JPS61250092A - Method for gasifying solid organic material - Google Patents

Method for gasifying solid organic material

Info

Publication number
JPS61250092A
JPS61250092A JP9117585A JP9117585A JPS61250092A JP S61250092 A JPS61250092 A JP S61250092A JP 9117585 A JP9117585 A JP 9117585A JP 9117585 A JP9117585 A JP 9117585A JP S61250092 A JPS61250092 A JP S61250092A
Authority
JP
Japan
Prior art keywords
gas
gasification
char
solid organic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9117585A
Other languages
Japanese (ja)
Inventor
Shinji Nishizaki
西崎 進治
Takeo Kobayashi
小林 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9117585A priority Critical patent/JPS61250092A/en
Publication of JPS61250092A publication Critical patent/JPS61250092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To gasify a solid organic material with high efficiency, by gasifying the solid organic material, e.g. coal, at a temperature below the melting point of ash to form char, gasifying the resultant char at a temperature above the melting point of the ash, passing the formed gas through a catalyst layer and gasifying the contained polycondensate. CONSTITUTION:A solid organic material e.g., coal, is introduced from an inlet hole 2 into a gasifying furnace 1, and gasified at a temperature below the melting point of the ash contained in the solid organic material in a carbonization part 6 to form char, which is then gasified at a temperature above the melting point of the ash contained therein in a char gasifying part 5 to melt the ash and pass a gas formed in the gassification of the solid organic material through a catalyst layer 11. Thus, a polycondensate contained in the gas is brought into contact with the catalyst layer 11 and gasified to gasify tar in a tar gasifying part 12 and afford the aimed gas with a low tar content.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、石炭、プラスチック等の固体有機物のガス化
方法に係り、特に、高温ガス化反応と低温ガス化反応と
を組合わせて効率よ(ガス化できる固体有機物のガス化
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for gasifying solid organic materials such as coal and plastics, and particularly relates to a method for gasifying solid organic materials such as coal and plastics, and in particular, a method for improving efficiency by combining a high-temperature gasification reaction and a low-temperature gasification reaction. (Relating to a method for gasifying solid organic substances that can be gasified.)

し従来の技術] 一般に、石炭、木材、プラスチック等の固体有機物をガ
ス化させて燃料用ガスなどを製造する方法として、特開
昭55−161887号公報にも示す如く低温ガス化法
と高温ガス化法が知られている。
[Prior Art] In general, as a method for producing fuel gas by gasifying solid organic matter such as coal, wood, plastic, etc., there is a low temperature gasification method and a high temperature gasification method as shown in JP-A-55-161887. method is known.

高温ガス化法は、空気又は水などのガス化剤を原料石炭
等に接触させてこれを灰の融点以上の1300〜160
0℃に維持し、直接水性ガス−化反応させてガス化する
ようになっている。
The high-temperature gasification method involves bringing a gasifying agent such as air or water into contact with raw coal, etc., and heating it to a temperature of 1,300 to 160,000 ml above the melting point of ash.
It is maintained at 0°C and gasified by direct water gasification reaction.

一方、低温ガス法は、ガス化剤の存在下で原料石炭等を
灰の融点以下の温度、1000℃以下に維持し、乾留を
含むガス化反応により燃料用ガスを得るようになってい
る。
On the other hand, in the low-temperature gas method, raw coal or the like is maintained at a temperature below the melting point of ash, 1000° C. or below, in the presence of a gasifying agent, and fuel gas is obtained through a gasification reaction including carbonization.

[発明が解決しようとする問題点] ところで、上記従来の高温ガス化法及び低温ガス化法に
あっては、それぞれ次のような問題点があった。
[Problems to be Solved by the Invention] By the way, the above-mentioned conventional high temperature gasification method and low temperature gasification method each have the following problems.

まず、高温ガス化法にあっては、噴流式ガス化炉を用い
るために、生成過程で生ずるチャーの滞留時間が数秒間
と非常に少なく、従って、ガス化困難な炭種の石炭を用
いた場合にはガス化剤として高価な酸素を用いなければ
ならず、コストが高騰する原因となっていた。
First, in the high-temperature gasification method, since a jet gasification furnace is used, the residence time of the char produced during the production process is very short, only a few seconds. In some cases, expensive oxygen must be used as a gasifying agent, causing a rise in costs.

また、生成された粗精ガスが高温なことから、エネルギ
ー有効利用のためにスチームを発生させて熱回収を図っ
ているが、このように熱媒体を介在させることはエネル
ギー損失が大きく、熱効率を低下させる原因となってい
た。
In addition, since the generated crude gas has a high temperature, steam is generated to recover heat in order to use energy effectively, but using a heat medium in this way causes a large energy loss and reduces thermal efficiency. This was the cause of the decline.

これに対し、低温ガス化法にあっては、ガス化温度が低
いことからガス生成時にタール、ピッチなどの重縮合物
が副生じてガス化効率を低Fさせるのみならず、この重
縮合物がガス化炉に後続する各梗機器に凝縮し、閉塞等
のトラブルの原因となっていた。
On the other hand, in the low-temperature gasification method, since the gasification temperature is low, polycondensates such as tar and pitch are generated as by-products during gas generation, which not only lowers the gasification efficiency but also The gas condensed in the various equipment following the gasifier, causing problems such as blockages.

また、灰の溶融を防ぐ必要からチャーのガス化温度を低
く保つために、水蒸気の使用量が増大して不経済であっ
た。このように、装置の水蒸気を使用することは、後流
側で酸化鉄、ジンク、フェライトなどにより828を除
去して精製する場合、水蒸気分圧が太き(なってしまっ
て反応平衡上脱硫率を低下させる原因となっていた。
Furthermore, in order to keep the gasification temperature of the char low in order to prevent melting of the ash, the amount of steam used increases, which is uneconomical. In this way, using steam from the equipment means that when purifying 828 by removing 828 with iron oxide, zinc, ferrite, etc. on the downstream side, the steam partial pressure becomes large (which increases the desulfurization rate on the reaction equilibrium). This was causing a decrease in

また、ガス化温度が低いので、チャーのガス化に時間が
かかり、反応器を大きくせざるを得なかった。特に流動
層型のガス化炉を用いる場合には未ガス化カーボンが灰
と共に飛散し、灰との分離も難しいために電層カーボン
のガス化率が低下する原因となっていた。
Furthermore, since the gasification temperature is low, it takes time to gasify the char, which necessitates making the reactor larger. In particular, when a fluidized bed type gasifier is used, ungasified carbon is scattered along with the ash and is difficult to separate from the ash, causing a decrease in the gasification rate of the electrolyte carbon.

更に、灰分を溶融させることなく廃棄するので灰分中の
微量毒性物質であるSe、 Cr、 Bが浸出するとい
う問題があった。
Furthermore, since the ash is disposed of without being melted, there is a problem in that minute amounts of toxic substances such as Se, Cr, and B in the ash are leached out.

ところで、上記したタール等の重縮合物による弊害を除
去するために、生成ガスを水洗することも行なわれては
いるが、この場合には生成ガスから顕熱を回収できない
こと及び別途水処理施設を設けなければならない問題が
発生した。
By the way, in order to eliminate the harmful effects of polycondensates such as tar mentioned above, the generated gas is washed with water, but in this case, sensible heat cannot be recovered from the generated gas and a separate water treatment facility is required. A problem arose that required the establishment of a

また、タール分を減少させるために、ガス化炉内でのガ
スの滞留時間を長くすることも考えられてはいるが、こ
の方法によれば、タールの一部はガス化するが大部分は
重縮合反応によりカーボンやコークスとなるためにあま
り効果がない。
In addition, in order to reduce the tar content, it has been considered to lengthen the residence time of the gas in the gasifier, but according to this method, some of the tar is gasified, but most of it is It is not very effective as it becomes carbon or coke due to polycondensation reaction.

[発明の目的] 本発明は、以上のような問題点に着目し、これを有効に
解決すべく創案されたものである。
[Object of the Invention] The present invention focuses on the above-mentioned problems and has been devised to effectively solve the problems.

本発明の目的は、高温ガス化反応と低温ガス化反応とを
組合わせることにより熱効率及びガス化効率を向上させ
ることができる固体有機物のガス化方法を提供するにあ
る。
An object of the present invention is to provide a method for gasifying solid organic matter that can improve thermal efficiency and gasification efficiency by combining a high-temperature gasification reaction and a low-temperature gasification reaction.

[発明の概要] 本発明は、チャーを高温ガス化反応させることにより生
ずる高温生成ガスの顕熱を、石炭等の固体有機物を低温
ガス化反応させるときの熱源として使用すると共に生成
されたチャーを上記高温ガス化反応に供するチャーとし
て用いることにより熱効率を格段によくできるのみなら
ず、ガス化剤の使用層も少なくできることを見出すこと
によりなされたものであり、その構成は、固体有機物を
、これに含有する灰の融点以下の低温度でガス化してチ
ャーを生成し、次いで生成したチャーをこれに含有する
灰の融点以上の高温度でガス化して灰を溶融化させると
共に固体有機物のガス化時に生成したガスを触媒層に通
過させ、このガス中に含まれる重縮合物を触媒層と接触
させてガス化させるようにしたことを要旨とする。
[Summary of the Invention] The present invention uses the sensible heat of high-temperature generated gas produced by subjecting char to a high-temperature gasification reaction as a heat source when subjecting a solid organic substance such as coal to a low-temperature gasification reaction, and the produced char is This was achieved by discovering that by using it as a char for the above-mentioned high-temperature gasification reaction, not only could thermal efficiency be greatly improved, but also the number of layers of gasifying agent could be reduced. The char is gasified at a low temperature below the melting point of the ash contained in the ash to produce char, and the generated char is then gasified at a high temperature above the melting point of the ash contained in the ash to melt the ash and gasify solid organic matter. The gist of this invention is that the gas generated at the time is passed through a catalyst layer, and the polycondensate contained in this gas is brought into contact with the catalyst layer and gasified.

[実施例] 以下に、本発明方法を添付図面に基づいて詳述する。[Example] The method of the present invention will be explained in detail below based on the accompanying drawings.

第1図は、本発明方法を実施するためのガス化装置の一
例を示す概略縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an example of a gasification apparatus for carrying out the method of the present invention.

図示する如く1は上下端が閉じられた円筒体状のガス化
炉であり、この炉1上端部には、炉内へ石炭、木材、プ
ラスチック等の固体有機物を導入する原料導入口2が形
成されると共に下部底部3は下方に向けて次第に縮径さ
れて〇−ト状に成型されてその下端に灰を排出するため
の排出口4が形成されている。上記類1内の下部は、チ
ャーをその灰の融点以上の高温で高温ガス化反応させる
チャーガス化部5が形成されると共に、このチャーガス
化部5の上方には炉内に導入された固体有機物を、これ
に含有する灰の融点以下の温度で乾留を含むガス化反応
させてチャーを生成する乾留部6が形成されており、こ
の乾留部6で生成したチャーを下方のチャーガス化部5
へ随時流下移動させるようになっており、全体として移
動床式ガス化炉を構成している。上記チャーガス化部5
の下端部には、多板板よりなる炉床7が形成されてこれ
により炉内収容物を支持しており、この多孔板を流下す
る溶融灰を冷却固化するために上記排出口4には内部に
冷却水Wが充填された灰冷却造粒器8が接続されている
As shown in the figure, 1 is a cylindrical gasifier with closed upper and lower ends, and a raw material inlet 2 is formed at the upper end of the furnace 1 to introduce solid organic matter such as coal, wood, and plastic into the furnace. At the same time, the diameter of the lower bottom part 3 is gradually reduced downward to form a square shape, and a discharge port 4 for discharging ash is formed at the lower end thereof. In the lower part of the above-mentioned category 1, a char gasification section 5 is formed in which char is subjected to a high-temperature gasification reaction at a high temperature higher than the melting point of the ash, and above this char gasification section 5 is formed a solid organic material introduced into the furnace. A carbonization section 6 is formed in which char is produced by a gasification reaction including carbonization at a temperature below the melting point of the ash contained therein, and the char produced in this carbonization section 6 is transferred to the char gasification section 5 below.
It is designed to be moved downward at any time, and the whole constitutes a moving bed type gasifier. The char gasification section 5
A hearth 7 made of multiple plates is formed at the lower end to support the contents in the furnace. An ash cooling granulator 8 filled with cooling water W is connected thereto.

また、炉の上部側壁には、炉内で生成した燃料用ガスを
炉外へ排出するガス排出口9が形成されており、このガ
ス排出口9にはガス移送通路10が接続されている。こ
のガス排出口9から排出されるガス中には低温ガス化反
応によって191生された重縮合物、例えばタールやピ
ッチ類が多量に含まれていることから、これをガス化さ
せるために上記ガス移送通路10には、内部に触媒層1
1を充填したタールガス化部12が介設されている。
Further, a gas exhaust port 9 is formed in the upper side wall of the furnace to discharge fuel gas generated within the furnace to the outside of the furnace, and a gas transfer passage 10 is connected to the gas exhaust port 9. The gas discharged from the gas outlet 9 contains a large amount of polycondensates produced by the low-temperature gasification reaction, such as tar and pitch. The transfer passage 10 has a catalyst layer 1 therein.
A tar gasification section 12 filled with 1 is interposed.

また、上記炉床7より下方に位置する炉壁には、ガス他
剤導入口13が設けられ、この導入口13にはガス化剤
としての水蒸気、空気或は酸素などを移送するガス他剤
移送通路14が接続されている。このガス他剤移送通路
14は途中で分岐されており、この分岐路15.16は
上記タールガス化部12の上流側に位置するガス移送通
路10及び炉内乾留部6の下部を区画する炉側壁にそれ
ぞれ導入口17.18を介して接続されている。
Further, a gas and other agent inlet 13 is provided in the furnace wall located below the hearth 7, and the gas and other agents are introduced into this inlet 13 to transfer water vapor, air, oxygen, etc. as a gasifying agent. A transfer passage 14 is connected thereto. This gas and other agent transfer passage 14 is branched in the middle, and this branch passage 15,16 is connected to the gas transfer passage 10 located upstream of the tar gasification section 12 and the furnace side wall that partitions the lower part of the in-furnace carbonization section 6. are connected via inlets 17 and 18, respectively.

また、上記チャーガス化部5の上部を区画する炉側壁に
はガス抜出口19が形成されると共に、このガス抜出口
19と上記タールガス化部12の上流側に位置するガス
移送通路10との間にバイパス通路20を接続しており
、チャーガス化部5で発生した高温ガスの一部或は全部
を上記バイパス通路20を介してタールガス化部12の
すぐ上流側へ直接導入し得るようになされている。
Further, a gas venting port 19 is formed in the furnace side wall that partitions the upper part of the char gasifying section 5, and a space between the gas venting port 19 and the gas transfer passage 10 located upstream of the tar gasifying section 12. A bypass passage 20 is connected to the tar gasification unit 5, so that a part or all of the high-temperature gas generated in the char gasification unit 5 can be directly introduced into the immediately upstream side of the tar gasification unit 12 via the bypass passage 20. There is.

次に、以上のように構成された装置例に基づいて本発明
方法を具体的に説明する。
Next, the method of the present invention will be specifically explained based on an example of the apparatus configured as described above.

まず、粒状の石炭、木材、プラスチック等の固体有機物
を原料導入口2より炉内へ導入する一方、水蒸気や空気
或は必要に応じて酸素を含むガス化剤をガス他剤導入口
13を介して炉内底部へ導入する。炉内へ導入された固
体有機物は、炉内を徐々に下降しつつ乾留部6において
まず灰の融点以下の温度で低温ガス化反応される。すな
わち、固体有機物は約700〜1000℃の温度条件下
で、乾留および水性ガスイヒ反応によりガス化され、同
時にチャーが生成される。この乾留部6における熱源と
しては、下方のチャーガス化部5より上昇する水蒸気、
 H2,CO,CO2などの高温ガスの顕熱が用いられ
、熱の有効利用を図る。ここで、熱量が不足気味の場合
には、ガス化剤の一部を分岐路16を介して導入口18
から乾留部6の下部へ導入する。
First, solid organic matter such as granular coal, wood, and plastic is introduced into the furnace through the raw material inlet 2, while a gasification agent containing steam, air, or oxygen as necessary is introduced through the gas and other agent inlet 13. and introduce it into the bottom of the furnace. The solid organic matter introduced into the furnace is first subjected to a low-temperature gasification reaction at a temperature below the melting point of the ash in the carbonization section 6 while gradually descending inside the furnace. That is, the solid organic matter is gasified by carbonization and water gas Ich reaction at a temperature of about 700 to 1000°C, and char is simultaneously produced. The heat sources in this carbonization section 6 include water vapor rising from the char gasification section 5 below;
Sensible heat from high-temperature gases such as H2, CO, and CO2 is used to effectively utilize heat. Here, if the amount of heat is insufficient, a part of the gasifying agent is passed through the branch passage 16 to the inlet 18.
and introduced into the lower part of the carbonization section 6.

上記乾留部6で生成したチャーは更に炉内下部へ徐々に
移動し、チャーガス化部5において灰の融点以上の温度
で高温ガス化反応される。すなわち、この領域は約10
00〜1600℃に維持されており、流下するチャーは
水蒸気および酸素または酸素含有ガスによりガス化され
る。チャーのガス化温度は上述の如く灰の融点以上の適
切な温度(溶融灰によるトラブルがなく、且つ経済的な
温度)を維持するように供給酸素量または水蒸気量を制
御する。この場合、チャーと酸素とのガス化反応は発熱
反応であり、逆にチャーと水蒸気とのガス化反応は吸熱
反応である。このチャーガス化部5においては、チャー
はほぼ完全にガス化され、一方溶融灰は炉床7に形成し
た孔を流下し、排出口4を介して灰冷却造粒器8内に投
入される。そして、この溶融灰は造粒器8内で冷却水W
により粒状に冷却固化され、最終的に、排出口21から
取出される。
The char produced in the carbonization section 6 further gradually moves to the lower part of the furnace, and is subjected to a high-temperature gasification reaction in the char gasification section 5 at a temperature higher than the melting point of the ash. That is, this area is about 10
The temperature is maintained at 00 to 1600°C, and the flowing char is gasified by water vapor and oxygen or oxygen-containing gas. As described above, the gasification temperature of the char is controlled by controlling the amount of oxygen or water vapor supplied so as to maintain an appropriate temperature above the melting point of the ash (a temperature that is economical and free from troubles caused by molten ash). In this case, the gasification reaction between char and oxygen is an exothermic reaction, and conversely, the gasification reaction between char and water vapor is an endothermic reaction. In this char gasification section 5, the char is almost completely gasified, while the molten ash flows down through the holes formed in the hearth 7 and is charged into the ash cooling granulator 8 through the discharge port 4. Then, this molten ash is processed by cooling water W in the granulator 8.
It is cooled and solidified into granules, and finally taken out from the outlet 21.

一方・上記乾留部6におけるガス化反応においては、ガ
スと共にタール、ピッチ等の重縮合物が副生され、これ
が生成ガス中に含まれる。このように、重縮合物を含有
する炉内ガスは、炉の上部に設けた排出口9から排出さ
れ、ガス移送通路10を介してタールガス化部12へ導
入される。
On the other hand, in the gasification reaction in the carbonization section 6, polycondensates such as tar and pitch are by-produced together with the gas, and are included in the generated gas. In this way, the furnace gas containing the polycondensate is discharged from the discharge port 9 provided at the upper part of the furnace and introduced into the tar gasification section 12 via the gas transfer passage 10.

ガス中に含有する重縮合物は、このタールガス化部12
内に充填された触媒層11と接触してほぼ完全にガス化
され、生成ガスは例えば使用系へと向けて移送されて行
く。ここで、使用される触媒層11としては、アルカリ
金属化合物或はアルカリ土類金属化合物を採用するのが
よく、特にアルミン酸塩は、耐熱性、耐被毒性1機械的
強度の点で非常に優れている。
The polycondensate contained in the gas is transferred to the tar gasification section 12.
The gas is almost completely gasified by contact with the catalyst layer 11 filled therein, and the generated gas is transferred toward, for example, a system for use. Here, as the catalyst layer 11 used, it is preferable to adopt an alkali metal compound or an alkaline earth metal compound, and in particular, aluminate is very good in terms of heat resistance, toxicity resistance, and mechanical strength. Are better.

このように、触媒を利用してタール分等を接触分解する
ことは、単なる熱分割に比較してそのガス化効率を非常
によくできる。第2図は分解方法をパラメータとして空
筒速度とタール分解ガス化率どの関係を示すグラフであ
り、接触分解による方法がはるかにガス化率のよい事が
判明する。
In this way, catalytic cracking of tar and the like using a catalyst can greatly improve the gasification efficiency compared to simple thermal splitting. FIG. 2 is a graph showing the relationship between cylinder velocity and tar decomposition and gasification rate using the cracking method as a parameter, and it is clear that the method using catalytic cracking has a much better gasification rate.

また、タールガス化部12における処理温度は、使用す
る触媒によっても異なるが約300〜1000℃の範囲
で操作するのが好ましく、望ましくは約600〜100
0℃の範囲とする。第3図は処理温度とタールガス化率
との関係を示したグラフであるが、タールガス化率を8
0%以上とするには処理温度を上述の如く約600℃以
上に維持すればよいことが判明する。
Further, the treatment temperature in the tar gasification section 12 varies depending on the catalyst used, but it is preferably operated in the range of about 300 to 1000°C, and desirably about 600 to 1000°C.
The temperature should be in the range of 0°C. Figure 3 is a graph showing the relationship between treatment temperature and tar gasification rate.
It has been found that in order to achieve 0% or more, the treatment temperature should be maintained at about 600° C. or higher as described above.

ここで、重縮合物のガス化反応は吸熱反応であり、ガス
11d中の重縮合物を1gガス化(断熱反応)するとガ
スの温度は約10℃下がることになる。
Here, the gasification reaction of the polycondensate is an endothermic reaction, and when 1 g of the polycondensate in the gas 11d is gasified (adiabatic reaction), the temperature of the gas decreases by about 10°C.

そこで、この重縮合物を多量に生成させることが好まし
い原料を使用する場合には、タールガス化部12の上流
側に設けた導入口17から酸素、空気などの助燃剤を導
入し、このガスの一部を燃焼させて反応用の熱源とする
。また、チャーガス化部5からこの部分で発生する高温
ガスの全部又は一部をバイパスライン20内へ抜き出し
て、これを触媒層11へ流入する直前のガスに直接混入
させ、タールガス化部12内における処理ガス温度を制
御するようにしてもよい。また、このように、チャーガ
ス化部5内で発生した高温ガスの扱出しmをIIJ御す
ることにより、乾留部6内における処理温度も制御する
ことができる。
Therefore, when using a raw material that preferably produces a large amount of this polycondensate, a combustion improver such as oxygen or air is introduced from the inlet 17 provided on the upstream side of the tar gasification section 12, and this gas is A portion is burned to provide a heat source for the reaction. In addition, all or a part of the high-temperature gas generated in this part is extracted from the char gasification section 5 into the bypass line 20 and mixed directly into the gas just before flowing into the catalyst layer 11, so that the gas generated in the tar gasification section 12 is The processing gas temperature may also be controlled. Further, by controlling the handling m of the high temperature gas generated in the char gasification section 5 in this way, the processing temperature in the carbonization section 6 can also be controlled.

[発明の効果] このように、本発明方法によれば、乾留部で予め低温ガ
ス化反応させて生成したチャーのみをそのまま流下させ
てチャーガス化部において高温ガス化反応させるように
したので、従来のように原料を直接高温ガス化反応させ
た場合と異なり、高温ガス化反応において必要とされる
ガス化剤(水蒸気、酸素等)の使用量・を大幅に削減で
きる。
[Effects of the Invention] As described above, according to the method of the present invention, only the char generated by the low-temperature gasification reaction in advance in the carbonization section is allowed to flow down as it is and subjected to the high-temperature gasification reaction in the char gasification section. Unlike the case where raw materials are directly subjected to a high-temperature gasification reaction, the amount of gasification agents (steam, oxygen, etc.) required in the high-temperature gasification reaction can be significantly reduced.

また、チャーガス化部で発生した高温ガスの顕熱を、乾
留部内の低温ガス化反応に必要な熱源として直接利用し
ているので、従来方法の如く熱媒体(スチーム)を用い
て熱回収を図る場合に比較してエネルギー損がなくなり
、その熱効率を大幅に向上させることができる。
In addition, since the sensible heat of the high-temperature gas generated in the char gasification section is directly used as a heat source necessary for the low-temperature gasification reaction in the carbonization section, heat can be recovered using a heat medium (steam) as in conventional methods. Compared to the conventional case, there is no energy loss, and the thermal efficiency can be greatly improved.

また、低温ガス化反応で副生じた重縮合物を、触媒層を
用いた気相接触法により1000℃以下という低温でガ
ス化できるので、従来高温ガス化法により1300〜1
600℃という高温下でこのタール分をガス化していた
場合に比較し、その熱効率を大幅に向上できる。
In addition, polycondensates produced as by-products in low-temperature gasification reactions can be gasified at low temperatures of 1000°C or lower using a gas phase contact method using a catalyst layer.
Compared to the case where this tar content is gasified at a high temperature of 600°C, the thermal efficiency can be significantly improved.

また、このように、重縮合物を全てガス化するので、従
来採用されていた低温ガス化法に比較して原料のガス化
率を大幅に向上させることができ、しかもタール等によ
る閉塞トラブルが生ずる問題がない。
In addition, since all of the polycondensate is gasified in this way, the gasification rate of the raw material can be greatly improved compared to the conventional low-temperature gasification method, and there is no problem of blockage caused by tar, etc. There are no problems arising.

更に、チャーのガス化を高温(1000℃以上)で行う
ことによりチャーのガス化速度が大きくなり、ガス化炉
自体を小型化できるのみならず、同時に灰を溶融してい
るので灰の飛散防止、有害成分の浸出防止及び灰の溶融
化を達成できる。
Furthermore, by gasifying the char at high temperatures (over 1000°C), the gasification rate of the char increases, which not only allows the gasifier itself to be made smaller, but also prevents the ash from scattering since the ash is melted at the same time. , prevention of harmful components from leaching and melting of ash can be achieved.

また、従来にあっては、低温ガス化法の場合法の溶融を
防止する必要から水蒸気を多量に供給したが、本実施例
はこのような操作は不要でありこの点よりしても水蒸気
使用量を減少でき、一層の経済運転が可能となる。
Furthermore, in the conventional method, a large amount of steam was supplied in order to prevent the melting of the material in the case of low-temperature gasification, but this embodiment does not require such an operation, and from this point of view it is preferable to use steam. The amount can be reduced, making it possible to operate more economically.

また更に、このように使用水蒸気量が少なくなる結果、
生成ガス中の水蒸気1度が小さくなるので、後続のガス
精製工程でガス中に含有する112Sを酸化鉄、ジンク
、フェライトなどの吸収剤を用いて除去する場合、反応
平衡との関係からt12sの除去率を大幅に向上させる
ことができる。
Furthermore, as a result of this reduction in the amount of water vapor used,
Since the amount of water vapor in the generated gas becomes smaller, when 112S contained in the gas is removed using an absorbent such as iron oxide, zinc, or ferrite in the subsequent gas purification process, the temperature of t12s becomes smaller in relation to the reaction equilibrium. The removal rate can be significantly improved.

また、石炭は乾留部において乾留されてチャーとなるの
で、石炭と酸素とが直接接触することがなく、安全性を
向上させることができる。 7実施例 本発明方法による具体的数値をともなった実施例を述べ
る。
Further, since the coal is carbonized into char in the carbonization section, there is no direct contact between the coal and oxygen, and safety can be improved. 7 Examples An example with specific numerical values according to the method of the present invention will be described.

■ ガス反応器 (1)  移動床ガス化炉(乾留部子チャーガス化部)
内径55aomX高さ1000aa+ (2)  固定床接触反応器(タールガス化部)内径2
8.4amX高さ500am 充填触ts=ポリアルミン酸カリウム (3)  チャーの高温ガス化ガスの一部を触媒層側へ
バイパス ■ 反応条件 (1)石炭供給m :  0.4kg/llr (粒径
2〜5.66M) (2)  ガス他剤供給量=02+空気6308 J 
/ Hr(02:50%) 水蒸気 24ON J / Hr (3)  温度:乾留部   600〜800℃チャー
ガス化部 max1400℃ タールガス化部 800℃ ■ 結果 Cガス化率  99.2% 生成ガス組成(v01%) 82   28、5 Co   ’20.7 CO28,2 CI+4   6.1 N2   27.3 820   9、2 計    100.0
■ Gas reactor (1) Moving bed gasifier (carbonization section, char gasification section)
Inner diameter 55aom x height 1000aa+ (2) Fixed bed contact reactor (tar gasification section) inner diameter 2
8.4 am x height 500 am Filling contact ts = Potassium polyaluminate (3) Part of the high temperature gasification gas of char is bypassed to the catalyst layer side ■ Reaction conditions (1) Coal supply m: 0.4 kg/llr (particle size 2 ~5.66M) (2) Gas and other agent supply amount = 02 + air 6308 J
/ Hr (02:50%) Steam 24ON J / Hr (3) Temperature: Carbonization section 600-800℃ Char gasification section max 1400℃ Tar gasification section 800℃ ■ Result C gasification rate 99.2% Produced gas composition (v01% ) 82 28,5 Co '20.7 CO28,2 CI+4 6.1 N2 27.3 820 9,2 Total 100.0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するためのガス化装置の一例
を示す概略縦断面図、第2図は分解方法をパラメータと
して空筒速度とタール分解ガス化率との関係を示すグラ
フ、第3図は処理温度とタールガス化率との関係を示し
たグラフである。 尚、図中、1はガス化炉、5はチャーガス化部、6は乾
留部、11は触媒層、12はタールガス化部、21はバ
イパス通路である。 特 許 出 願 人  石川島播磨重工業株式会社代理
人弁理士 絹  谷  信  雄 第2図    第3図
FIG. 1 is a schematic vertical sectional view showing an example of a gasification apparatus for carrying out the method of the present invention, FIG. 2 is a graph showing the relationship between cylinder velocity and tar decomposition gasification rate using the decomposition method as a parameter, and FIG. Figure 3 is a graph showing the relationship between treatment temperature and tar gasification rate. In the figure, 1 is a gasification furnace, 5 is a char gasification section, 6 is a carbonization section, 11 is a catalyst layer, 12 is a tar gasification section, and 21 is a bypass passage. Patent applicant: Ishikawajima Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)石炭等の固体有機物をガス化するに際して、上記
固体有機物を、これに含有する灰の融点以下の温度でガ
ス化してチャーを生成し、次いで生成したチャーをこれ
に含有する灰の融点以上の温度でガス化して灰を溶融化
させると共に上記固体有機物のガス化時に生成したガス
を触媒層に通過させ、このガス中に含まれる重縮合物を
上記触媒層と接触させてガス化させるようにしたことを
特徴とする固体有機物のガス化方法。
(1) When gasifying solid organic matter such as coal, the solid organic matter is gasified at a temperature below the melting point of the ash contained therein to produce char, and then the melting point of the ash containing the generated char is The ash is melted by gasification at a temperature above, and the gas generated during gasification of the solid organic substance is passed through a catalyst layer, and the polycondensate contained in this gas is brought into contact with the catalyst layer and gasified. A method for gasifying solid organic matter, characterized by:
(2)上記チャーのガス化時に発生した高温ガスを、上
記触媒層に流入する直前のガスに混入させたことを特徴
とする特許請求の範囲第1項記載の固体有機物のガス化
方法。
(2) The method for gasifying a solid organic substance according to claim 1, characterized in that the high-temperature gas generated during gasification of the char is mixed into the gas immediately before flowing into the catalyst layer.
(3)上記触媒層が、アルカリ金属化合物またはアルカ
リ土類金属化合物より成ることを特徴とする特許請求の
範囲第1項または第2項記載の固体有機物のガス化方法
(3) The method for gasifying solid organic matter according to claim 1 or 2, wherein the catalyst layer is made of an alkali metal compound or an alkaline earth metal compound.
JP9117585A 1985-04-30 1985-04-30 Method for gasifying solid organic material Pending JPS61250092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9117585A JPS61250092A (en) 1985-04-30 1985-04-30 Method for gasifying solid organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9117585A JPS61250092A (en) 1985-04-30 1985-04-30 Method for gasifying solid organic material

Publications (1)

Publication Number Publication Date
JPS61250092A true JPS61250092A (en) 1986-11-07

Family

ID=14019123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9117585A Pending JPS61250092A (en) 1985-04-30 1985-04-30 Method for gasifying solid organic material

Country Status (1)

Country Link
JP (1) JPS61250092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247930A (en) * 2004-03-02 2005-09-15 Takuma Co Ltd Gasification system, power generation system, gasification method and power generation method
CN102161913A (en) * 2011-03-14 2011-08-24 湖北双环科技股份有限公司 Method for carbonizing molded coal
JP2014514416A (en) * 2011-04-06 2014-06-19 イネオス バイオ ソシエテ アノニム Apparatus and method for gasification of carbonaceous material to produce syngas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247930A (en) * 2004-03-02 2005-09-15 Takuma Co Ltd Gasification system, power generation system, gasification method and power generation method
CN102161913A (en) * 2011-03-14 2011-08-24 湖北双环科技股份有限公司 Method for carbonizing molded coal
JP2014514416A (en) * 2011-04-06 2014-06-19 イネオス バイオ ソシエテ アノニム Apparatus and method for gasification of carbonaceous material to produce syngas

Similar Documents

Publication Publication Date Title
US6333015B1 (en) Synthesis gas production and power generation with zero emissions
CA1148794A (en) Solid refuse disposal process
US8529648B2 (en) Mixing and feeding aqueous solution of alkali metal salt and particles of sulfur-containing carbonaceous fuel for gasification
KR101622801B1 (en) Two stage entrained gasification system and process
KR100590973B1 (en) Apparatus for methanol synthesis using gas produced by gasifying biomass and the using method thereof
US4069024A (en) Two-stage gasification system
JP2004534903A (en) How to create clean energy from coal
US4613344A (en) Method and apparatus for cleaning hot gases produced during a coal gasification process
JP2003504454A5 (en)
GB2220213A (en) Method of rermoval and disposal of fly ash from a high-temperature, high pressure synthesis gas steam
CN111088057A (en) Method for producing hydrogen by using waste plastics to produce oil
JPH08503253A (en) High performance coal gasifier
RU2477755C2 (en) Method and device for preparation of reducing agent to be used during metal production, metal production process and metal production unit using above described device
US4813179A (en) Process for the cocurrent gasification of coal
JP2515870B2 (en) Process and equipment for converting flammable pollutants and wastes as clean energy and usable products
JP3936115B2 (en) Recycling method of gas, drainage and fine slag in waste gasification
JPS61250092A (en) Method for gasifying solid organic material
JP3938981B2 (en) Gas recycling method for waste gasification
AU2012100987A4 (en) Containerized Gassifier System
CN106276903B (en) A kind of system and method for preparing hydrogen-rich gas and calcium carbide
CN112680249B (en) Organic solid waste pressure gasification system and method
JP4155507B2 (en) Biomass gasification method and gasification apparatus
SU1582991A3 (en) Method and installation for producing metals and alloys
CN1225138A (en) Process for producing a reduction gas for reduction of metal ore
EP4026885A1 (en) Reactor and process for gasifying and/or melting of feed materials and for the production of hydrogen