JPS61251040A - Selective growth of oxide film - Google Patents

Selective growth of oxide film

Info

Publication number
JPS61251040A
JPS61251040A JP60091532A JP9153285A JPS61251040A JP S61251040 A JPS61251040 A JP S61251040A JP 60091532 A JP60091532 A JP 60091532A JP 9153285 A JP9153285 A JP 9153285A JP S61251040 A JPS61251040 A JP S61251040A
Authority
JP
Japan
Prior art keywords
layer
substrate
growth
oxide film
grow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60091532A
Other languages
Japanese (ja)
Inventor
Yuji Furumura
雄二 古村
Fumitake Mieno
文健 三重野
Masahiko Toki
雅彦 土岐
Kikuo Ito
伊藤 喜久雄
Masayuki Takeda
正行 武田
Tsutomu Ogawa
力 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60091532A priority Critical patent/JPS61251040A/en
Publication of JPS61251040A publication Critical patent/JPS61251040A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Abstract

PURPOSE:To flatten the substrate and to contrive to microminiaturize a device by a method wherein a growth blocking layer consisting of a substance, whose negative insulation value of the heat of oxidation formation is larger than the value of the heat of oxidation formation of the substrate, is adhered on the substrate having a negative value of the heat of oxidation formation and after parts of the growth blocking layer are removed by performing a pat terning, an oxide film is made to selectively grow on the substrate by a vapor-phase chemical growth method. CONSTITUTION:The oxidation formation enthalpy change of an Al2O3 film is -400kcal/mol and the growth blocking layer, which is used as a mask, has an effect if the oxidation forma tion enthalpy change is <-200kcal/mol. An SiO2 layer 2 of 4,000Angstrom in thickness is adhered on an Si substrate 1, a pure Al layer 3, which is used jointly as the growth blocking layer and has a thickness of 10,000Angstrom bearable to use as the wiring layer, is adhered thereon and wiring Al patterns 31 and 32 are formed by performing a patterning. Then, as the ratio of a large selectivity can be taken at low temperatures of 350 deg.C or less by a CVD growth method, an SiO2 layer 4 is made to grow at 300 deg.C as the oxide film, Hereupon the SiO2 layer 4 does not grow on the Al patterns 31 and 32 but grow selectively only on parts of the SiO2 layer 2, which is located on the recessed parts of the substrate. then, a CVD SiO2 layer 5 and an Al layer 6 are respectively adhered in order on the flattened substrate as the interlayer insulating film and the second-layer wiring layer.

Description

【発明の詳細な説明】 〔概要〕 成長阻止層としてAI等の酸化生成熱が負の値を有し、
その絶対値が基板より大きい値を有する物質を用いて、
酸化膜の選択成長を行うに際し、成長の選択比を大きく
するために気相成長(CVD)法による低温成長を行う
[Detailed Description of the Invention] [Summary] As a growth prevention layer, the heat of oxidation of AI etc. has a negative value,
Using a substance whose absolute value is larger than that of the substrate,
When selectively growing an oxide film, low-temperature growth is performed using a vapor phase deposition (CVD) method in order to increase the growth selectivity.

〔産業上の利用分野〕[Industrial application field]

本発明は酸化膜を、例えば基板上に被着された酸化股上
のみ選択的に成長させる酸化膜の選択成長方法に関する
The present invention relates to a method for selectively growing an oxide film, for example, in which an oxide film is selectively grown only on an oxide layer deposited on a substrate.

近年半導体装置の微細化の要請より、製造工程の途中の
基板は平坦であることが望まれる。
In recent years, due to the demand for miniaturization of semiconductor devices, it is desired that the substrate be flat during the manufacturing process.

基板上に被膜を被着し、この被膜をパターニングしてそ
の1部を除去することにより、基板上に被膜の段差が生
じた上に、さらに次の被膜を被着すると基板表面は凸凹
となる。
By depositing a film on a substrate, patterning this film, and removing a portion of it, steps are created on the substrate, and when the next film is applied, the substrate surface becomes uneven. .

凸凹の基板はりソゲラフイエ程で露光の際に焦点ボケを
生じたり、段差の側面乃至斜面に被着したレジストの露
光される厚さは水平面のそれより薄り、従って現像時に
この部分のレジストはエッチオフされて孔が開く等の障
害が発生する。
The thickness of the resist deposited on the sides or slopes of the step is thinner than that on the horizontal surface, and therefore the resist in these areas is etched during development. Failures such as holes may occur due to being turned off.

このような欠点を除去するため、基板の凹部に酸化膜を
埋め込み、基板を平坦化する方法が要望されている。
In order to eliminate such defects, there is a need for a method of burying an oxide film in the recesses of the substrate to planarize the substrate.

〔従来の技術〕[Conventional technology]

第4図(11〜(wi)は従来例による酸化膜成長工程
を示す基板断面図である。
FIG. 4 (11-(wi)) is a cross-sectional view of a substrate showing a conventional oxide film growth process.

第4図(1)、(2)において、珪素(St)基板lの
上に、第1の絶縁層として5iOz層2を被着し、その
上に配線層としてSiを含むアルミニウム(Al−St
)層3Aを被着し、パターニングして配線パターン3A
1.3A2を形成する。
In FIGS. 4(1) and (2), a 5iOz layer 2 is deposited as a first insulating layer on a silicon (St) substrate l, and an aluminum (Al-St) containing Si is deposited on top of it as a wiring layer.
) Layer 3A is deposited and patterned to form wiring pattern 3A.
1.3A2 is formed.

第4図G)において、配線パターン3^1.3A2を覆
って、第2の絶縁層になる酸化膜としてのCVDによる
SiO□層4Aを基板全面に被着する。
In FIG. 4G), an SiO□ layer 4A is deposited by CVD as an oxide film, which will become a second insulating layer, over the entire surface of the substrate, covering the wiring pattern 3^1.3A2.

この際のSiO□のCVDは、反応ガスとしてモノシラ
ン(SiHa)と酸素(0,)、キャリアガスとして窒
素(N2)、または水素(N2)を用いて、常圧、また
は約I Torrに減圧して反応ガスを約400℃で熱
分解、あるいはプラズマ反応させて行う。
At this time, CVD of SiO□ is performed using monosilane (SiHa) and oxygen (0,) as reaction gases, nitrogen (N2) or hydrogen (N2) as carrier gas, and under reduced pressure to normal pressure or about I Torr. The reaction gas is subjected to thermal decomposition or plasma reaction at about 400°C.

以上のように従来例では成長素子層となり得る^l系合
金を用いても、5i02のCVDは高温成長であるため
、SiO□は基板全面に成長し、基板凹部にのみ選択成
長ができないため、基板1上に被着されたSiO□層4
Aは凸凹状となり、デバイスの微細化の障害となる。
As described above, in the conventional example, even if a ^l-based alloy that can be used as a growth element layer is used, CVD of 5i02 is a high-temperature growth process, so SiO□ grows on the entire surface of the substrate and cannot selectively grow only in the concave parts of the substrate. SiO□ layer 4 deposited on substrate 1
A becomes uneven and becomes an obstacle to device miniaturization.

従って微細化工程では、この後ポリッシング、ポリイミ
ド塗布、ドライエツチング等により基板の平坦化工程を
追加している場合がある。
Therefore, in the miniaturization process, a process of flattening the substrate by polishing, polyimide coating, dry etching, etc. is sometimes added.

第5図はドライエツチングによる基板の平坦化工程を説
明する断面図である。
FIG. 5 is a cross-sectional view illustrating the step of flattening the substrate by dry etching.

凸凹状のSiO□層4A上に、基板が平坦になるように
レジスト7を厚く塗布し、ドライエツチングにより表面
よりエツチングしてゆき、配線パターン3A1.3A2
が露出するまで行う。
A resist 7 is applied thickly on the uneven SiO□ layer 4A so that the substrate is flat, and is etched from the surface by dry etching to form wiring patterns 3A1, 3A2.
Continue until exposed.

この場合のエツチング条件は、レジストとSingが略
等しいエツチングレートになるように選ばれる。
The etching conditions in this case are selected so that the resist and Sing have approximately the same etching rate.

基板の平坦化のために、以上のような追加工程を必要と
した。
Additional steps such as those described above were required to flatten the substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来は酸化膜を選択的に成長する技術がなかったので、
段差乃至凹部を有する基板に、底部乃至凹部のみ酸化膜
を成長することができず、従って基板は凸凹状となりデ
バイスの微細化の障害となっていた。
Until now, there was no technology to selectively grow oxide films, so
On a substrate having steps or recesses, it is not possible to grow an oxide film only on the bottom or recesses, and the substrate therefore becomes uneven, which is an obstacle to miniaturization of devices.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、酸化生成熱が負の値を有する基板
(1)上に、酸化生成熱が負の値を有し、その絶対値が
該基板(1)より大きい値を有する物質よりなる成長阻
止層(3)を被着し、該成長阻止層(3)をパターニン
グしてそ、01部を除去した後、該基板(1)上に、化
学気相成長法により酸化膜(4)を成長することを特徴
とする酸化膜の選択成長方法により達成される。
The above problem can be solved by placing a substance on a substrate (1) whose heat of oxidation has a negative value and whose absolute value is larger than that of the substrate (1). After patterning the growth inhibiting layer (3) and removing the 01 portion, an oxide film (4) is deposited on the substrate (1) by chemical vapor deposition. ) is achieved by a method of selectively growing an oxide film.

Siデバイスにおいては前記酸化膜(4)として5iO
zを用いる場合が多い。また、前記成長阻止層(3)に
AI 、もしくは恥を用いると十分な成長選択比がとれ
る。
In Si devices, 5iO is used as the oxide film (4).
z is often used. In addition, if AI or Shame is used for the growth inhibiting layer (3), a sufficient growth selection ratio can be obtained.

さらに、前記化学気相成長法が、前記成長阻止層(3)
への成長率とその他の部分上への成長率との比が減少す
るような範囲の成長温度(通常の成長温度より低温)で
行われると、成長阻止層と基板間に十分な成長選択比が
とれる。
Furthermore, in the chemical vapor deposition method, the growth prevention layer (3)
If done at a range of growth temperatures (lower than the normal growth temperature) such that the ratio of the growth rate on the substrate to the growth rate on the rest of the layer decreases, there is sufficient growth selectivity between the growth arresting layer and the substrate. can be removed.

また、光化学気相成長法を用いると、低温成長が可能と
なり、成長阻止層と基板間に十分な成長選択比がとれる
Furthermore, when photochemical vapor deposition is used, low-temperature growth is possible and a sufficient growth selectivity can be achieved between the growth inhibition layer and the substrate.

〔作用〕[Effect]

Stは5iOzを、AIは^1203を生成するときに
発熱して、エネルギ最小の安定状態になる。この生成熱
は負の値で200〜400 Kcal/molである。
When St generates 5 iOz and AI generates ^1203, heat is generated and a stable state with minimum energy is achieved. This heat of formation has a negative value of 200 to 400 Kcal/mol.

例えば、AhO+の酸化生成エンタルピ変化ΔHALO
は、 Δ)(Ato =  400にcal/mol。
For example, the oxidation formation enthalpy change ΔHALO of AhO+
is Δ) (Ato = 400 cal/mol.

である。It is.

本発明人の実験によると、マスクとなる成長阻止層のΔ
H+mm□は、 Δ)(@afik〈−200Kcal/ mol。
According to the inventor's experiments, Δ of the growth inhibition layer serving as a mask
H+mm□ is Δ)(@afik〈-200Kcal/mol.

であれば効果があり、これよりAIは十分成長阻止層と
して作用することがわかる。
If so, it is effective, and from this it can be seen that AI sufficiently acts as a growth inhibiting layer.

本発明人は、成長の選択比を大きくする条件を見出すた
め、つぎに説明する低温のCVD成長を行った。
In order to find conditions for increasing the growth selectivity, the inventor performed low-temperature CVD growth as described below.

第3図はCV D −5iftをSi (または5i(
h )工率を示す関係図である。
Figure 3 shows CV D -5ift in Si (or 5i(
h) It is a relational diagram showing the labor rate.

5iOzのCVDに用いた反応ガスは5iHaと酸素(
0□)で、これをN2で希釈して用いた。
The reaction gas used for 5iOz CVD was 5iHa and oxygen (
0□), which was diluted with N2 and used.

この場合の成長条件はつぎのとおりである。The growth conditions in this case are as follows.

5iHn       10cc/win0220cc
/m1n N2      81/min ガス圧力    2 XIO” Pa 図よりわかるように、350℃以下の低温で成長すると
きに大きな選択比がとれる。
5iHn 10cc/win0220cc
/m1n N2 81/min Gas pressure 2

低温成長を実現する方法として光CVDを採用すること
もできる。
Photo-CVD can also be employed as a method for realizing low-temperature growth.

〔実施例〕〔Example〕

第1図(1)〜(5)は本発明による酸化膜成長工程を
示す基板断面図である。
FIGS. 1(1) to 1(5) are cross-sectional views of a substrate showing an oxide film growth process according to the present invention.

第1図(1)において、Si基板1の上に、厚さ400
0人のSiO□層2を被着する。
In FIG. 1 (1), a layer of 400 mm thick is placed on the Si substrate 1.
0 SiO□ layer 2 is deposited.

第1図(2)において、その上に成長阻止層を兼ねる、
配線層としての厚さ10000人の純AI層3を被着す
る。
In FIG. 1 (2), thereon, the layer also serves as a growth inhibition layer.
A pure AI layer 3 with a thickness of 10,000 layers is deposited as a wiring layer.

第1図(3)において、パターニングして配置Alパタ
ーン31.32を形成する。
In FIG. 1(3), patterning is performed to form arranged Al patterns 31 and 32.

第1図(4)において、前記作用の欄に記載したCVD
条件により300℃で、酸化膜としてSiO□層4を成
長させると、SiO□N4はAtパターン31.32上
には成長しないで、基板凹部のSiO□層2上にのみ選
択的に成長する。
In Figure 1 (4), the CVD described in the column of the above action
When the SiO□ layer 4 is grown as an oxide film at 300° C. depending on the conditions, SiO□N4 does not grow on the At patterns 31 and 32, but selectively grows only on the SiO□ layer 2 in the substrate recess.

つぎに、光CVDによるSiO□層4の成長について述
べる。
Next, the growth of the SiO□ layer 4 by photo-CVD will be described.

SiO□の光CVDは、反応ガスとしてジシラン(Si
Ji)と02を用い、これを1.8〜2.OTorrに
減圧し、波長が185nmの低圧水銀(Hg)ランプを
照射して300℃で熱分解して行う。
Photo-CVD of SiO□ uses disilane (Si
1.8 to 2. The pressure is reduced to OTorr, and thermal decomposition is carried out at 300° C. by irradiation with a low-pressure mercury (Hg) lamp having a wavelength of 185 nm.

光の吸収端はO2が242nm s 5izHbが20
0nmであるので吸収端以下の波長の光は反応ガスに吸
収され、成長を促進する。
The absorption edge of light is 242nm for O2 and 20 for 5izHb.
Since the wavelength is 0 nm, light with a wavelength below the absorption edge is absorbed by the reaction gas and promotes growth.

従って、通常の基板加熱だけのCVDの成長温度は42
0℃程度であるが、光CVDでは300℃程度の低温成
長が極めて容易となる。
Therefore, the growth temperature for CVD using only normal substrate heating is 42
Although the temperature is about 0° C., low-temperature growth of about 300° C. is extremely easy with photo-CVD.

第1図(5)において、平坦化された基板上に眉間絶縁
層としてCV D−Si02層5、第2層目配線層とし
てAI層6が順次被着された状態を示す。
FIG. 1(5) shows a state in which a CV D-Si02 layer 5 as a glabellar insulating layer and an AI layer 6 as a second wiring layer are sequentially deposited on a flattened substrate.

第2図は光CVD装置の構造を模式的に示す断面図であ
る。
FIG. 2 is a cross-sectional view schematically showing the structure of the optical CVD apparatus.

図において、21は合成石英よりなる真空容器で、反応
ガスの導入口22と真空ポンプによる排気口23が設け
られている。
In the figure, 21 is a vacuum container made of synthetic quartz, and is provided with an inlet 22 for a reaction gas and an exhaust port 23 by a vacuum pump.

基、板1は真空容器21内に設けられたサセプタ24の
上に載せ、真空容器21を減圧し、反応ガスを導入する
The substrate 1 is placed on a susceptor 24 provided in a vacuum container 21, the pressure of the vacuum container 21 is reduced, and a reaction gas is introduced.

25は低圧Hgランプで、真空容器21の外側に設けら
れ、容器を通して基板1を照射する。
A low-pressure Hg lamp 25 is provided outside the vacuum container 21 and irradiates the substrate 1 through the container.

26はヒータで、真空容器21の外側に設けられ、基板
1をサセプタ24を経由して加熱する。
A heater 26 is provided outside the vacuum container 21 and heats the substrate 1 via the susceptor 24.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、段差乃至凹
部を有する基板上に、底部乃至凹部のみ選択的に酸化膜
を成長でき、従って基板は平坦化され、デバイスの微細
化が可能となる。
As described in detail above, according to the present invention, it is possible to selectively grow an oxide film only on the bottom or recesses on a substrate having steps or recesses, thereby flattening the substrate and making it possible to miniaturize devices. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)〜(5)は本発明による酸化膜成長工程を
示す基板断面図、 第2図は光CVD装置の構造を模式的に示す断面図、 率を示す関係図、 第4図(1)〜(3)は従来例による酸化膜成長工程を
示す基板断面図、 第5図はドライエツチングによる基板の平坦化工程を説
明する断面図である。 図において、 1はSi基板、 2は5ift層、 3は成長阻止層でA1層、 31.32は配線パターン、 4は選択CV D −5ing層、 5は層間絶縁層でCVD −5iO□層、6は第2層目
配線層でAt層、 7はレジスト、 21は合成石英よりなる真空容器、 22は反応ガスの導入口、 23は排気口、 24はサセプタ、 25は低圧Hgランプ、 26はヒータ 26、 E:一タ 七CVD装置の斯frlJ 稟2 g 成長温度(’C> CVD5に02のへ長傘 集3 ば ↓ ↓ ↓ ↓ 草5 ゴ 手続補正書軸発) 1、1Gn−の表示 3、補正をする者 ’JG件との関係     特許出願人住所 神奈川県
用崎市中原区」ユ小田中tots番地(522)名称富
士通株式会社 4、代  理  人     住所 神奈川県用崎市中
原区」:小1日中1015a地1、本勤明細書の第1O
頁第16行目に記載の「加熱する。」と!18行目に記
載の1〔発明の効果〕」の間に以下の文−tを挿入する
Figures 1 (1) to (5) are cross-sectional views of a substrate showing the oxide film growth process according to the present invention; Figure 2 is a cross-sectional view schematically showing the structure of a photo-CVD device; (1) to (3) are cross-sectional views of a substrate illustrating a conventional oxide film growth process, and FIG. 5 is a cross-sectional view illustrating a flattening process of a substrate by dry etching. In the figure, 1 is a Si substrate, 2 is a 5ift layer, 3 is a growth inhibiting layer and is an A1 layer, 31 and 32 are wiring patterns, 4 is a selective CVD-5ing layer, 5 is an interlayer insulating layer and is a CVD-5iO□ layer, 6 is the second wiring layer, an At layer, 7 is a resist, 21 is a vacuum container made of synthetic quartz, 22 is a reaction gas inlet, 23 is an exhaust port, 24 is a susceptor, 25 is a low pressure Hg lamp, 26 is a Heater 26, E: 1T7 CVD equipment's frlJ 2 g growth temperature ('C> CVD5 to 02 long umbrella collection 3 ba ↓ ↓ ↓ ↓ grass 5 Go procedure amendment axis) 1, 1Gn-'s Indication 3: Person making the amendment' Relationship with the JG matter Patent applicant address: "Yu Odanaka tots address (522), Nakahara-ku, Yozaki City, Kanagawa Prefecture" Name: Fujitsu Ltd. 4, Agent Address: Nakahara-ku, Yozaki City, Kanagawa Prefecture" : 1015a ground 1 during the first day of elementary school, 1st O of the regular school statement
"Heating" written on the 16th line of the page! Insert the following sentence -t between "1 [Effects of the invention]" written on the 18th line.

Claims (5)

【特許請求の範囲】[Claims] (1)酸化生成熱が負の値を有する基板(1)上に、酸
化生成熱が負の値を有し、その絶対値が該基板(1)よ
り大きい値を有する物質よりなる成長阻止層(3)を被
着し、 該成長阻止層(3)をパターニングしてその一部を除去
した後、 該基板(1)上に、化学気相成長法により前記成長阻止
層(3)のパターン以外の部分に選択的に酸化膜(4)
を成長する ことを特徴とする酸化膜の選択成長方法。
(1) On a substrate (1) whose heat of oxidation formation has a negative value, a growth inhibition layer made of a substance whose heat of oxidation formation has a negative value and whose absolute value is larger than that of the substrate (1). (3), patterning the growth prevention layer (3) and removing a portion thereof, and then patterning the growth prevention layer (3) on the substrate (1) by chemical vapor deposition. Selective oxide film on other parts (4)
A selective growth method for an oxide film characterized by growing an oxide film.
(2)前記酸化膜(4)が二酸化珪素(SiO_2)で
あることを特徴とする特許請求の範囲第1項記載の酸化
膜の選択成長方法。
(2) The method for selectively growing an oxide film according to claim 1, wherein the oxide film (4) is silicon dioxide (SiO_2).
(3)前記成長阻止層(3)がアルミニウム(Al)、
もしくはマグネシウム(Mg)であることを特徴とする
特許請求の範囲第1項記載の酸化膜の選択成長方法。
(3) the growth prevention layer (3) is made of aluminum (Al);
2. The method for selectively growing an oxide film according to claim 1, wherein the oxide film is grown using magnesium (Mg) or magnesium (Mg).
(4)前記化学気相成長法が、前記成長阻止層(3)へ
の成長率とその他の部分上への成長率との比が減少する
ような範囲の成長温度で行われることを特徴とする特許
請求の範囲第1項記載の酸化膜の選択成長方法。
(4) The chemical vapor deposition method is characterized in that the chemical vapor deposition method is carried out at a growth temperature in a range such that the ratio of the growth rate to the growth inhibition layer (3) and the growth rate to other parts decreases. A method for selectively growing an oxide film according to claim 1.
(5)前記化学気相成長法が光化学気相成長法であるこ
とを特徴とする特許請求の範囲第1項記載の酸化膜の選
択成長方法。
(5) The method for selectively growing an oxide film according to claim 1, wherein the chemical vapor deposition method is a photochemical vapor deposition method.
JP60091532A 1985-04-27 1985-04-27 Selective growth of oxide film Pending JPS61251040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60091532A JPS61251040A (en) 1985-04-27 1985-04-27 Selective growth of oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60091532A JPS61251040A (en) 1985-04-27 1985-04-27 Selective growth of oxide film

Publications (1)

Publication Number Publication Date
JPS61251040A true JPS61251040A (en) 1986-11-08

Family

ID=14029055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60091532A Pending JPS61251040A (en) 1985-04-27 1985-04-27 Selective growth of oxide film

Country Status (1)

Country Link
JP (1) JPS61251040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221807A1 (en) * 2016-06-20 2017-12-28 東京エレクトロン株式会社 Method for treating workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221807A1 (en) * 2016-06-20 2017-12-28 東京エレクトロン株式会社 Method for treating workpiece

Similar Documents

Publication Publication Date Title
KR970011134B1 (en) Process for preferentially etching polycrystalline silicon
JPH05304213A (en) Fabrication of semiconductor device
JP2727981B2 (en) Method of forming uneven amorphous silicon film and uneven polysilicon film
JPS61251040A (en) Selective growth of oxide film
JPH05114698A (en) Manufacture of semiconductor device
JPS59194452A (en) Manufacture of semiconductor integrated device
KR101390349B1 (en) Amorphous carbon film, method of forming the same and method of manufacturing semiconductor device using the same
JPS61198732A (en) Selective growth method of oxide film
JPH03169010A (en) Manufacture of semiconductor device
JPH0156525B2 (en)
JP2586700B2 (en) Wiring formation method
JPS5951549A (en) Manufacture of integrated circuit device
JPH02254741A (en) Manufacture of multilayer wiring
JPH04107924A (en) Manufacture of semiconductor device
JPS628543A (en) Selective growing method for phosphorus silicate glass
JPS62202079A (en) Selective vapor growth method
JP3006816B2 (en) Method for manufacturing semiconductor device
JPS6220331A (en) Selectively growing method for alumina film
JPH049371B2 (en)
JPS6215836A (en) Selective growing method for oxide film
JPH01125955A (en) Formation of wiring of semiconductor device
JPS6255701B2 (en)
JPS6155776B2 (en)
JPS58199540A (en) Manufacture of semiconductor device
JPS58220428A (en) Manufacture of semiconductor device