減少させ、
応力腐食割れに悪影響があるために、Atは0.05%
以下とした。
, a are added for deoxidation. However, if it exceeds 0.05 inch, it will instead form oxides, reducing the cleanliness of the steel.
At is 0.05% because it has a negative effect on stress corrosion cracking.
The following was made.

N文強直と靭性を得るために添加する。0.02%未満
では強度、靭性に対する添加効果がない。0.1%超の
添加では強度、靭性に対してNbの析出物粗大化のため
に逆効果となる。したがってNbは002%〜0.1%
とした。
N is added to obtain ankylosis and toughness. If it is less than 0.02%, the addition has no effect on strength and toughness. Addition of more than 0.1% has an adverse effect on strength and toughness due to coarsening of Nb precipitates. Therefore, Nb is 0.002% to 0.1%
And so.

Bは焼入性向上のために添加する。本発明鋼では0量を
低くしているので、組織を微細なベーナイトとするには
適度の焼入性を確保することが必要である。0.001
 X未満では焼入性が確保出来ず、0.003%超の添
加でも巨大なボロン化合物が生成し、焼入性が確保出来
ない、したがってBは0.001〜α003%とした。
B is added to improve hardenability. Since the steel of the present invention has a low 0 content, it is necessary to ensure appropriate hardenability in order to form a fine bainite structure. 0.001
If it is less than X, hardenability cannot be ensured, and even if it is added in excess of 0.003%, a huge boron compound is generated, making it impossible to ensure hardenability.Therefore, B was set to be 0.001 to α003%.

Tiは0n−Ti−8を形成させ、靭性及び介在物の分
散のために添加する。0.0IX未満では効果がなく、
0.04%超では酸化物を形成し、介在物分散に効果が
なくなる。したがってTiはへ01〜0.04%とした
Ti forms On-Ti-8 and is added for toughness and inclusion dispersion. There is no effect if it is less than 0.0IX,
If it exceeds 0.04%, oxides are formed and there is no effect on dispersing inclusions. Therefore, Ti was set to 0.01 to 0.04%.

Oaは介在物の球状化のために添加する。即ち0a−T
i−8を形成させ、硫化物応力腐食割れの起点となるM
n8の形成を防ぐためである。0.001%未満では介
在物球状化に効果がなく、0.010%超では酸化物形
成のため介在物球状化に効果がなくなる。したがってO
aは0.001〜0.01%とした。
Oa is added to make inclusions spheroidal. i.e. 0a-T
M that forms i-8 and becomes the starting point of sulfide stress corrosion cracking.
This is to prevent the formation of n8. If it is less than 0.001%, it will not be effective in spheroidizing inclusions, and if it exceeds 0.010%, it will be ineffective in spheroidizing inclusions due to the formation of oxides. Therefore O
a was set to 0.001 to 0.01%.

Pは鋼中に含まれる不純物元素であり、かつまた粒界に
偏析し硫化物応力腐食割れを起し易くする。この割れを
起し易くする働きはマルテンサイトのときに最も顕著で
あるが、微細なベーナイト組織のときでも含有量が少な
い事が望ましい。しかしながら、0.02%以下にして
おけば割れの原因とならない。したがってPは0.02
%以下に制限した。
P is an impurity element contained in steel, and also segregates at grain boundaries, making it easy to cause sulfide stress corrosion cracking. This effect of making it easier to cause cracks is most noticeable when martensite is used, but it is desirable that the content be small even when it has a fine bainite structure. However, if it is kept at 0.02% or less, it will not cause cracks. Therefore P is 0.02
% or less.

Sも鋼中に含まれる不純物元素であり、含有量が少ない
事が望ましいが、o、oos%以下であればOa、Ti
添加によって介在物の分散球状化を行なうことが出来る
ので、Sはo、o o s%以下に制限した。
S is also an impurity element contained in steel, and it is desirable that the content be small, but if it is less than o, oos%, Oa, Ti
Since inclusions can be dispersed and spheroidized by addition, S is limited to less than o, o o s%.

以上が本発明鋼材の基本成分系であるが、本発明におい
てはこれらの元素に加え、強度を得る目的と、O,Mn
量との焼入性とのバランスで、以上の基本成分の他にさ
らにN i O,1−0,7%、Oro、2〜0.8%
、 Ou O,1〜0.5%、 M oα1〜0.7%
、Vo、02〜α1%、W0.01〜α08%のうちよ
り選ばれた1fikまたは2種以上を添加させることが
できる。以下各元素について添加理由を述べる。
The above is the basic composition system of the steel material of the present invention, but in addition to these elements, in the present invention, O, Mn
In addition to the above basic components, in addition to the above basic components, in addition to the balance between amount and hardenability, NiO, 1-0.7%, Oro, 2-0.8%.
, OuO, 1~0.5%, Moα1~0.7%
, Vo, 02-α1%, W0.01-α08%, or two or more selected from among them can be added. The reasons for adding each element will be described below.

Niは強度、靭性を得るために添加するが、0.1%未
満では効果がない。0.7%超では焼入性が上昇し、組
織がマルテンサイトになり、応力腐食割れが起り易くな
る。したがってNiは0.1〜0.7%とした。
Ni is added to obtain strength and toughness, but if it is less than 0.1% it has no effect. If it exceeds 0.7%, hardenability increases, the structure becomes martensite, and stress corrosion cracking becomes more likely to occur. Therefore, Ni was set at 0.1 to 0.7%.

Orも強度、靭性を得るために添加するが、0.2%未
満では効果がない。0.8%超では焼入性が上昇し、組
織がマルテンサイトになシ、応力腐食割れが起り易くな
る。したがってOrは0.2〜0.8%とした。
Or is also added to obtain strength and toughness, but if it is less than 0.2%, it has no effect. If it exceeds 0.8%, hardenability increases, the structure becomes martensite, and stress corrosion cracking becomes more likely to occur. Therefore, Or was set to 0.2 to 0.8%.

Ouも強度、靭性を得るために添加するが、0.1%未
満では効果がない。0.5%超では獣性が上昇し、組織
がマルテンサイトになり、応力腐食割れが起シ易くなる
。したがってOuは0.1〜05%とした。
O is also added to obtain strength and toughness, but if it is less than 0.1% it has no effect. If it exceeds 0.5%, the roughness increases, the structure becomes martensite, and stress corrosion cracking becomes more likely to occur. Therefore, Ou was set to 0.1 to 05%.

Moも強度、靭性を得るために添加するが、0.1%未
満では効果がない、0.7%超では焼入性が上昇し、組
織がマルテンサイトになり、応力腐食割れが起シ易くな
る。したがってMoは0.1〜0.7%とした。
Mo is also added to obtain strength and toughness, but if it is less than 0.1%, it is ineffective, and if it exceeds 0.7%, hardenability increases, the structure becomes martensite, and stress corrosion cracking is likely to occur. Become. Therefore, Mo was set at 0.1 to 0.7%.

■も強度、靭性を得るために添加するが、0.02%未
満では効果がない。0.1%超では焼入性が上昇し1組
織がマルテンサイトとなり、応力腐食割れが起シ易くな
る。したがってVは0.02〜0.1%とした。
(2) is also added to obtain strength and toughness, but if it is less than 0.02% it has no effect. If it exceeds 0.1%, hardenability increases and one structure becomes martensite, making stress corrosion cracking more likely. Therefore, V was set to 0.02 to 0.1%.

Wも強度、靭性を得るために添加するが、0.01%未
満では効果がない。0.08%超では焼入性が上昇し、
組織がマルテンサイトになシ応力腐食割れが起り易くな
る。したがってWは0.01〜0.08%とした。
W is also added to obtain strength and toughness, but if it is less than 0.01% it has no effect. If it exceeds 0.08%, hardenability increases,
If the structure becomes martensite, stress corrosion cracking is more likely to occur. Therefore, W was set at 0.01 to 0.08%.

なお本発明の鋼は通常の製鋼、普通造塊、或いは連続鋳
造等の手段により鋳塊としたのち、通常の圧延工程を経
て、所望の寸法、形状の鋼材とすることが出来る。
The steel of the present invention can be made into an ingot by means such as ordinary steel making, ordinary ingot making, or continuous casting, and then subjected to an ordinary rolling process to be made into a steel material with desired dimensions and shape.

以下に実施例により本発明の効果をさらに具体的に示す
The effects of the present invention will be shown below in more detail through Examples.

(実施例) 第1表に供試鋼の成分を示す、供試鋼は現場溶製圧延材
及び実験室溶解、圧延材を用いた。いずれの鋼も加熱温
度は1200℃、圧下スケジュールはラインパイプ用鋼
として通常用いられている制御圧延の条件を採用した。
(Example) The components of the test steels are shown in Table 1. The test steels used were a rolled material melted on site and a rolled material melted in a laboratory. For both steels, the heating temperature was 1200° C., and the rolling schedule was the controlled rolling conditions normally used for line pipe steel.

仕上板厚は18■とじた。The finished plate thickness was 18cm.

応力腐食割れ試験方法について述べると、試片作製はま
ず種々の溶接熱影響部の組織を得るために第1図に示す
如く寸法tl=18諺、tl=200■、Ag =30
0−の供試鋼片1の圧延方向Wに入熱を変化させて溶接
を行い、溶接ピード2を中央に入れ、第2図に示すよう
な寸法tl=18mm+tt” 20va 、 11 
=2001111の応力腐食割れ試験片3を切シ出した
Regarding the stress corrosion cracking test method, specimens were first prepared in order to obtain the structures of various weld heat-affected zones, as shown in Fig.
Welding was performed by changing the heat input in the rolling direction W of the 0- test steel piece 1, and the welding pitch 2 was placed in the center, and the dimensions tl = 18 mm + tt'' 20 va, 11 as shown in Fig. 2 were obtained.
A stress corrosion cracking test piece 3 of =2001111 was cut out.

応力負荷手段は第3図に示すような3点曲げ治具によっ
て行った。第3図に於て試験片3は絶縁物4を介して曲
げ治具5及び支点6に1M、シつけられ、ポルト7を締
付けることにより応力が負荷される。応力負荷後、試験
片を治具ごと腐食液に浸漬して割れの判定を行った。
The stress loading means was a three-point bending jig as shown in FIG. In FIG. 3, the test piece 3 is attached to a bending jig 5 and a fulcrum 6 by 1M via an insulator 4, and stress is applied by tightening the port 7. After applying stress, the test piece was immersed together with the jig in a corrosive solution to determine whether it was cracked.

腐食液は硫化水素飽和−5%塩化ナトリウム液である。The etchant is a saturated hydrogen sulfide-5% sodium chloride solution.

第2宍に供試鋼の機械的性質及び先に述べた方法で行っ
た応力腐食割れ試験結果を示す。本発明鋼は応力腐食割
れ抵抗が比較鋼に比べて著しく優れていることが解る。
The second section shows the mechanical properties of the sample steel and the results of the stress corrosion cracking test conducted using the method described above. It can be seen that the stress corrosion cracking resistance of the steel of the present invention is significantly superior to that of the comparative steel.

(発明の効果) 以上の実施例からも明らかなように、本発明によれば溶
接部応力腐食割れ抵抗の優れた耐サワー用鋼材の提供が
可能となり、産業上0効果は極めて顕著なものがある。
(Effects of the Invention) As is clear from the above examples, according to the present invention, it is possible to provide a sour-resistant steel material with excellent weld stress corrosion cracking resistance, and the zero effect is extremely significant in industrial terms. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は応力腐食割れ試片の作製要領を示す図、第2図
は応力腐食割れ試験片の寸法形状を示す図、 第3図は応力腐食割れ試験曲げ治具にて試験片に曲げ応
力を負荷する手段の説明図でちる。 1・・・供試鋼試片、2・・・溶接ビード% 3・・・
応力腐食割れ試験片、4・・・絶縁物、5・・・曲げ治
具、6・・・支点、7・・・ボルト。 代理人 弁理士  秋 沢 政 光 信2名 7i1図 7i′2(2) 7i′3図
Figure 1 shows the procedure for preparing stress corrosion cracking specimens, Figure 2 shows the dimensions and shape of the stress corrosion cracking test specimens, and Figure 3 shows the bending stress applied to the test specimen using the stress corrosion cracking test bending jig. This is an explanatory diagram of the means for loading. 1... Test steel specimen, 2... Weld bead % 3...
Stress corrosion cracking test piece, 4... Insulator, 5... Bending jig, 6... Fulcrum, 7... Bolt. Agent Patent Attorney Masaaki Akizawa Mitsunobu 7i1 Figure 7i'2 (2) Figure 7i'3

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でC0.02〜0.05%、 Si0.10〜0.50%、 Mn0.6〜1.2%、 Al≦0.05%、 Nb0.02〜0.10%、 B0.001〜0.003%、 Ti0.01〜0.04%、 Ca0.001〜0.010% を含み、 P≦0.02%、 S≦0.005% に制限し、残部鉄及び不可避的な不純物から成ることを
特徴とする溶接部応力腐食割れ抵抗の優れた耐サワー用
鋼材。
(1) C0.02-0.05% by weight, Si0.10-0.50%, Mn0.6-1.2%, Al≦0.05%, Nb0.02-0.10%, B0 Contains .001~0.003%, Ti0.01~0.04%, Ca0.001~0.010%, limited to P≦0.02%, S≦0.005%, the balance being iron and unavoidable A sour-resistant steel material with excellent resistance to stress corrosion cracking in welds, which is characterized by containing impurities.
(2)重量%でC0.02〜0.05%、 Si0.10〜0.50%、 Mn0.6〜1.2%、 Al≦0.05%、 Nb0.02〜0.10%、 B0.001〜0.003%、 Ti0.01〜0.04%、 Ca0.001〜0.010% を含み、 P≦0.02%、 S≦0.005% に制限し、更に Ni0.1〜0.7%、 Cr0.2〜0.8%、 Cu0.1〜0.5%、 Mo0.1〜0.7%、 V0.02〜0.1%、 W0.01〜0.08% のうちより選ばれた1種または2種以上を含み、残部鉄
及び不可避的な不純物から成ることを特徴とする溶接部
応力腐食割れ抵抗の優れた耐サワー用鋼材。
(2) C0.02-0.05% by weight, Si0.10-0.50%, Mn0.6-1.2%, Al≦0.05%, Nb0.02-0.10%, B0 Contains .001~0.003%, Ti0.01~0.04%, Ca0.001~0.010%, limited to P≦0.02%, S≦0.005%, and Ni0.1~0.005%. 0.7%, Cr0.2-0.8%, Cu0.1-0.5%, Mo0.1-0.7%, V0.02-0.1%, W0.01-0.08%. A sour-resistant steel material with excellent stress corrosion cracking resistance in welds, characterized in that it contains one or more selected from among them, with the balance being iron and unavoidable impurities.
JP60096272A 1985-05-07 1985-05-07 Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds Expired - Lifetime JPH064902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096272A JPH064902B2 (en) 1985-05-07 1985-05-07 Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096272A JPH064902B2 (en) 1985-05-07 1985-05-07 Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds

Publications (2)

Publication Number Publication Date
JPS61253345A true JPS61253345A (en) 1986-11-11
JPH064902B2 JPH064902B2 (en) 1994-01-19

Family

ID=14160508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096272A Expired - Lifetime JPH064902B2 (en) 1985-05-07 1985-05-07 Steel material for anti-sour, which has excellent resistance to stress corrosion cracking in welds

Country Status (1)

Country Link
JP (1) JPH064902B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104653A (en) * 1980-12-19 1982-06-29 Sumitomo Metal Ind Ltd Steel for line pipe with superior hydrogen sulfide cracking resistance and its manufacture
JPS57126959A (en) * 1981-01-29 1982-08-06 Sumitomo Metal Ind Ltd High strength and high toughness steel for pipe line with excellent hydrogen sulfide crack resistance
JPS58199813A (en) * 1982-05-17 1983-11-21 Sumitomo Metal Ind Ltd Production of high tensile steel plate having high resistance to hydrogen induced cracking
JPS5980752A (en) * 1982-10-28 1984-05-10 Nippon Kokan Kk <Nkk> Steel material having superior resistance to cracking due to hydrogen embrittlement in hydrogen sulfide environment
JPS6033310A (en) * 1983-07-30 1985-02-20 Nippon Steel Corp Manufacture of steel plate efficient in hydrogen induced crack resistance and sulfide stress corrosion crack resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104653A (en) * 1980-12-19 1982-06-29 Sumitomo Metal Ind Ltd Steel for line pipe with superior hydrogen sulfide cracking resistance and its manufacture
JPS57126959A (en) * 1981-01-29 1982-08-06 Sumitomo Metal Ind Ltd High strength and high toughness steel for pipe line with excellent hydrogen sulfide crack resistance
JPS58199813A (en) * 1982-05-17 1983-11-21 Sumitomo Metal Ind Ltd Production of high tensile steel plate having high resistance to hydrogen induced cracking
JPS5980752A (en) * 1982-10-28 1984-05-10 Nippon Kokan Kk <Nkk> Steel material having superior resistance to cracking due to hydrogen embrittlement in hydrogen sulfide environment
JPS6033310A (en) * 1983-07-30 1985-02-20 Nippon Steel Corp Manufacture of steel plate efficient in hydrogen induced crack resistance and sulfide stress corrosion crack resistance

Also Published As

Publication number Publication date
JPH064902B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
EP1954847B1 (en) High-strength steel for seamless, weldable steel pipes
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
AU736078B2 (en) Ultra-high strength, weldable, boron-containing steels with superior toughness
US4814141A (en) High toughness, ultra-high strength steel having an excellent stress corrosion cracking resistance with a yield stress of not less than 110 kgf/mm2
WO2012005330A1 (en) Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
JP2015124435A (en) Thick steel plate for reactor storage container excellent in brittle crack propagation stopping property
US4325748A (en) Method for producing steel plate having excellent resistance to hydrogen induced cracking
US4826543A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS5845354A (en) Case hardening steel
CN113166903B (en) Steel material having excellent hydrogen-induced cracking resistance and method for producing same
CA2825956A1 (en) Forged steel and welded structure for components for nuclear power plants
JP7485929B2 (en) Low alloy heat-resistant steel and manufacturing method thereof
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JPS6043433A (en) Manufacture of clad steel plate with superior corrosion resistance and toughness
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
WO2015093178A1 (en) Marine steel forging
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPS61253345A (en) Sour resisting steel material superior in weld zone stress corrosion cracking resistance
JPH0553855B2 (en)
US5643532A (en) Corrosion-resistant spring steel
JP7367896B1 (en) Steel plate and its manufacturing method
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term