JPS61251158A - Radiating substrate - Google Patents

Radiating substrate

Info

Publication number
JPS61251158A
JPS61251158A JP9271485A JP9271485A JPS61251158A JP S61251158 A JPS61251158 A JP S61251158A JP 9271485 A JP9271485 A JP 9271485A JP 9271485 A JP9271485 A JP 9271485A JP S61251158 A JPS61251158 A JP S61251158A
Authority
JP
Japan
Prior art keywords
substrate
diamond
heat dissipation
impurity
dissipation substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9271485A
Other languages
Japanese (ja)
Inventor
Naoharu Fujimori
直治 藤森
Akira Doi
陽 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9271485A priority Critical patent/JPS61251158A/en
Publication of JPS61251158A publication Critical patent/JPS61251158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To enable a diamond substrate with an excellent heat conductivity and a low cost to be obtained by forming a diamond thin film on a substrate by way of a vapor growth method and mixing an impurity for improving an electric conductivity in the thin film. CONSTITUTION:A diamond thin film mixed with an impurity B for improving an electric conductivity is formed on an Si substrate or the like by flowing CH4, B2H6 and H2 thereover at flow rates 1, 0.2 and 100cm<3>/min, respectively, and processing the substrate for 300hr in a vacuum 30Torr by way of a plasma CVD method. Then, the Si substrate is dipped in a solution HF:HNO3 (1:3) to be dissolved.

Description

【発明の詳細な説明】 11↓9μ月分! 本発明は放熱基板に関する。更に詳しくは、熱伝導性に
優れ、かつ安価°なダイヤモンド放熱基板に関するもの
である。
[Detailed description of the invention] 11↓9μ months! The present invention relates to a heat dissipation board. More specifically, the present invention relates to a diamond heat dissipating substrate that has excellent thermal conductivity and is inexpensive.

従来の技術 半導体装置、これらを利用する装置、機器では半導体素
子等の能動素子、あるいは抵抗器、コイル類等の受動素
子における発熱の問題があり、従ってこれら素子等を安
定かつ信頼性よく動作させるためには、実装の際に最良
の熱設計を行う必要があり、これは半導体装置等の設計
、製作において極めて重要である。
Conventional technology Semiconductor devices and devices and equipment that use them have the problem of heat generation in active elements such as semiconductor elements, or passive elements such as resistors and coils.Therefore, it is necessary to operate these elements stably and reliably. In order to achieve this, it is necessary to perform the best thermal design during packaging, which is extremely important in the design and manufacture of semiconductor devices.

更に、近年、半導体装置の高速動作化、高密度化等の動
向がみられ、それに伴って半導体素子の発熱量の増大が
大きな問題となっている。そこで、半導体装置搭載用基
板についても放熱性の改善、即ち基板全体としての板厚
方向の熱伝導性のより一層の改良が要求されるようにな
ってきている。
Furthermore, in recent years, there has been a trend toward faster operation and higher density of semiconductor devices, and with this, an increase in the amount of heat generated by semiconductor elements has become a major problem. Therefore, it has become necessary to further improve the heat dissipation of substrates for mounting semiconductor devices, that is, to further improve the thermal conductivity of the entire substrate in the thickness direction.

特に発熱量の大きな半導体レーザーをはじめとする各種
半導体装置の実装面においては、それ自体の電力消費に
よって発熱するために、この熱の処理法を十分に検討す
る必要があり、従来は、例えば放熱フィンや水冷等の工
夫が施されていた。
In particular, when mounting various semiconductor devices such as semiconductor lasers that generate a large amount of heat, they generate heat due to their own power consumption, so it is necessary to carefully consider how to dispose of this heat. It featured innovations such as fins and water cooling.

一方、このような素子全体に必要な放熱のみならず、素
子の特定の部分からの放熱が必要とされる場合もある。
On the other hand, there are cases in which heat radiation is required not only from the entire element, but also from a specific portion of the element.

例えば、レーザー用の半導体においては、レーザニが放
出される端面部での発熱が著しいために、その近傍での
除熱能力によって該素子のレーザー出力が決定されてし
まう程である。
For example, in semiconductors for lasers, heat generation is significant at the end face where the laser beam is emitted, so much so that the laser output of the device is determined by the heat removal ability in the vicinity.

ICや半導体の基板材料としては、従来Al2O3が一
般的であったが、これは熱伝導という観点からは優れた
材料とはいえず、従ってより高熱伝導材料の開発が必要
とされ、最近ではAINやSiC等がこのような目的に
合うものとして注目されている。また、Cu合金等の金
属を用いる基板も提案されている。
Al2O3 has traditionally been a common substrate material for ICs and semiconductors, but it cannot be said to be an excellent material from the standpoint of thermal conductivity.Therefore, there is a need to develop materials with higher thermal conductivity, and recently Al2O3 has been used as a substrate material for ICs and semiconductors. , SiC, etc. are attracting attention as suitable for such purposes. Further, substrates using metals such as Cu alloys have also been proposed.

これまでに知られている物質中で、熱伝導度が最も良い
ものはダイヤモンドであり、これを利用した半導体素子
用放熱基板も、一部の分野では既に実用化されている。
Among the substances known so far, diamond has the best thermal conductivity, and heat dissipation substrates for semiconductor devices using diamond have already been put into practical use in some fields.

しかしながら、ダイヤモンドは周知の如く極めて高価で
あり、また加工も困難であることから一般化されるに至
ってない。
However, as is well known, diamond is extremely expensive and difficult to process, so it has not been widely used.

即ち、例えばダイヤモンドヒートシンクは3次元的な熱
の拡散を期待するためには通常0.2+t+m程度の板
厚が必要とされるが、ダイヤモンドは極めて高価である
と共にこれをこのような形状に加工することは著しく困
難である。また、人工的な合成によるダイヤモンドの使
用も考えられるが、現在のところ微細な結晶しか得られ
ていないので、ヒートシンクの大きさには限界があり、
極く限られた素子に対してしか使用できない。
That is, for example, a diamond heat sink normally requires a plate thickness of about 0.2+t+m in order to achieve three-dimensional heat diffusion, but diamond is extremely expensive and cannot be processed into this shape. This is extremely difficult. It is also possible to use artificially synthesized diamonds, but as only fine crystals have been obtained so far, there is a limit to the size of the heat sink.
It can only be used for very limited devices.

発明が解決しようとする問題点 以上述べたように、半導体素子、装置の実装の際に解決
しなければならない重要な課題として熱設計の問題があ
る。この問題は半導体素子、装置自体の性能向上と並行
して改善されなければならない重要な課題であり、特に
高出力レーザー素子などの高い発熱量を有するものにつ
いては、基板等の実装用部品により該素子の性能が決定
付けられてしまう程の重大な影響を有している。
Problems to be Solved by the Invention As described above, thermal design is an important problem that must be solved when mounting semiconductor elements and devices. This problem is an important issue that must be solved in parallel with improving the performance of semiconductor devices and devices themselves.In particular, for devices that generate a high amount of heat, such as high-power laser devices, mounting parts such as substrates must be It has such a significant influence that it determines the performance of the device.

しかしながら、従来基板材料として汎用されてきたAl
2O,は、高発熱量を有する素子の基板用材料としては
放熱特性(熱伝導度)において不十分であった。更に、
従来公知の物質中で最良の熱伝導度を有するものとして
知られているダイヤモンドは高価であるばかりでなく、
加工困難であるために一部で実用化されているにすぎず
、−膜化には程遠いものである。
However, Al, which has been commonly used as a substrate material,
2O, had insufficient heat dissipation properties (thermal conductivity) as a material for a substrate of an element having a high calorific value. Furthermore,
Diamond, which is known to have the best thermal conductivity of any known material, is not only expensive;
Because it is difficult to process, it has only been put into practical use in some areas, and is far from being made into a film.

そこで、Al2O3に代る高い放熱特性を期待すること
のできる新たな基板を開発することが切に望まれており
、これによって半導体素子、装置の本来の特性を十分に
発揮させることが可能となるので、これら素子、装置の
実装上、特にその熱設計の面で極めて意義深いことであ
る。
Therefore, it is strongly desired to develop a new substrate that can be expected to have high heat dissipation properties in place of Al2O3, and this will make it possible to fully demonstrate the original characteristics of semiconductor elements and devices. Therefore, this is extremely significant in terms of the implementation of these elements and devices, especially in terms of their thermal design.

本発明の目的もこのような点にあり、熱伝導性に優れ、
しかも安価なダイヤモンド放熱基板を提供することにあ
る。
The purpose of the present invention is also in this point, and has excellent thermal conductivity.
Moreover, the object is to provide an inexpensive diamond heat dissipation substrate.

問題点を解決するための 役 本発明者等は上記従来技術の現状に鑑みて、従来みられ
ない高い放熱特性を有する半導体装置等の搭載用基板を
開発すべく種々検討した結果、最良の熱伝導度を有する
とされるダイヤモンド基板を安価に製造する技術を開発
することが有効であるとの着想の下に鋭意研究を続け、
本発明を完成した。
In view of the current state of the prior art described above, the inventors of the present invention have conducted various studies to develop a board for mounting semiconductor devices, etc. that has high heat dissipation characteristics that have not been seen before. We continued our research with the idea that it would be effective to develop a technology to inexpensively manufacture diamond substrates, which are said to have conductivity.
The invention has been completed.

即ち、本発明の放熱基板は気相合成により得られ、電気
伝導性改善のための不純物を含有するダイヤモンドで構
成されていることを特徴とするものである。
That is, the heat dissipation substrate of the present invention is obtained by vapor phase synthesis and is characterized in that it is made of diamond containing impurities to improve electrical conductivity.

本発明の放熱基板において、該基板はダイヤモンドで主
として構成され、電気伝導度改善のために1100pp
m〜5%の範囲で不純物を含有する。該不純物としては
B5Si、 P、 As、 Sb等からなる群から選ば
れる少なくとも1種の元素を挙げることができ、Bが最
も好ましい。
In the heat dissipation substrate of the present invention, the substrate is mainly composed of diamond, and has a 1100 ppm content to improve electrical conductivity.
Contains impurities in the range of m to 5%. The impurity may include at least one element selected from the group consisting of B5Si, P, As, Sb, etc., with B being the most preferred.

このような本発明の放熱基板は以下のような方法に従っ
て得ることができる。即ち、例えばSiなどの基板上に
気相法でダイヤモンド薄膜を形成し、一方不純物の混入
を行い、得られる積層体のSi基板等をエツチング技術
により除去することにより作製される。
Such a heat dissipation substrate of the present invention can be obtained according to the following method. That is, for example, it is manufactured by forming a diamond thin film on a substrate such as Si using a vapor phase method, mixing impurities, and removing the resulting laminate, such as the Si substrate, using an etching technique.

ここでダイヤモンドの気相合成法としては公知のCVD
法、プラズマCVD法、イオンビーム蒸着法等をいずれ
も利用することができる。更に、不純物の混入方法とし
ては、ダイヤモンド膜の形成をCVD法やプラズマCV
D法で実施する場合には、原料ガスとともにB 2 H
−等のガス状不純物源を導入し、これを分解することに
より膜形成と同時に行うことができる。また、イオンビ
ーム蒸着法ではB等の不純物源のイオンビームにより添
加することも可能である。更に、1000〜5000人
程度のダイヤモンド薄膜を形成し、次いでイオン注入を
行う操作を繰り返すことにより実施することもできる。
Here, the well-known CVD method is used as a diamond vapor phase synthesis method.
method, plasma CVD method, ion beam evaporation method, etc. can be used. Furthermore, as a method of mixing impurities, the diamond film is formed by CVD method or plasma CVD method.
When carrying out method D, B 2 H is used together with the raw material gas.
This can be performed simultaneously with film formation by introducing a gaseous impurity source such as - and decomposing it. Further, in the ion beam evaporation method, it is also possible to add an impurity source such as B using an ion beam. Furthermore, it can also be carried out by repeating the steps of forming about 1,000 to 5,000 diamond thin films and then performing ion implantation.

Si等の膜形成用基板の除去は、各種エツチング方法を
利用することができ、基板材料の種類、性質に応じてウ
ェットエツチングおよびドライエツチングの中から最適
のものを選び利用することができる。例えば、基板とし
てSi基板を使用した場合には、HF:HNO3(1:
 3)混合液などを用いてウェットエツチングすること
により除去できる。
Various etching methods can be used to remove the substrate for forming a film such as Si, and the optimum method can be selected from wet etching and dry etching depending on the type and properties of the substrate material. For example, when using a Si substrate as the substrate, HF:HNO3 (1:
3) It can be removed by wet etching using a mixed solution or the like.

本発明の放熱基板において、その厚さは50μm〜ll
l1[11の範囲内である。この厚さについて下限は−
特に重要であり、薄すぎると熱放散の3次元的な経路を
確保できない。一方、上限については特に重要ではない
が、厚いと経済的でなく、この意味で妥当な値は約1關
である。
In the heat dissipation board of the present invention, the thickness is 50 μm to 1
l1 [within the range of 11. The lower limit for this thickness is −
This is particularly important; if it is too thin, a three-dimensional path for heat dissipation cannot be secured. On the other hand, although the upper limit is not particularly important, it is uneconomical if it is too thick, and in this sense, a reasonable value is about 1 inch.

また、上記の如く気相堆積法によれば、かなり大きな面
積を有する基板を用いて、その上にダイヤモンドを堆積
させることにより、大面積の膜状ダイヤモンド基板材料
を得ることができる。実際の使用に際しては、このよう
な大面積の膜は所定の寸法、形状に切断加工される。
Further, according to the vapor phase deposition method as described above, by using a substrate having a considerably large area and depositing diamond thereon, it is possible to obtain a film-like diamond substrate material having a large area. In actual use, such a large-area membrane is cut into a predetermined size and shape.

五亙 半導体素子、装置等の実装用基板として重要な点は高い
放熱性を有することである。この放熱性については、本
発明の上記の如き放熱基板によれば、最良の熱伝導性を
有することが知られているダイヤモンドを基板の主構成
要素としたことにより解決された。
An important point for a substrate for mounting semiconductor devices, devices, etc. is that it has high heat dissipation properties. This heat dissipation problem is solved by using diamond, which is known to have the best thermal conductivity, as the main component of the heat dissipation substrate according to the present invention.

しかしながら、通常ダイヤモンドは電気抵抗が高いので
、このままでは加工性において不十分であり、量産性よ
く、低コストで放熱基板を得ることは難しい。そこで、
ダイヤモンドの電気抵抗を改善し得る不純物を添加する
ことによりこの問題を解決した。不純物として最適のも
のはBであり、その量は一般に上記の如< 1100p
pm〜5%(重量基準で)の範囲内である。天然産ダイ
ヤモンドにおいてもBを含むものが知られており(II
t、タイプ)、その熱伝導率は通常のダイヤモンド(I
aタイプ)の約4倍とされている。本発明者の検討によ
れば、気相合成ダイヤモンド膜においても、Bを添加し
た膜は熱伝導性が著しく優れていることがわかった。
However, since diamond usually has a high electrical resistance, its workability is insufficient as it is, and it is difficult to obtain a heat dissipation substrate that can be mass-produced at a low cost. Therefore,
This problem was solved by adding impurities that could improve the electrical resistance of diamond. The most suitable impurity is B, and its amount is generally <1100p as described above.
pm to 5% (by weight). Naturally produced diamonds are also known to contain B (II
t, type), its thermal conductivity is similar to that of ordinary diamond (I
It is said to be about 4 times that of Type A). According to studies conducted by the present inventors, it has been found that even in vapor phase synthesized diamond films, films to which B is added have significantly superior thermal conductivity.

不純物の添加量は得られる膜の諸物性、特に電気抵抗お
よび熱伝導度によって選択され、上記のような範囲であ
ることが必要である。iooppmに満たない場合には
ダイヤモンド膜の電気抵抗を下げるのに十分でなく、ま
た5%を越えて使用した場合にはダイヤモンド膜中に異
相が発生し、本発明の意図する物性の放熱基板を得るこ
とが出来ないのでいずれも好ましくない。
The amount of impurities to be added is selected depending on the physical properties of the resulting film, particularly the electrical resistance and thermal conductivity, and needs to be within the above range. If it is less than iooppm, it is not sufficient to lower the electrical resistance of the diamond film, and if it is used in excess of 5%, a different phase will occur in the diamond film, making it difficult to obtain a heat dissipating substrate with the physical properties intended by the present invention. Both are undesirable because they cannot be obtained.

また、グラファイトの混入は微量であれば問題はないが
、多量(3%以上)となるとダイヤモンド本来の熱伝導
性が大きく影響されるので不適当である。また、その他
の不純物はダイヤモンドの結晶形に影響を与えない限り
問題はなく、例えばSi、 P、 As、 Sb等は電
気抵抗を下げるので好ましい例である。
In addition, there is no problem if the amount of graphite mixed in is small, but if it is in a large amount (3% or more), it is inappropriate because the inherent thermal conductivity of diamond will be greatly affected. Further, other impurities pose no problem as long as they do not affect the crystalline form of diamond; for example, Si, P, As, Sb, etc. are preferable examples since they reduce electrical resistance.

本発明の放熱基板ではB等の不純物添加により電気伝導
性が改善されているので、加工の際に放電加工法が利用
でき、有利である。この放電加工のためには、電気抵抗
は10’Ω・cm以下とする必要があり、この意味から
も不純物添加量の下限は100ppmである必要がある
Since the heat dissipation substrate of the present invention has improved electrical conductivity by adding impurities such as B, electrical discharge machining can be advantageously used during processing. For this electrical discharge machining, the electrical resistance needs to be 10'Ω·cm or less, and from this point of view, the lower limit of the amount of impurities added needs to be 100 ppm.

本発明においては、上記の如き方法によりかなり大きな
表面積を有し、かつ任意の形状を有するSi基板等にダ
イヤモンド膜が形成できるので、これを必要な寸法に切
断して放熱基板として使用する。この場合のダイヤモン
ド膜の切断や研磨加工は上記の放電加工の他、従来公知
の各種方法が利用でき、通常のダイヤモンド結晶からの
切出し等に比較して著しく容易であるので、従来のダイ
ヤモンド基板に比して安価に加工できる。
In the present invention, a diamond film can be formed on a Si substrate or the like having a fairly large surface area and an arbitrary shape by the method described above, and this is then cut into required dimensions and used as a heat dissipation substrate. In this case, the cutting and polishing of the diamond film can be performed using various conventionally known methods in addition to the above-mentioned electric discharge machining, and it is significantly easier than cutting from a normal diamond crystal. It can be processed at a lower cost.

かくして、本発明の放熱基板は各種半導体素子、装置の
実装の際に使用でき、特に高い発熱量を有する半導体レ
ーザー、集積度の高いIC,LSI等の基板として極め
て有用である。
Thus, the heat dissipation substrate of the present invention can be used for mounting various semiconductor elements and devices, and is particularly useful as a substrate for semiconductor lasers with high heat generation, highly integrated ICs, LSIs, etc.

11男 以下、実施例により本発明の放熱基板を更に具体的に説
明する。ただし、本発明の範囲は以下の実施例により何
等制限されるものではない。
The heat dissipating substrate of the present invention will be explained in more detail below using examples. However, the scope of the present invention is not limited in any way by the following examples.

実施例1 公知のプラズマCVD法(プラズマは2.45GHzの
マイクロ波で発生)にて、CH,、B 2 Hs、H2
を各々L0.2および100cj/分の流量で流し、3
0Torrの真空度の下で300時間処理し、Si基板
上に250μmの膜を形成し、次いでHF:HNO3(
1: 3)の混合液に浸漬することによりSi基板を溶
解した。
Example 1 CH,, B 2 Hs, H
were flowed at a flow rate of L0.2 and 100 cj/min, respectively, and 3
A 250 μm film was formed on the Si substrate by processing under a vacuum degree of 0 Torr for 300 hours, and then HF:HNO3 (
The Si substrate was dissolved by immersing it in a mixed solution of 1:3).

かくして得られたBドープのダイヤモンド板をX線回折
によりその結晶構造を調べたところ、ダイヤモンド構造
を有し、格子定数は3.572人と、天然産ダイヤモン
ドの格子定数3.568人)こ極めて近いものであるこ
とが確認された。
When the crystal structure of the thus obtained B-doped diamond plate was examined by X-ray diffraction, it was found that it has a diamond structure with a lattice constant of 3.572 (the lattice constant of natural diamond is 3.568). It was confirmed that it was close.

このダイヤモンド板の熱伝導度は12W/cm−にであ
り、また電気抵抗は2 Xl0−2Ω・cfflで放電
加工が可能であった。
The thermal conductivity of this diamond plate was 12 W/cm-, and the electrical resistance was 2 Xl0-2Ω·cffl, making it possible to perform electrical discharge machining.

実施例2 実施例1と同様な方法で、B2H,の濃度を種々変化さ
せて下記第1表の如きB濃度を有するダイヤモンド膜を
厚さ100μmで形成した。得られたダイヤモンド膜に
つき熱伝導度および電気抵抗を測定し、結果を第1表に
示した。
Example 2 A diamond film having a B concentration as shown in Table 1 below was formed to a thickness of 100 μm using the same method as in Example 1 while varying the concentration of B2H. The thermal conductivity and electrical resistance of the obtained diamond film were measured and the results are shown in Table 1.

第1表 第1表の結果から明らかな如く、Bの含有率が1100
ppm〜51%の範囲内で電気抵抗および熱伝導度両者
において満足な基板が得られ、結晶形もダイヤモンド状
態にあることがわかる。
Table 1 As is clear from the results in Table 1, the content of B is 1100
It can be seen that within the range of ppm to 51%, a substrate with satisfactory electrical resistance and thermal conductivity was obtained, and the crystal form was also in the diamond state.

実施例3 公知のプラズマCVD法(プラズマは13.5 MHz
の高周波により発生させた)に従って、C2Hs、H2
およびB 2 Hsガスを夫々流量0.5cc/分、1
00cc/分および0.003cc/分にて流し、30
Torrの真空度の下で80時間処理し、5.000p
pmのBを含有する、厚さ200μmのダイヤモンド板
を作製した。これを3mmX3mmの寸法に放電加工に
より切断し、半導体レーザー素子用基板として用いた。
Example 3 Known plasma CVD method (plasma is 13.5 MHz
(generated by high frequency), C2Hs, H2
and B 2 Hs gas at a flow rate of 0.5 cc/min, 1
Flow at 00cc/min and 0.003cc/min, 30
Processed for 80 hours under Torr vacuum, 5.000p
A diamond plate with a thickness of 200 μm and containing pm of B was produced. This was cut into a size of 3 mm x 3 mm by electric discharge machining and used as a substrate for a semiconductor laser device.

かくして得た本発明の基板を用いて作製した半導体レー
ザーは15mWの出力にて150時間以上の耐用寿命を
示したが、比較例として作製したAl2O3を基板とし
て用いたものでは5+y!!の出力で50時間の使用が
限界であった。
The semiconductor laser fabricated using the thus obtained substrate of the present invention exhibited a service life of more than 150 hours at an output of 15 mW, but the laser produced as a comparative example using Al2O3 as the substrate had a service life of 5+y! ! The maximum output was 50 hours of use.

発明の効果 以上詳しく述べたように、本発明によれば、気相合成法
により形成され、B等の電気伝導度改善用不純物を含む
ダイヤモンド膜で形成したことにより、優れた熱伝導性
を有する半導体素子、装置搭載用の放熱基板が、極めて
安価に実現することができる。
Effects of the Invention As described in detail above, according to the present invention, the diamond film is formed by a vapor phase synthesis method and contains impurities such as B for improving electrical conductivity, so that it has excellent thermal conductivity. A heat dissipation board for mounting semiconductor elements and devices can be realized at extremely low cost.

また、本発明のダイヤモンド基板は不純物混入に基づき
電気抵抗が小さいので、放電加工することができ、量産
性の点で極めて有利である。
Furthermore, since the diamond substrate of the present invention has low electrical resistance due to the inclusion of impurities, it can be subjected to electric discharge machining, which is extremely advantageous in terms of mass production.

Claims (6)

【特許請求の範囲】[Claims] (1)気相合成により得られ、電気伝導度改善用の不純
物を含有するダイヤモンドで構成されたことを特徴とす
る放熱基板。
(1) A heat dissipation substrate characterized by being made of diamond obtained by vapor phase synthesis and containing impurities for improving electrical conductivity.
(2)前記不純物がB、Si、P、As、Sbからなる
群から選ばれる少なくとも1種であることを特徴とする
特許請求の範囲第1項記載の放熱基板。
(2) The heat dissipation substrate according to claim 1, wherein the impurity is at least one selected from the group consisting of B, Si, P, As, and Sb.
(3)前記不純物の含有率が100ppm〜5%の範囲
内であることを特徴とする特許請求の範囲第2項記載の
放熱基板。
(3) The heat dissipation substrate according to claim 2, wherein the content of the impurity is within a range of 100 ppm to 5%.
(4)前記不純物がBである特許請求の範囲第3項記載
の放熱基板。
(4) The heat dissipation substrate according to claim 3, wherein the impurity is B.
(5)前記ダイヤモンド膜の厚さが50μm〜1mmの
範囲内であることを特徴とする特許請求の範囲第4項記
載の放熱基板。
(5) The heat dissipation substrate according to claim 4, wherein the thickness of the diamond film is within the range of 50 μm to 1 mm.
(6)前記気相合成法がCVD、プラズマCVDまたは
イオンビーム蒸着法であることを特徴とする特許請求の
範囲第1〜5項のいずれか1項に記載の放熱基板。
(6) The heat dissipation substrate according to any one of claims 1 to 5, wherein the vapor phase synthesis method is CVD, plasma CVD, or ion beam evaporation.
JP9271485A 1985-04-30 1985-04-30 Radiating substrate Pending JPS61251158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9271485A JPS61251158A (en) 1985-04-30 1985-04-30 Radiating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9271485A JPS61251158A (en) 1985-04-30 1985-04-30 Radiating substrate

Publications (1)

Publication Number Publication Date
JPS61251158A true JPS61251158A (en) 1986-11-08

Family

ID=14062126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9271485A Pending JPS61251158A (en) 1985-04-30 1985-04-30 Radiating substrate

Country Status (1)

Country Link
JP (1) JPS61251158A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201601A (en) * 1987-02-18 1988-08-19 Res Dev Corp Of Japan Optical window material and its production
JPH02239193A (en) * 1989-03-13 1990-09-21 Idemitsu Petrochem Co Ltd Diamond semiconductor and its production
US4981818A (en) * 1990-02-13 1991-01-01 General Electric Company Polycrystalline CVD diamond substrate for single crystal epitaxial growth of semiconductors
US5329208A (en) * 1991-06-05 1994-07-12 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method for producing the same
EP0619599A1 (en) * 1987-03-12 1994-10-12 Sumitomo Electric Industries, Ltd. Thin film single crystal substrate
US5371383A (en) * 1993-05-14 1994-12-06 Kobe Steel Usa Inc. Highly oriented diamond film field-effect transistor
WO1995012009A1 (en) * 1993-10-29 1995-05-04 Balzers Aktiengesellschaft Coated body, its method of production and its use
US5424561A (en) * 1993-05-14 1995-06-13 Kobe Steel Usa Inc. Magnetic sensor element using highly-oriented diamond film and magnetic detector
US5442199A (en) * 1993-05-14 1995-08-15 Kobe Steel Usa, Inc. Diamond hetero-junction rectifying element
US5491348A (en) * 1993-05-14 1996-02-13 Kobe Steel Usa, Inc. Highly-oriented diamond film field-effect transistor
US5493131A (en) * 1993-05-14 1996-02-20 Kobe Steel Usa, Inc. Diamond rectifying element
US5512873A (en) * 1993-05-04 1996-04-30 Saito; Kimitsugu Highly-oriented diamond film thermistor
US5523160A (en) * 1993-05-14 1996-06-04 Kobe Steel Usa, Inc. Highly-oriented diamond film
US5682063A (en) * 1993-05-28 1997-10-28 Sumitomo Electric Industries, Ltd. Substrate for semiconductor device
EP0822269A1 (en) * 1996-07-31 1998-02-04 De Beers Industrial Diamond Division (Proprietary) Limited Diamond
DE4412524C2 (en) * 1993-05-14 2001-07-26 Kobe Steel Ltd Heat-emitting carrier with a highly oriented diamond layer
JP2004538230A (en) * 2001-08-08 2004-12-24 アポロ ダイアモンド,インコーポレイティド System and method for producing synthetic diamond
JP2008230905A (en) * 2007-03-20 2008-10-02 Central Japan Railway Co Diamond electrode, catalyst-carrying electrode, and electronic device
WO2009038193A1 (en) * 2007-09-20 2009-03-26 Toyo Tanso Co., Ltd. Carbon material and method for producing the same
US8859058B2 (en) 2010-12-23 2014-10-14 Element Six Limited Microwave plasma reactors and substrates for synthetic diamond manufacture
US8955456B2 (en) 2010-12-23 2015-02-17 Element Six Limited Microwave plasma reactor for manufacturing synthetic diamond material
US9142389B2 (en) 2010-12-23 2015-09-22 Element Six Technologies Limited Microwave power delivery system for plasma reactors
US9410242B2 (en) 2010-12-23 2016-08-09 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US11488805B2 (en) 2010-12-23 2022-11-01 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201601A (en) * 1987-02-18 1988-08-19 Res Dev Corp Of Japan Optical window material and its production
EP0619599A1 (en) * 1987-03-12 1994-10-12 Sumitomo Electric Industries, Ltd. Thin film single crystal substrate
JPH02239193A (en) * 1989-03-13 1990-09-21 Idemitsu Petrochem Co Ltd Diamond semiconductor and its production
US4981818A (en) * 1990-02-13 1991-01-01 General Electric Company Polycrystalline CVD diamond substrate for single crystal epitaxial growth of semiconductors
US5329208A (en) * 1991-06-05 1994-07-12 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method for producing the same
US5355568A (en) * 1991-06-05 1994-10-18 Sumitomo Electric Industries, Ltd. Method of making a surface acoustic wave device
US5512873A (en) * 1993-05-04 1996-04-30 Saito; Kimitsugu Highly-oriented diamond film thermistor
US5371383A (en) * 1993-05-14 1994-12-06 Kobe Steel Usa Inc. Highly oriented diamond film field-effect transistor
DE4412524C2 (en) * 1993-05-14 2001-07-26 Kobe Steel Ltd Heat-emitting carrier with a highly oriented diamond layer
US5442199A (en) * 1993-05-14 1995-08-15 Kobe Steel Usa, Inc. Diamond hetero-junction rectifying element
US5491348A (en) * 1993-05-14 1996-02-13 Kobe Steel Usa, Inc. Highly-oriented diamond film field-effect transistor
US5493131A (en) * 1993-05-14 1996-02-20 Kobe Steel Usa, Inc. Diamond rectifying element
US5424561A (en) * 1993-05-14 1995-06-13 Kobe Steel Usa Inc. Magnetic sensor element using highly-oriented diamond film and magnetic detector
US5523160A (en) * 1993-05-14 1996-06-04 Kobe Steel Usa, Inc. Highly-oriented diamond film
US5682063A (en) * 1993-05-28 1997-10-28 Sumitomo Electric Industries, Ltd. Substrate for semiconductor device
WO1995012009A1 (en) * 1993-10-29 1995-05-04 Balzers Aktiengesellschaft Coated body, its method of production and its use
EP0822269A1 (en) * 1996-07-31 1998-02-04 De Beers Industrial Diamond Division (Proprietary) Limited Diamond
JP2004538230A (en) * 2001-08-08 2004-12-24 アポロ ダイアモンド,インコーポレイティド System and method for producing synthetic diamond
JP2008230905A (en) * 2007-03-20 2008-10-02 Central Japan Railway Co Diamond electrode, catalyst-carrying electrode, and electronic device
WO2009038193A1 (en) * 2007-09-20 2009-03-26 Toyo Tanso Co., Ltd. Carbon material and method for producing the same
JPWO2009038193A1 (en) * 2007-09-20 2011-01-13 東洋炭素株式会社 Carbon material and manufacturing method thereof
US8859058B2 (en) 2010-12-23 2014-10-14 Element Six Limited Microwave plasma reactors and substrates for synthetic diamond manufacture
US8955456B2 (en) 2010-12-23 2015-02-17 Element Six Limited Microwave plasma reactor for manufacturing synthetic diamond material
US9142389B2 (en) 2010-12-23 2015-09-22 Element Six Technologies Limited Microwave power delivery system for plasma reactors
US9410242B2 (en) 2010-12-23 2016-08-09 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material
US9738970B2 (en) 2010-12-23 2017-08-22 Element Six Limited Microwave plasma reactors and substrates for synthetic diamond manufacture
US11488805B2 (en) 2010-12-23 2022-11-01 Element Six Technologies Limited Microwave plasma reactor for manufacturing synthetic diamond material

Similar Documents

Publication Publication Date Title
JPS61251158A (en) Radiating substrate
US20060185579A1 (en) Free-standing diamond structures and methods
US5103284A (en) Semiconductor with ordered clusters
US4622236A (en) Boron nitride film and process for preparing same
JPS63307196A (en) Diamond multilayered thin film and its production
JPH08222669A (en) Heat sink and production thereof
JPH0375298A (en) Production of single crystal of high-pressure phase substance
CA2034361A1 (en) Polycrystalline cvd diamond substrate for single crystal epitaxial growth of semiconductors
US20060040104A1 (en) Heat spreader
JP2006273592A (en) Diamond substrate and its manufacturing method
JP3549228B2 (en) Highly oriented diamond heat dissipation substrate
CN113502540B (en) Sacrificial silicon carbide seed crystal protective film
JPH08310900A (en) Thin-film single crystal of nitride and its production
JPH06107494A (en) Vapor growth method for diamond
JP3728464B2 (en) Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film
ATE50886T1 (en) CARRIER DISC FOR SEMICONDUCTOR ARRANGEMENT MADE OF SILICON CARBIDE.
Ramesham et al. Fabrication of microchannels in synthetic polycrystalline diamond thin films for heat sinking applications
JP3929669B2 (en) Method for producing diamond film
AU2004211648B2 (en) Free-standing diamond structures and methods
JP3520571B2 (en) Single crystal growth method
WO1993002475A1 (en) High temperature rectifying contact and method for making same
JPH01138198A (en) Production of diamond film
JPH04188717A (en) Diamond substrate and manufacture thereof
Varhue et al. Surface morphology of epitaxial Ge on Si grown by plasma enhanced chemical vapor deposition
JPS61263141A (en) Si semiconductor substrate