JPS61252861A - Engine intake preheater - Google Patents

Engine intake preheater

Info

Publication number
JPS61252861A
JPS61252861A JP60094024A JP9402485A JPS61252861A JP S61252861 A JPS61252861 A JP S61252861A JP 60094024 A JP60094024 A JP 60094024A JP 9402485 A JP9402485 A JP 9402485A JP S61252861 A JPS61252861 A JP S61252861A
Authority
JP
Japan
Prior art keywords
hydrogen
intake air
engine
passage
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60094024A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yamaji
克彦 山路
Shigemasa Kawai
河合 重征
Tazumi Hagiwara
多津美 萩原
Akio Wakasaki
若崎 章夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Sekisui Chemical Co Ltd
Original Assignee
Mazda Motor Corp
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Sekisui Chemical Co Ltd filed Critical Mazda Motor Corp
Priority to JP60094024A priority Critical patent/JPS61252861A/en
Publication of JPS61252861A publication Critical patent/JPS61252861A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/042Combustion air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To reduce the weight of the captioned apparatus and markedly facilitate the engine start in a cold region by preheating the intake through the utilization of the exothermic reaction in the case when a metal hydride occludes hydrogen, thus permitting the speedy preheating to a high temperature. CONSTITUTION:A cut-off valve 2 installed into the first passage 1a of an intake feeding pipe 1 is opened, and the adjusting valves 3a and 3b installed into the second passage 1b are closed, and a hydrogen flowing valve 7 is opened to introduce the hydrogen in a hydrogen storage container 6 into an intake preheater 4. Therefore, the metal hydride (MH1) in the container 6 occludes and generates the heat to heat the intake preheater 4. An engine is started by the feed of the preheated intake. If the temperature of the preheater 4 is raised by the discharged heat or a heater after the number of revolution is increased in the stabilized state, the built-in MH1 liberates hydrogen endothermically, and said hydrogen is returned into the storage container 6 through a communicating pipe 5, and the start at the next tie is prepared. Thus, the preheater preheats the intake speedily to a high temperature,and the engine start in a cold region is facilitated markedly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジン吸気予熱装置に関し、詳しくは、金属
水素化物が水素を吸蔵する際の発熱反応を利用して、例
えば、ディーゼルエンジン始動時にエンジンに供給され
る吸気を予熱し、エンジンを迅速に始動させることがで
きる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an engine intake air preheating device, and more specifically, the present invention relates to an engine intake air preheating device, and more specifically, it utilizes an exothermic reaction when a metal hydride absorbs hydrogen. The present invention relates to a device that can quickly start an engine by preheating intake air supplied to the engine.

(従来の技術) 一般に寒冷地において、又は冬期早朝においては、気温
が氷点下まで冷えており、エンジンの始動に時間を要す
る。特に、ディーゼルエンジンは、点火プラグを用いる
火花点火方式ではなく、シリンダー中で空気を圧縮比で
16〜24まで圧縮して600〜800℃まで温度を高
め、ここに燃料油を噴入して、着火燃焼させる圧縮点火
方式であるので、エンジンに供給する吸気を予め所定温
度まで予熱することが必要不可欠である。また、エンジ
ン始動直後も急に大量の冷えた空気を吸気として供給す
ると、燃料が不完全燃焼を起こして、エンジンが停止す
ることもある。
(Prior Art) Generally, in cold regions or early in the morning in winter, the temperature is below freezing, and it takes time to start the engine. In particular, diesel engines do not use a spark ignition system using a spark plug, but instead compress air in a cylinder to a compression ratio of 16 to 24, raise the temperature to 600 to 800 degrees Celsius, and inject fuel oil into the cylinder. Since it is a compression ignition system that performs ignition combustion, it is essential to preheat the intake air supplied to the engine to a predetermined temperature. Furthermore, if a large amount of cold air is suddenly supplied as intake air immediately after the engine starts, the fuel may cause incomplete combustion and the engine may stop.

このため、従来は、エンジンに供給する吸気をバッテリ
ーを電源とする電気ヒーターにて予熱しているが、吸気
を迅速に予熱するにはバッテリーの容量が十分でなく、
電気ヒーターを加熱した後に吸気を供給し、これを予熱
するので、エンジンの始動までに、通常、約30秒を要
する。一方、バッテリーを大型化すれば、その重量が極
度に増す。更に、電気ヒーターの構造上、エンジンの始
動と同時にアクセルを踏むと、大量の冷気がエンジンに
供給されるため、燃料の不完全燃焼を起こしやすくなる
For this reason, conventionally, the intake air supplied to the engine is preheated using an electric heater powered by a battery, but the capacity of the battery is not sufficient to quickly preheat the intake air.
Since intake air is supplied and preheated after heating the electric heater, it usually takes about 30 seconds to start the engine. On the other hand, increasing the size of the battery significantly increases its weight. Furthermore, due to the structure of electric heaters, if you step on the accelerator at the same time as the engine starts, a large amount of cold air will be supplied to the engine, making it more likely that incomplete fuel combustion will occur.

(発明の目的) 本発明は上記した問題を解決するためになされたもので
あって、寒冷地において、又は冬期早朝において、エン
ジン、特にディーゼルエンジンの始動時にエンジンに供
給される吸気を迅速に予熱し、始動を容易ならしめ、且
つ、始動後もエンジンへの冷空気の吸気量を制御して、
燃料の不完全燃焼を起こしにくいエンジン吸気予熱装置
を提供することを目的とする。
(Object of the Invention) The present invention was made in order to solve the above-mentioned problems, and is intended to quickly preheat the intake air supplied to the engine when starting an engine, especially a diesel engine, in a cold region or early in the morning in winter. It makes starting easier, and controls the amount of cold air taken into the engine even after starting.
An object of the present invention is to provide an engine intake air preheating device that is less likely to cause incomplete combustion of fuel.

(発明の構成) 本発明によるエンジン吸気予熱装置は、(a)  吸気
の流れを遮断し得る機構を備えた第1の通路と、吸気の
流量を調節し得る機構を備えた第2の通路とを有するエ
ンジンへの吸気供給管と、 (b)  第1の金属水素化物を内蔵し、前記第1の通
路内に吸気と熱交換可能に装着された吸気予熱器と、 (C)  水素又は作動温度領域で前記第1の金属水素
化物よりも水素平衡圧の高い第2の金属水素化物を内蔵
する水素貯蔵容器と、 (d)  前記吸気予熱器と前記水素貯蔵容器とを水素
流通弁により連通可能に接続する連通管とを有し、 第1の通路を開け、第2の通路を遮断すると共に、前記
水素流通弁を開けて、前記水素貯蔵容器から前記吸気予
熱器へ水素を移動させ、前記第1の金属水素化物にこの
水素を吸蔵させ、発熱させて吸気を加熱して、これを第
1の通路によってエンジンに供給する加熱工程と、エン
ジン始動後、エンジンの回転数に対応して、前記第2の
通路に設けた吸気の流量を調節する機構によって第2の
通路によるエンジンの吸気量を増加させる加速工程と、
前記第1の金属水素化物を加熱して水素を放出させ、前
記水素貯蔵容器に移動させる準備工程とを行なうことを
特徴とする。
(Structure of the Invention) The engine intake air preheating device according to the present invention includes (a) a first passage equipped with a mechanism capable of blocking the flow of intake air, and a second passage equipped with a mechanism capable of adjusting the flow rate of intake air. (b) an intake air preheater containing a first metal hydride and installed in the first passage for heat exchange with the intake air; (C) hydrogen or actuation; a hydrogen storage container containing a second metal hydride having a higher hydrogen equilibrium pressure than the first metal hydride in a temperature range; (d) communicating the intake air preheater and the hydrogen storage container through a hydrogen flow valve; and a communication pipe that can be connected to the hydrogen storage container, opening the first passage and blocking the second passage, and opening the hydrogen flow valve to transfer hydrogen from the hydrogen storage container to the intake air preheater; a heating step in which the first metal hydride absorbs the hydrogen, generates heat to heat the intake air, and supplies this to the engine through the first passage; , an acceleration step of increasing the intake air amount of the engine through the second passage by a mechanism for adjusting the intake air flow rate provided in the second passage;
The method is characterized by performing a preparation step of heating the first metal hydride to release hydrogen and transferring it to the hydrogen storage container.

以下に実施例を示す図面に基づいて本発明を説明する。The present invention will be described below based on drawings showing examples.

第1図は本発明によるエンジン吸気予熱装置を示す概念
図である。吸気供給管1は、第1の通路1aと第2の通
路1bとに分割され、第1の通路1aには吸気の流れを
遮断し得る機構として遮断弁2が設けられ、第2の通路
1bには吸気の流量を調節する機構として二重調整弁3
a及び3bが設けられている。尚、この二重調整弁は、
エンジン8への吸気の流量を調節し得るように、開度を
調節できる機構のものであれば、二重調整弁以外の任意
の機構であってもよい。
FIG. 1 is a conceptual diagram showing an engine intake air preheating device according to the present invention. The intake air supply pipe 1 is divided into a first passage 1a and a second passage 1b, the first passage 1a is provided with a cutoff valve 2 as a mechanism capable of blocking the flow of intake air, and the second passage 1b is provided with a cutoff valve 2 as a mechanism capable of blocking the flow of intake air. There is a double regulating valve 3 as a mechanism to adjust the intake flow rate.
a and 3b are provided. In addition, this double regulating valve is
Any mechanism other than the double regulating valve may be used as long as the opening degree can be adjusted so as to adjust the flow rate of intake air into the engine 8.

上記第1の通路1a内には、この通路を通過する吸気と
熱交換可能に、第1の金属水素化物(以下、MH,と称
する。)を内蔵した吸気予熱器4が装着されており、こ
の吸気予熱器4は゛、連通管5を介して水素貯蔵容器6
に接続されている。
An intake air preheater 4 containing a first metal hydride (hereinafter referred to as MH) is installed in the first passage 1a so as to be able to exchange heat with the intake air passing through this passage, This intake air preheater 4 is connected to a hydrogen storage container 6 via a communication pipe 5.
It is connected to the.

水素貯蔵容器6には水素が充填され、又は作動温度領域
で水素平衡圧がMH,よりも高い第2の金属水素化物(
以下、MH2と称する。)が内蔵されており、連通管5
の有する水素流通弁7によって、後述するように加熱工
程、加速工程及び準備工程を行なう間、吸気予熱器4に
連通される。
The hydrogen storage container 6 is filled with hydrogen, or is filled with a second metal hydride (
Hereinafter, it will be referred to as MH2. ) is built-in, and the communication pipe 5
The hydrogen flow valve 7 communicates with the intake air preheater 4 during the heating process, acceleration process, and preparation process as described later.

水素貯蔵容器6は車体の適宜位置に配設され、例えば、
外気と熱交換され、又は車体と熱交換される。
The hydrogen storage container 6 is arranged at an appropriate position on the vehicle body, for example,
Heat is exchanged with the outside air or with the vehicle body.

次に、本発明による吸気予熱装置の作動を説明する。第
2図は、水素貯蔵容器として水素を充填した容器を用い
た装置の作動を示すサイクル線図であり、横軸は絶対温
度Tの逆数を、縦軸は金属水素化物の水素平衡圧Pの対
数を示す。吸気予熱器が内蔵するM H+は、その水素
平衡圧がエンジン始動時の吸気供給管内の所定の吸気予
熱温度Tbにおいては、水素貯蔵容器内の水素圧Pより
も低く、後述するように、準備工程における所定の温度
Taにおいては、水素貯蔵容器内の水素圧Pよりも高く
なるように選ばれる。
Next, the operation of the intake air preheating device according to the present invention will be explained. Figure 2 is a cycle diagram showing the operation of an apparatus using a container filled with hydrogen as a hydrogen storage container, where the horizontal axis represents the reciprocal of the absolute temperature T, and the vertical axis represents the hydrogen equilibrium pressure P of the metal hydride. Show logarithm. The hydrogen equilibrium pressure of M H+ built in the intake air preheater is lower than the hydrogen pressure P in the hydrogen storage container at a predetermined intake air preheating temperature Tb in the intake air supply pipe at the time of engine startup, and as will be described later, the hydrogen equilibrium pressure is lower than the hydrogen pressure P in the hydrogen storage container. A predetermined temperature Ta in the process is selected to be higher than the hydrogen pressure P in the hydrogen storage container.

本発明によるエンジン吸気予熱装置は、加熱工程、加速
工程及び準備工程を行なう。先ず、加熱工程を行なうに
は、前記吸気供給管1において第1の通路1aに設けた
遮断弁2を開け、第2の通路1bに設けた調整弁3a及
び3bを共に閉じると共に、水素流通弁7を開いて、水
素貯蔵容器内の水素を吸気予熱器に流入させる。これに
より、MH,はこの水素を吸蔵して発熱する。この発熱
反応を利用して、吸気予熱器を加熱し、温度Tbにて吸
気を予熱してエンジンに供給し、エンジンを始動させる
。この加熱工程において、水素貯蔵容器中の水素圧はあ
る程度低下する。
The engine intake air preheating device according to the present invention performs a heating process, an acceleration process, and a preparatory process. First, in order to perform the heating process, in the intake air supply pipe 1, the cutoff valve 2 provided in the first passage 1a is opened, the regulating valves 3a and 3b provided in the second passage 1b are closed, and the hydrogen flow valve is closed. 7 to allow hydrogen in the hydrogen storage container to flow into the intake air preheater. As a result, MH absorbs this hydrogen and generates heat. Utilizing this exothermic reaction, the intake air preheater is heated, the intake air is preheated to a temperature Tb and supplied to the engine, and the engine is started. During this heating step, the hydrogen pressure in the hydrogen storage container decreases to some extent.

上記のようにして、エンジンを始動させた後、加速工程
に移る。加速工程は、エンジン始動直後にエンジンの回
転数の増大に応じて、エンジンに冷気を徐々に供給する
ように、吸気供給管の第2の通路に設けた調整弁の開度
を連続的に又は段階的に大きくする工程である。即ち、
一般的には、調整弁は、エンジン回転数が1000〜2
000rpm 、好ましくは1500rpmになったと
きに開き始め、2000〜3000rpmで全開にする
After starting the engine as described above, the process moves to the acceleration process. In the acceleration step, the opening degree of the regulating valve provided in the second passage of the intake air supply pipe is continuously or This is a step-by-step process of enlarging the size. That is,
Generally, the regulating valve is used when the engine speed is 1000 to 2.
It starts opening at 000 rpm, preferably 1500 rpm, and fully opens at 2000-3000 rpm.

前記二重弁の場合は、1000〜2000rpm 。In the case of the double valve, the speed is 1000 to 2000 rpm.

好ましくは1500rpmで第1の調整弁3aを開き、
2000〜3000rpmで第2の調整弁3bを開くよ
うにすればよい。
Preferably, the first regulating valve 3a is opened at 1500 rpm,
The second regulating valve 3b may be opened at 2000 to 3000 rpm.

このようにしてエンジンが始動し、安定した状態で回転
数を増加した後、準備工程に移る。即ち、エンジンの排
熱にて、或いは吸気予熱器に設けたヒーターにて、吸気
予熱器を所定温度Taに昇温すると、内蔵するMH,は
温度Taで吸熱的に水素を放出し、このとき、前記した
ように、MH。
After the engine is started in this way and the rotational speed is increased in a stable state, the preparation process is started. That is, when the intake air preheater is heated to a predetermined temperature Ta using exhaust heat from the engine or a heater installed in the intake air preheater, the built-in MH emits hydrogen endothermically at the temperature Ta, and at this time. , as mentioned above, MH.

の水素平衡圧は水素貯蔵容器内の水素圧Pよりも高いの
で、この水素は連通管を経て再び水素貯蔵容器に戻り、
水素貯蔵容器内の水素圧力は当初の圧力に復帰する。こ
の準備工程後に水素流通弁を閉じ、次回のエンジン始動
に備える。
Since the hydrogen equilibrium pressure of is higher than the hydrogen pressure P in the hydrogen storage container, this hydrogen returns to the hydrogen storage container again through the communication pipe,
The hydrogen pressure in the hydrogen storage container returns to its original pressure. After this preparatory step, the hydrogen flow valve is closed to prepare for the next engine start.

第3図は作動温度領域で水素平衡圧がMH,よりも高い
MH2を水素貯蔵容器に充填した装置の作動を示すサイ
クル線図である。エンジン始動時には、例えば大気温度
TcにおいてMH2の方がMH,よりも水素平衡圧が高
く、一方、準備工程における吸気予熱器の温度Taにお
いては、MH。
FIG. 3 is a cycle diagram showing the operation of an apparatus in which a hydrogen storage container is filled with MH2 whose hydrogen equilibrium pressure is higher than MH in the operating temperature range. At the time of engine startup, for example, at atmospheric temperature Tc, the hydrogen equilibrium pressure of MH2 is higher than that of MH, while at the temperature Ta of the intake air preheater in the preparatory process, MH2 has a higher hydrogen equilibrium pressure than MH.

の方が外気温Tb付近のM Htよりも水素平衡圧が高
いように選ばれる。
is selected so that the hydrogen equilibrium pressure is higher than M Ht near the outside temperature Tb.

従って、加熱工程において、水素流通弁を開くと、水素
貯蔵容器内のM Htは温度Tcで大気から吸熱しつつ
水素を放出し、この水素を吸気予熱器内のM H+が温
度Tdで吸蔵し、発熱する。加速工程については、前述
の水素を充填した容器を用いた場合と同じである。準備
工程においては、前述したように、吸気予熱器を温度T
aに加熱すると、内蔵されたMH,が水素を放出し、こ
の水素は温度TbでMH2に吸蔵される。この際のM 
H2の発熱は、大気又は車体に放散される。この後、水
素流通弁を閉じて、次回のエンジン始動に備える。
Therefore, in the heating process, when the hydrogen flow valve is opened, the M Ht in the hydrogen storage container absorbs heat from the atmosphere at a temperature Tc and releases hydrogen, and the M H+ in the intake air preheater absorbs this hydrogen at a temperature Td. , generates a fever. The acceleration step is the same as in the case of using the container filled with hydrogen described above. In the preparation process, as mentioned above, the intake air preheater is heated to a temperature T.
When heated to temperature a, the built-in MH releases hydrogen, and this hydrogen is stored in MH2 at temperature Tb. M at this time
The heat generated by H2 is dissipated into the atmosphere or the vehicle body. After this, close the hydrogen flow valve and prepare for the next engine start.

(発明の効果) 以上のように、本発明の装置によれば、水素を吸蔵する
金属水素化物を利用して吸気を予熱するので、装置が軽
量であり、しかも、迅速に高い温度まで吸気を予熱する
ことができ、かくして、寒冷地や冬期早朝においてもエ
ンジンの始動を著しく容易にする。
(Effects of the Invention) As described above, according to the device of the present invention, since the intake air is preheated using a metal hydride that stores hydrogen, the device is lightweight and can quickly heat the intake air to a high temperature. It is possible to preheat the engine, thus making it much easier to start the engine even in cold regions or early in the morning in winter.

更に、エンジン始動後に大量の冷気をエンジンに供給す
れば、燃料が不完全燃焼を起こしてエンジンの回転数が
不安定となり、時には停止することもあるが、本発明の
装置によれば、エンジン始動後に、エンジンの回転数の
増大に応じて吸気の流量を増加させるので、エンジンの
回転数を滑らかに上昇させることができる。例えば、エ
ンジンの回転数が不安定なときには、燃料の不完全燃焼
のために排気ガスに白煙が混じり、大気汚染の観点から
も好ましくないが、本発明のエンジン吸気予熱装置によ
れば、回転数が滑らかに上昇するので、不完全燃焼が殆
どなく、白煙の発生も極めて少ない。
Furthermore, if a large amount of cold air is supplied to the engine after the engine has been started, the fuel will cause incomplete combustion and the engine speed will become unstable, sometimes causing the engine to stop. Later, the intake air flow rate is increased in accordance with the increase in engine speed, so that the engine speed can be smoothly increased. For example, when the engine speed is unstable, white smoke is mixed in the exhaust gas due to incomplete combustion of the fuel, which is undesirable from the viewpoint of air pollution. Since the number rises smoothly, there is almost no incomplete combustion and the generation of white smoke is also extremely low.

(実施例) 以下に本発明の装置の実施例について説明する。(Example) Examples of the apparatus of the present invention will be described below.

実施例1 第2図に示す作動を行なう装置によって、ディーゼルエ
ンジンを始動した。吸気予熱器のMH。
Example 1 A diesel engine was started using a device operating as shown in FIG. MH of intake air preheater.

としてLaN16.t^1゜、3を0.3 kg用い、
水素貯蔵容器の容積を81とし、Tb=60℃、Ta=
150℃の条件下では、Pb=6気圧、Pa=10気圧
である。
As LaN16. Using 0.3 kg of t^1°, 3,
The volume of the hydrogen storage container is 81, Tb=60°C, Ta=
Under the condition of 150°C, Pb=6 atmospheres and Pa=10 atmospheres.

当初の大気温度が一25℃であるとき、加熱工程におい
て、水素流通弁を開いてから7秒後には、吸気は40℃
まで高められ、エンジンを始動させることができた。加
速工程では調整弁によってエンジンの回転数に合わせて
吸気としての冷空気の流量を増加したので、エンジンの
回転数が滑らかに上昇し、30秒後にはアクセルを踏む
と3000 rpra以上に達した。また、準備工程で
は、電気ヒーターにて吸気予熱器を150℃まで加熱し
て、金属水素化物から水素を放出させた。
When the initial atmospheric temperature is 125°C, in the heating process, 7 seconds after opening the hydrogen flow valve, the intake air reaches 40°C.
The engine was able to start. During the acceleration process, a regulating valve was used to increase the flow rate of cold intake air in accordance with the engine speed, so the engine speed rose smoothly and reached over 3000 rpra when the accelerator was pressed 30 seconds later. Further, in the preparation step, the intake air preheater was heated to 150° C. using an electric heater to release hydrogen from the metal hydride.

第4図は、エンジン始動後の約1分間のエンジン回転数
の変化を示し、本発明の装置によれば、実線で示すよう
に回転数が滑らかに且つ速やかに上昇した。
FIG. 4 shows the change in engine speed for about one minute after the engine was started, and according to the device of the present invention, the speed rose smoothly and quickly as shown by the solid line.

実施例2 第3図に示す作動を行なう装置によってディーゼルエン
ジンを始動した。MH,とじてTiCoo、 sMno
、 sを0.5kg、MHzとしてMIIIN i s
(ミツシュメタル)0.5kgを用い、Tc=−45℃
、Tb=−10℃、Td=30℃、Ta=150℃の条
件下では、P d = 0.8気圧、Pa=6気圧であ
る。
Example 2 A diesel engine was started using a device operating as shown in FIG. MH, TiCoo, sMno
, where s is 0.5 kg and MHz.
(Mitshu Metal) using 0.5 kg, Tc = -45°C
, Tb = -10°C, Td = 30°C, Ta = 150°C, P d = 0.8 atm, Pa = 6 atm.

当初の大気温度が一25℃であるとき、加熱工程におい
て、水素流通弁を開いて12秒後には吸気が25℃まで
加熱されて、エンジンを始動させることができた。加速
工程及び準備工程については、実施例1と同じであった
When the initial atmospheric temperature was 125°C, in the heating process, the intake air was heated to 25°C 12 seconds after opening the hydrogen flow valve, making it possible to start the engine. The acceleration process and preparation process were the same as in Example 1.

比較例 従来の電気ヒーターを用いて吸気を予熱し、ディーゼル
エンジンを始動させた。先ず、ヒーターに15秒間通電
し、ヒーターの温度を上昇させた後、吸気を流し始めた
。吸気は更に10秒後には40℃に高められ、エンジン
を始動させることができた。しかし、ここでアクセルを
踏んでも、冷気が吸気として大量にエンジンに流入する
ため、第4図に破線で示すように、エンジンの回転数は
20’00rpm程度までしか上がらない状態がしばら
く続き、最終的にエンジンの回転数を300゜rpm以
上にするまでには1分以上を要した。
Comparative Example A diesel engine was started by preheating intake air using a conventional electric heater. First, the heater was energized for 15 seconds to raise the temperature of the heater, and then intake air began to flow. After another 10 seconds, the temperature of the intake air was raised to 40°C, and the engine could be started. However, even if you step on the accelerator at this point, a large amount of cold air will flow into the engine as intake air, so the engine speed will continue to rise only to about 20'00 rpm for a while, as shown by the broken line in Figure 4. It took more than a minute to increase the engine speed to over 300 rpm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるエンジン吸気予熱装置の一実施例
を示す概念図、第2図及び第3図は本発明の装置の作動
を示すサイクル線図、第4図は、エンジンを始動してか
らの経過時間とエンジンの回転数との関係を示すグラフ
であって、実線は本発明のエンジン吸気予熱装置を用い
た場合を示し、破線は従来の電気ヒーターを用いた場合
を示す。 l・・・吸気供給管、2・・・遮断弁、3a及び3b・
・・調整弁、4・・・吸気予熱器、5・・・連通管、6
・・・水素貯蔵容器、7゛・・・水素流通弁、8・・・
エンジン。 特許出願人 積水化学工業株式会社 Ta      Tb      1/TTa   T
d   Tb   Tc   1/T第4図 情p4’l、 (炒)
FIG. 1 is a conceptual diagram showing an embodiment of the engine intake preheating device according to the present invention, FIGS. 2 and 3 are cycle diagrams showing the operation of the device according to the present invention, and FIG. 4 is a diagram showing the operation of the device according to the present invention. 2 is a graph showing the relationship between elapsed time and engine rotational speed, where the solid line shows the case where the engine intake air preheating device of the present invention is used, and the broken line shows the case where the conventional electric heater is used. l...Intake supply pipe, 2...Shutoff valve, 3a and 3b.
...Adjustment valve, 4...Intake preheater, 5...Communication pipe, 6
...Hydrogen storage container, 7゛...Hydrogen distribution valve, 8...
engine. Patent applicant Sekisui Chemical Co., Ltd. Ta Tb 1/TTa T
d Tb Tc 1/T 4th illustration p4'l, (fried)

Claims (1)

【特許請求の範囲】[Claims] (1) (a) 吸気の流れを遮断し得る機構を備えた
第1の通路と、吸気の流量を調節し得る機構を備えた第
2の通路とを有するエンジンへの吸気供給管と、 (b) 第1の金属水素化物を内蔵し、前記第1の通路
内に吸気と熱交換可能に装着された吸気予熱器と、 (c) 水素又は作動温度領域で前記第1の金属水素化
物よりも水素平衡圧の高い第2の金属水素化物を内蔵す
る水素貯蔵容器と、 (d) 前記吸気予熱器と前記水素貯蔵容器とを水素流
通弁により連通可能に接続する連通管とを有し、 第1の通路を開け、第2の通路を遮断すると共に、前記
水素流通弁を開けて、前記水素貯蔵容器から前記吸気予
熱器へ水素を移動させ、前記第1の金属水素化物にこの
水素を吸蔵させ、発熱させて吸気を加熱して、これを第
1の通路によつてエンジンに供給する加熱工程と、エン
ジン始動後、エンジンの回転数に対応して、前記第2の
通路に設けた吸気の流量を調節する機構によつて第2の
通路によるエンジンの吸気量を増加させる加速工程と、
前記第1の金属水素化物を加熱して水素を放出させ、前
記水素貯蔵容器に移動させる準備工程とを行なうことを
特徴とするエンジン吸気予熱装置。
(1) (a) An intake air supply pipe to an engine having a first passage equipped with a mechanism capable of blocking the flow of intake air and a second passage equipped with a mechanism capable of adjusting the flow rate of intake air; b) an intake air preheater containing a first metal hydride and installed in the first passage so as to be able to exchange heat with the intake air; (d) a communication pipe connecting the intake air preheater and the hydrogen storage container so that they can communicate through a hydrogen flow valve; The first passage is opened and the second passage is closed, and the hydrogen flow valve is opened to transfer hydrogen from the hydrogen storage container to the intake air preheater, and to transfer the hydrogen to the first metal hydride. A heating step in which the intake air is stored and generated to generate heat and is supplied to the engine through the first passage; and after the engine is started, the second passage is provided in accordance with the rotational speed of the engine. an acceleration step of increasing the intake air amount of the engine through the second passage by a mechanism that adjusts the intake air flow rate;
An engine intake air preheating device characterized by performing a preparatory step of heating the first metal hydride to release hydrogen and transferring it to the hydrogen storage container.
JP60094024A 1985-04-30 1985-04-30 Engine intake preheater Pending JPS61252861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094024A JPS61252861A (en) 1985-04-30 1985-04-30 Engine intake preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094024A JPS61252861A (en) 1985-04-30 1985-04-30 Engine intake preheater

Publications (1)

Publication Number Publication Date
JPS61252861A true JPS61252861A (en) 1986-11-10

Family

ID=14098989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094024A Pending JPS61252861A (en) 1985-04-30 1985-04-30 Engine intake preheater

Country Status (1)

Country Link
JP (1) JPS61252861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088452A (en) * 1988-07-26 1992-02-18 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method for starting a hydrogen engine and a method for stopping a hydrogen engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088452A (en) * 1988-07-26 1992-02-18 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method for starting a hydrogen engine and a method for stopping a hydrogen engine

Similar Documents

Publication Publication Date Title
JPH05332152A (en) Ammonia combustion engine
US4548186A (en) Method and device for preheating an engine or an engine intake air
US4711223A (en) Alcohol fuel conversion apparatus
JPS61252861A (en) Engine intake preheater
US4741156A (en) Process for igniting a regenerative soot filter in the exhaust gas connection of diesel engines
JPS61252862A (en) Engine starter
JPS5596357A (en) Device for starting engine in cold district
JPS61252863A (en) Engine intake preheater
JPH0432223B2 (en)
GB1511389A (en) System to convert liquid fuel to gas
EP1074706A3 (en) Temperature control method for a direct injection engine
JPH0243030B2 (en)
JP2572401B2 (en) Coal-fired boiler start-up control system
JPH0788773B2 (en) Vehicle heating device
JPS60207857A (en) Heating device
JPS6326175B2 (en)
JPH0412381B2 (en)
JPS6056168A (en) Engine preheating device
JPS61280344A (en) Quick heating device
AU1225792A (en) Combustion enhancement system
JP2538257Y2 (en) Lubricating oil heating device for automatic transmission
JPS6321356A (en) Icing preventing device
US3956882A (en) Convertible hydrogenator and gas turbine
JPH0117643Y2 (en)
JPH039299B2 (en)