JPS61250172A - Method for growing tungsten silicide film - Google Patents

Method for growing tungsten silicide film

Info

Publication number
JPS61250172A
JPS61250172A JP9036185A JP9036185A JPS61250172A JP S61250172 A JPS61250172 A JP S61250172A JP 9036185 A JP9036185 A JP 9036185A JP 9036185 A JP9036185 A JP 9036185A JP S61250172 A JPS61250172 A JP S61250172A
Authority
JP
Japan
Prior art keywords
gaseous
substrate
tungsten silicide
silicide film
sih4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9036185A
Other languages
Japanese (ja)
Inventor
Yoshimi Shiotani
喜美 塩谷
Takahiro Ito
隆弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9036185A priority Critical patent/JPS61250172A/en
Publication of JPS61250172A publication Critical patent/JPS61250172A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a tungsten silicide wiring layer having excellent adhesiveness and conductivity on a substrate by supplying gaseous WF6 and gaseous SiH4 together with gaseous H2 into a reaction furnace contg. the heated semiconductor substrate and decomposing thermally the gases. CONSTITUTION:The substrate 1 which is a silicon wafer is put into the reaction furnace 2 the inside of which is evacuated to the reduced pressure through a discharge port 4. The substrate is then heated to 300-350 deg.C by a heater 3. The gaseous WF6 at 2cc/min ratio, the gaseous SiH4 at 120cc/min ratio and the gaseous H2 at 20-30cc/min ratio are mixed with the gaseous He as a carrier gas and the mixture composed thereof is introduced into the furnace through a gas introducing port 5. The gaseous WF6 and the gaseous SiH4 are thermally decomposed and the tungsten silicide wiring film contg. W at a high ratio and having the excellent adhesion to the Si wafer of the substrate and conductivity is formed on the substrate 1. The tungsten silicide film does not peel from the Si wafer substrate 1 even when subjected to a heat treatment such as annealing.

Description

【発明の詳細な説明】 [概要コ 六弗化タングステンとモノシランとに、水素を添加して
熱分解し、タングステン量が多いタングステンシリサイ
ド膜を成長する。
[Detailed Description of the Invention] [Summary] Hydrogen is added to tungsten hexafluoride and monosilane and thermally decomposed to grow a tungsten silicide film containing a large amount of tungsten.

[産業上の利用分野] 本発明は半導体装置の製造に用いられるタングステンシ
リサイド膜の成長方法に関する。
[Industrial Field of Application] The present invention relates to a method for growing a tungsten silicide film used in manufacturing semiconductor devices.

ICなどの半導体装置においては、半導体基板上に半導
体素子やその他の回路素子が形成され、それらの領域か
ら導出する電極配線が上面に多数。
In semiconductor devices such as ICs, semiconductor elements and other circuit elements are formed on a semiconductor substrate, and many electrode wirings lead out from these areas on the top surface.

設けられている。It is provided.

それらの電極配線は、従前より現在までアルミニウム膜
またはその合金膜が用いられているが、アルミニウムは
融点が低いのが問題で、ICを高集積化、高密度化して
多層配線を形成する場合に、眉間絶縁膜の形成等に制約
を与える欠点がある。
Up until now, aluminum films or aluminum alloy films have been used for these electrode wirings, but the problem with aluminum is its low melting point, which makes it difficult to form multilayer wiring by increasing the integration and density of ICs. However, there are drawbacks that limit the formation of the glabella insulating film.

そのため、それに代わる配線材料として、最近では、導
電性多結晶シリコン膜より電気伝導度の良い、高融点金
属シリサイドを電極配線に使用する方法が採られており
、そのうち、タングステンシリサイド(WSix )膜
は代表的なシリサイド膜である。
Therefore, as an alternative wiring material, a method has recently been adopted in which high-melting point metal silicide, which has better electrical conductivity than conductive polycrystalline silicon film, is used for electrode wiring. Among these, tungsten silicide (WSix) film is This is a typical silicide film.

しかし、このタングステンシリサイド膜の密着性につい
ては、十分に配慮されなければならない。
However, sufficient consideration must be given to the adhesion of this tungsten silicide film.

[従来の技術] 従来、このようなタングステンシリサイド膜の形成方法
に化学気相成長(CVD)法があり、それは六弗化タン
グステン(WFs)とモノシラン(SiH+)とを熱分
解して被着させる成長方法で、その反応式は次式のよう
になっている。
[Prior art] Conventionally, a method for forming such a tungsten silicide film is chemical vapor deposition (CVD), which deposits tungsten hexafluoride (WFs) and monosilane (SiH+) by thermal decomposition. The reaction formula for this growth method is as shown below.

W F 6 +Si H4−”WSix + HFここ
に、タングステンシリサイド(WSix)のX値は2か
ら4程度までの値をとり、X値が太き(なる程、シリコ
ン(St)量の多いタングステンシリサイド膜となる。
W F 6 +Si H4-"WSix + HFHere, the X value of tungsten silicide (WSix) takes a value from about 2 to 4, and the X value is large (I see, tungsten silicide with a large amount of silicon (St) It becomes a membrane.

且つ、このX値は熱分解温度を変えて変化させることが
でき、第2図はそれを示す図表である。図表は縦軸がX
値、横軸が熱分解温度で、熱分解温度を高くする程、X
値が大きくなること、換言すれば、シリコン量が多(な
ることを示している。
Moreover, this X value can be changed by changing the thermal decomposition temperature, and FIG. 2 is a chart showing this. In the chart, the vertical axis is X
value, the horizontal axis is the pyrolysis temperature, and the higher the pyrolysis temperature, the
An increase in the value, in other words, an increase in the amount of silicon.

[発明が解決しようとする問題点] ところが、その熱分解温度を低くして、W S i x
のX値を2.2以下の低い値にし、シリコン量の少ない
タングステンシリサイド膜を成長すると、アニール(熱
処理)によって、その成長膜が剥離すると云う問題があ
る。
[Problems to be solved by the invention] However, by lowering the thermal decomposition temperature, W S i x
When a tungsten silicide film with a small amount of silicon is grown by setting the X value to a low value of 2.2 or less, there is a problem that the grown film peels off due to annealing (heat treatment).

しかし、半導体装置を製造する場合、配線形成後のアニ
ールを省略するわけにはいかない、それは、数100〜
1000℃でアニールすることによって、その配線層が
結晶化され、シリサイド化されて配、  線層が低抵抗
になるからである。且つ、ICでは、配線層の層上、ま
たは眉間に絶縁膜を介在させているが、その絶縁膜とな
る燐シリケートガラス(P S G)膜は、温度100
0℃程度でメルト(溶融)して表面を滑らかにするメル
ト工程が必要である。このように、アニールを回避する
ことはできない。
However, when manufacturing semiconductor devices, it is impossible to omit annealing after wiring is formed;
This is because by annealing at 1000° C., the wiring layer is crystallized and silicided, making the wiring layer low in resistance. In addition, in ICs, an insulating film is interposed on the wiring layer or between the eyebrows, and the phosphorous silicate glass (PSG) film that becomes the insulating film is heated at a temperature of 100°C.
A melting process is required to make the surface smooth by melting at about 0°C. Thus, annealing cannot be avoided.

一方、シリコン量を少なくして、タングステン量の多い
タングステンシリサイド膜を形成することは、低抵抗の
高電導度配線層を形成することであり、これはICの性
能の向上に役立つものである。
On the other hand, forming a tungsten silicide film with a large amount of tungsten while reducing the amount of silicon forms a low-resistance, high-conductivity wiring layer, which is useful for improving the performance of the IC.

本発明は、このような問題点を解決して、アニールして
も剥離しないタングステン量の多い(リッチな)タング
ステンシリサイド膜の成長方法を提案するものである。
The present invention solves these problems and proposes a method for growing a rich tungsten silicide film that does not peel off even after annealing.

[問題点を解決するための手段] その目的は、六弗化タングステンとモノシランとの混合
ガスに、水素ガスを添加して熱分解するようにしたタン
グステンシリサイド膜の成長方法によって達成される。
[Means for Solving the Problems] The object is achieved by a method for growing a tungsten silicide film in which hydrogen gas is added to a mixed gas of tungsten hexafluoride and monosilane and thermally decomposed.

[作用] 即ち、本発明は、従来の六弗化タングステンとモノシラ
ンとの混合ガスに、水素ガスを混入させた反応ガスを熱
分解して成長させる。そうすると、アニール後も剥離し
難くなる。
[Function] That is, the present invention causes growth by thermally decomposing a reaction gas in which hydrogen gas is mixed into a conventional mixed gas of tungsten hexafluoride and monosilane. This makes it difficult to peel off even after annealing.

[実施例] 以下、実施例によって詳細に説明する。[Example] Hereinafter, it will be explained in detail using examples.

第1図はCVD装置の概要図を例示しており、1は被処
理基板(シリコンウェハー)、2は反応炉、3は加熱体
、4は排気口、5はガス流入口である。
FIG. 1 illustrates a schematic diagram of a CVD apparatus, in which 1 is a substrate to be processed (silicon wafer), 2 is a reaction furnace, 3 is a heating element, 4 is an exhaust port, and 5 is a gas inlet.

このようなCVD装置の反応炉2を300〜350℃に
加熱し、ガス流入口からヘリウム(He)をキャリアガ
スとしたWF6ガスと、同じ<Heをキャリアガスとし
たSiH4ガスとに、H2ガスを添加して、反応炉2の
中に流入さ垂て、WF6ガスとSiH4ガスとを熱分解
させる。
The reactor 2 of such a CVD apparatus is heated to 300 to 350°C, and H2 gas is added from the gas inlet to WF6 gas using helium (He) as a carrier gas and SiH4 gas using He as a carrier gas. is added and allowed to flow into the reactor 2 to thermally decompose the WF6 gas and the SiH4 gas.

ガス量は、例えば、WF6ガス流量2cc/分。The gas amount is, for example, a WF6 gas flow rate of 2 cc/min.

SiH4ガス流量120cc/分に対し、H2ガス流量
を20・〜30cc /分程度にする。
While the SiH4 gas flow rate is 120 cc/min, the H2 gas flow rate is set to about 20-30 cc/min.

そうすると、WSix  (X=2〜2.2)程度のタ
ングステンのリッチなタングステンシリサイド膜が形成
される。それは、水素の存在によりWF6が還元される
反応が加わって、タングステンが多くなるためと考えら
れる。且つ、このようにして被着したタングステンシリ
サイド膜をシリコン上に被着し、数100〜1000℃
の高温度でアニールしても、剥離することが少ない。そ
れはタングステンとシリコンとが高温で反応するためと
思われる。
Then, a tungsten silicide film rich in tungsten of approximately WSix (X=2 to 2.2) is formed. This is thought to be due to the addition of a reaction in which WF6 is reduced due to the presence of hydrogen, resulting in an increase in tungsten. In addition, the tungsten silicide film thus deposited is deposited on silicon and heated at several hundred to 1000 degrees Celsius.
Even when annealed at high temperatures, there is little chance of peeling. This seems to be because tungsten and silicon react at high temperatures.

従って、このようにして形成したタングステンシリサイ
ド膜はシリコン基板や多結晶シリコン膜等との密着性が
良く、且つ、高電導度の配線層が得られる。
Therefore, the tungsten silicide film thus formed has good adhesion to the silicon substrate, polycrystalline silicon film, etc., and a wiring layer with high conductivity can be obtained.

[発明の効果] 以上の説明のように、本発明によれば密着性が改善され
たタングステンのリッチなタングステンシリサイド膜が
CVD法によって形成され、ICの高性能化に寄与する
ものである。
[Effects of the Invention] As described above, according to the present invention, a tungsten-rich tungsten silicide film with improved adhesion is formed by CVD, contributing to improved performance of an IC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用するCVD装置の概要図、第2図
は熱分解温度とW S i xのX値との関係図表であ
る。 図において、 1は被処理基板(シリコンウェハー)、2は反応炉、 3は加熱体、 4は排気口、 5はガス流入口 を示している。 CVO装置 第1図 お今M逼粛虎×値1−開壜π表 第2el
FIG. 1 is a schematic diagram of a CVD apparatus to which the present invention is applied, and FIG. 2 is a graph showing the relationship between the thermal decomposition temperature and the X value of W S i x. In the figure, 1 is a substrate to be processed (silicon wafer), 2 is a reactor, 3 is a heating element, 4 is an exhaust port, and 5 is a gas inlet. CVO device Fig. 1 Now M quiet tiger x value 1 - Open bottle π table No. 2 el

Claims (1)

【特許請求の範囲】[Claims]  六弗化タングステンとモノシランとの混合ガスに、水
素ガスを添加して熱分解するようにしたことを特徴とす
るタングステンシリサイド膜の成長方法。
A method for growing a tungsten silicide film, characterized in that hydrogen gas is added to a mixed gas of tungsten hexafluoride and monosilane for thermal decomposition.
JP9036185A 1985-04-25 1985-04-25 Method for growing tungsten silicide film Pending JPS61250172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9036185A JPS61250172A (en) 1985-04-25 1985-04-25 Method for growing tungsten silicide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9036185A JPS61250172A (en) 1985-04-25 1985-04-25 Method for growing tungsten silicide film

Publications (1)

Publication Number Publication Date
JPS61250172A true JPS61250172A (en) 1986-11-07

Family

ID=13996397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9036185A Pending JPS61250172A (en) 1985-04-25 1985-04-25 Method for growing tungsten silicide film

Country Status (1)

Country Link
JP (1) JPS61250172A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417866A (en) * 1987-07-10 1989-01-20 Toshiba Corp Formation of film of high-melting-point metal
JPH01101626A (en) * 1987-10-15 1989-04-19 Anelva Corp Tungsten selective growth method
JPH02238246A (en) * 1989-03-09 1990-09-20 Tokyo Gas Co Ltd Hot-water/water supply device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587821A (en) * 1981-07-06 1983-01-17 Hitachi Ltd Formation of metal and silicon compound layer
JPS5851510A (en) * 1981-09-22 1983-03-26 Fujitsu Ltd Forming method for layer consisting of silicide of high-melting point metal
JPS60200966A (en) * 1984-03-16 1985-10-11 ジ−ナス インコ−ポレイテツド Composite coating
JPS60230983A (en) * 1984-04-06 1985-11-16 シーメンス、アクチエンゲゼルシヤフト Metal silicate layer formation by gas phase deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587821A (en) * 1981-07-06 1983-01-17 Hitachi Ltd Formation of metal and silicon compound layer
JPS5851510A (en) * 1981-09-22 1983-03-26 Fujitsu Ltd Forming method for layer consisting of silicide of high-melting point metal
JPS60200966A (en) * 1984-03-16 1985-10-11 ジ−ナス インコ−ポレイテツド Composite coating
JPS60230983A (en) * 1984-04-06 1985-11-16 シーメンス、アクチエンゲゼルシヤフト Metal silicate layer formation by gas phase deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417866A (en) * 1987-07-10 1989-01-20 Toshiba Corp Formation of film of high-melting-point metal
JPH01101626A (en) * 1987-10-15 1989-04-19 Anelva Corp Tungsten selective growth method
JPH02238246A (en) * 1989-03-09 1990-09-20 Tokyo Gas Co Ltd Hot-water/water supply device

Similar Documents

Publication Publication Date Title
US5151305A (en) Process for forming metal deposited film containing aluminum as main component by use of alkyl aluminum hydride
JP3252028B2 (en) Method for chemical vapor deposition of titanium silicide on semiconductor wafer
JP3740508B2 (en) Plasma enhanced annealing of titanium nitride
US4923715A (en) Method of forming thin film by chemical vapor deposition
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
JP2002124488A (en) Method of depositing tungsten film from w(co)6
JPS62267472A (en) Low pressure chemical vapor deposition of metal silicide
US20060068103A1 (en) Film forming method
KR20040088110A (en) Composition for depositing a metal layer, and Method for forming a metal layer using the same
JP4581119B2 (en) NiSi film forming material and NiSi film forming method
JPS61250172A (en) Method for growing tungsten silicide film
US7312140B2 (en) Film forming method
JPH11162875A (en) Manufacture of semiconductor device
KR930005947B1 (en) Manufacturing method of semiconductor device
JPH0421751B2 (en)
JPS63109172A (en) Low pressure chemical vapor deposition of metal silicide
JP3250543B2 (en) Method for manufacturing semiconductor device
JPH03278431A (en) Manufacture of semiconductor device
JPS61248447A (en) Formation of wiring layer
JPS587821A (en) Formation of metal and silicon compound layer
KR940010158B1 (en) Tungsten film depositing method using pecvd
JPS61198628A (en) Selective growth method for tungsten film
JP2006097099A (en) Film deposition material, film deposition method and element
KR100451507B1 (en) Method for manufacturing semiconductor device
JPS61248446A (en) Semiconductor device