JPS61246657A - Measuring apparatus for amount of silicon in molten iron - Google Patents

Measuring apparatus for amount of silicon in molten iron

Info

Publication number
JPS61246657A
JPS61246657A JP5128785A JP5128785A JPS61246657A JP S61246657 A JPS61246657 A JP S61246657A JP 5128785 A JP5128785 A JP 5128785A JP 5128785 A JP5128785 A JP 5128785A JP S61246657 A JPS61246657 A JP S61246657A
Authority
JP
Japan
Prior art keywords
electrode
hot metal
temperature
silicon
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5128785A
Other languages
Japanese (ja)
Inventor
Teruaki Kajikawa
梶川 輝章
Hiroaki Kosaka
博昭 小坂
Mitsuharu Tominaga
充治 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAZATO EREKUTORONAITO KK
Nippon Steel Corp
Original Assignee
YAMAZATO EREKUTORONAITO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAZATO EREKUTORONAITO KK, Nippon Steel Corp filed Critical YAMAZATO EREKUTORONAITO KK
Priority to JP5128785A priority Critical patent/JPS61246657A/en
Publication of JPS61246657A publication Critical patent/JPS61246657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To enable more accurate measurement of the amount of silicon, by relating a temperature lowering means to one electrode to cause a temperature difference in the other electrode. CONSTITUTION:A measuring apparatus 1 for the amount of silicon in molten iron has an opening 6 at the tip thereof and the electrodes 9 and 10 in a void 8 while one electrode 9 is set on the low-temperature side and the other electrode 10 on the high-temperature side. As as the apparatus 1 is dipped into the molten iron, a cap 11 at the tip thereof is melted away and the molten iron flows in from an inflow tube 7 to fill the void 8. The molten iron thus flowing in is cooled down by a cooling means 5 and a void forming member 3 to give a low temperature to the low-temperature side electrode 9 while the high-temperature side electrode 10 is subjected to a slow cooling to be given a higher temperature from the low-temperature side. After the molten iron fills the void 8, the apparatus 1 is pulled up to measure the thermoelectromotive force of the electrodes 9 and 10 in the molten iron sampled thereoutside.

Description

【発明の詳細な説明】 本発明は、溶銑へ浸漬中並びに該溶銑中から引りげ途中
や引Eげ後においても溶銑中の硅素量測定を可能とする
うえに、該測定の時に低温側電極に低温を確実且つ迅速
に与えて正確な熱起電力を測定し、もって硅素量測定を
可能とする溶銑中の硅素量測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention makes it possible to measure the amount of silicon in hot metal during immersion in hot metal, as well as during and after withdrawal from the hot metal. The present invention relates to an apparatus for measuring the amount of silicon in hot metal that can accurately and quickly apply a low temperature to an electrode to accurately measure thermoelectromotive force, thereby making it possible to measure the amount of silicon.

従来、溶銑中の硅素量測定装置に関しては、本特許出願
人が先に特願昭59−86968号を開示している。こ
の溶銑中の硅素量測定装置は、溶銑中に浸漬し、該溶銑
を装置内へ導入する手段を有し、導入溶銑と溶銑に所定
の温度差を与えるための降温手段を導入手段そのもの、
若しくは導入手段に関係づけて設けるとともに、溶銑中
及び装置又は導入手段内の導入溶銑中にそれぞれ電極を
配し、両電極間に発生する熱起電力を測定し、もって硅
素量を決定する装置であった。この装置においては、溶
銑を装置内へ導入する装置又はその導入手段内に一方の
電極が置かれ、他方の電極は常に溶銑中に位置する状態
を呈している。そのため、こ測定する間は常に溶銑中へ
浸漬した状態でなければならないこととなる。
Conventionally, regarding a device for measuring the amount of silicon in hot metal, the applicant of the present patent previously disclosed Japanese Patent Application No. 1986-86968. This device for measuring the amount of silicon in hot metal has a means for immersing it in hot metal and introducing the hot metal into the device, and includes a temperature lowering means for giving a predetermined temperature difference between the introduced hot metal and the hot metal.
Alternatively, it is a device that is installed in relation to the introducing means, and that measures the thermoelectromotive force generated between the two electrodes by disposing electrodes in the hot metal and in the introduced hot metal in the device or the introducing means, thereby determining the amount of silicon. there were. In this device, one electrode is placed in a device or means for introducing hot metal into the device, and the other electrode is always located in the hot metal. Therefore, during this measurement, it must be constantly immersed in hot metal.

本発明は、このような本出願人によって開示された溶銑
中の硅素量測定装置を更に改良し、単に溶銑中において
も硅素量の測定ができるが、引上げた後においてもなお
溶銑中の硅素量測定を可能とし、しかも、少なくとも二
つの電極の一方の電極である低温側電極には導入溶銑に
対し速やかに降温をなし、両電極間に温度差を与えるば
かりでなく、低温側電極への低温化を測定するのに安定
した状態で与え、もって正確な硅素量測定を可能とし、
更にこの装置を通じて溶銑試料の採取をも可能とせんと
するものである。即ち、本発明に係る溶銑中の硅素量測
定装置は、装置本体の先端部に外部・へ開口した空所を
形成し、この空所内に導入溶銑に対する少なくとも二つ
の電極を設けるとともに一方の電極に対し他方の電極に
温度差を生じさせるべく降温手段を関係づけ、両電極間
に発生する熱起電力を測定し硅素量を決定することを特
徴とする溶銑中の硅素量測定装置にある。本発明に係る
溶銑中の硅素量測定装置は、従来の溶銑中における酸素
量や他の成分測定、更には試料採取装置と同様にプロー
ブの先端に装置外部へ開口した空所を、例えば耐熱性筒
体状の空所形成部材で形成し、この空所形成部材中の空
所内において少なくとも二つ以上、例えば二つ又は三つ
以上の電極を互いの位置をずらせて設定し、一方の電極
に対し他方の電極に温度差を生じさせるべく、即ち、空
所の開口よりもより遠方に位置する電極の近傍、例えば
空所形成部材のこの電極に近いところに該空所形成部材
を厚肉状態として降温手段を形成し、もってこの空所の
開口から流入する溶銑に対し一方の電極よりも他方の電
極付近における溶銑は、該降温手段により冷却され、も
って一方の電極に対し他方の電極に温度差を生じさせ、
この両電極間に発生する熱起電力を測定することにより
溶銑中の硅素量を測定せんとするものである。
The present invention further improves the device for measuring the amount of silicon in hot metal disclosed by the applicant of the present invention, and is capable of measuring the amount of silicon even in the hot metal. In addition, the low-temperature electrode, which is one of the two electrodes, rapidly lowers the temperature of the introduced hot metal, not only creating a temperature difference between the two electrodes, but also reducing the temperature of the low-temperature electrode to the low-temperature electrode. It provides a stable state for measuring the amount of silicon, thereby making it possible to measure the amount of silicon accurately.
Furthermore, it is intended to make it possible to collect hot metal samples through this device. That is, the device for measuring the amount of silicon in hot metal according to the present invention has a cavity opened to the outside at the tip of the main body of the device, and at least two electrodes for the introduced hot metal are provided in this cavity, and one electrode is connected to the other electrode. On the other hand, there is provided an apparatus for measuring the amount of silicon in hot metal, characterized in that a temperature lowering means is associated with the other electrode to create a temperature difference, and the amount of silicon is determined by measuring the thermoelectromotive force generated between the two electrodes. The device for measuring the amount of silicon in hot metal according to the present invention can be used to measure the amount of oxygen and other components in hot metal, and furthermore, like the conventional sample collecting device, it is possible to use a hollow space at the tip of the probe that opens to the outside of the device. It is formed of a cylindrical cavity-forming member, and at least two or more, for example, two or three or more electrodes are set in the cavity of this cavity-forming member with their positions shifted from each other, and one electrode On the other hand, in order to create a temperature difference in the other electrode, in other words, the cavity forming member is placed in a thick state near an electrode located further away than the opening of the cavity, for example, in a part of the cavity forming member close to this electrode. As a result, the hot metal flowing in from the opening of this cavity is cooled by the temperature lowering means near the other electrode than the one electrode, thereby causing a temperature difference between one electrode and the other electrode. make a difference,
The purpose is to measure the amount of silicon in the hot metal by measuring the thermoelectromotive force generated between the two electrodes.

なお、温度差の与え方において、開口側に冷却手段を配
し、溶銑の流入と同時に凝固をなさしめ流出しないよう
にするとともに開口側部分と空所内部との間に温度差を
与える方式なども適宜採用されうるものである。
In addition, methods for providing a temperature difference include arranging a cooling means on the opening side to solidify the hot metal at the same time as it flows in and preventing it from flowing out, and also providing a temperature difference between the opening side and the inside of the space. may also be adopted as appropriate.

この溶銑中の硅素量測定装置は、更に第1図以下の各種
実施例によって、その詳細が開示される。
The details of this apparatus for measuring the amount of silicon in hot metal will be disclosed in various embodiments shown in FIG. 1 and below.

第1図に示す本溶銑中の硅素量測定装置1は。The device 1 for measuring the amount of silicon in hot metal shown in FIG. 1 is as follows.

その断面図で示される如く紙管・耐火材等で形成される
外装管2の先端部内部に耐熱セメント等により冷却能力
を有する空所形成部材3が固定されている。
As shown in the cross-sectional view, a cavity forming member 3 having a cooling capacity is fixed inside the tip of an exterior tube 2 made of a paper tube, a refractory material, etc. with heat-resistant cement or the like.

この図中4として示すものがセメントで、3として示す
ものが空所形成部材である。そしてこの空所形成部材3
は、図中で示す如く全体として。
In this figure, what is shown as 4 is cement, and what is shown as 3 is a cavity forming member. And this cavity forming member 3
as a whole as shown in the figure.

例えば筒状部材で、耐熱性材料、例えば鉄、銅やセラミ
ックを、そのままで又はこれら材料のうちで1例えば銅
や鉄の如きものではその表面に無機耐熱材をコーティン
グしたもの等によって作成され、且つ部材の基端部には
、冷却手段5として該空所形成部材3の肉厚を厚くし先
端側は装置外部へ開口6している。この開口6のあり方
は、プローブ先端に、例えばセラミック等によって作成
された円筒状流入管7が設けられ、この流入管7がら空
所形成部材4の開口6を通じて空所8と外部とを連通さ
せ外部からの溶銑の導入を可能としている。この間口6
は、空所形成部材3の内部空間8をやや縮径した状態で
形成し、もって流入管7から流入した溶銑が開口6を通
じて空所8内部に導入された後、本測定装置1を溶銑外
へ引とげた時に開口6から外部へ流出しないように、こ
の部分での凝固を迅速にさせている。
For example, it is a cylindrical member made of a heat-resistant material such as iron, copper, or ceramic, either as it is or one of these materials, such as copper or iron, whose surface is coated with an inorganic heat-resistant material. Further, at the proximal end of the member, the cavity forming member 3 is thickened to serve as a cooling means 5, and the distal end thereof is provided with an opening 6 to the outside of the device. The shape of this opening 6 is such that a cylindrical inflow pipe 7 made of, for example, ceramic is provided at the tip of the probe, and this inflow pipe 7 communicates between the cavity 8 and the outside through the opening 6 of the cavity forming member 4. It is possible to introduce hot metal from outside. This frontage 6
The internal space 8 of the cavity forming member 3 is formed in a slightly reduced diameter state, and after the hot metal flowing from the inflow pipe 7 is introduced into the cavity 8 through the opening 6, the measuring device 1 is inserted outside the hot metal. The solidification in this part is made quick so that it does not flow out from the opening 6 when it is pulled out.

図中9は、低温側に位置する電極で、10は高温側に位
置する電極である。両電極9,10 におけるそれぞれ
の位置は、一方を低温側に配すれば、他方の位置は種々
の場所に設定される。なお、11は流入管に外嵌した鉄
キャップで、溶銑中へ浸漬したときに溶失し、12は前
記電極9,10  を固定するための基部で、該基部に
は通気機能を、通気孔を設けたり通気材料を用いて与え
るものであり又、該部分12を通じて両電極9.10か
らのリード線が装置中のコネクタ13方向へ導出されて
いる。
In the figure, 9 is an electrode located on the low temperature side, and 10 is an electrode located on the high temperature side. The respective positions of both electrodes 9 and 10 can be set at various locations, with one being placed on the low temperature side. In addition, 11 is an iron cap fitted onto the outside of the inflow pipe, which melts away when immersed in hot metal, and 12 is a base for fixing the electrodes 9 and 10, and the base has a ventilation function and has ventilation holes. Through this portion 12, lead wires from both electrodes 9 and 10 are led out toward a connector 13 in the device.

しかして、この実施例における溶銑中の硅素量測定装置
は、溶銑中へ該装置を浸漬することにより先端のキャッ
プ11がまず溶失してから、流入管7から溶銑が流入し
、且つ空所形成部材3の開口6から空所8内に流入して
空所8を満たすものである。この状態で流入した溶銑は
冷却手段5並びに空所形成部材3で冷却され、低温側電
極9に速やかな低温を与え、高温側電極10には、流入
した状態の溶銑に対し高温状態から低温状態へ低温側電
極9よりもより遅い冷却がなされて低温側よりも高い温
度が与えられるものである。そしてこの状態は、常に溶
銑中に浸漬した状態においてもできるが、空所8内に溶
銑が充満すればこれを引きあげることにより、溶銑外に
おいて採取した溶銑中における低温側電極9と高温側電
極10における熱起電力の測定を可能とするものである
Therefore, in the device for measuring the amount of silicon in hot metal in this embodiment, by immersing the device into hot metal, the cap 11 at the tip first melts away, and then the hot metal flows in from the inflow pipe 7, and It flows into the cavity 8 from the opening 6 of the forming member 3 and fills the cavity 8. The hot metal that has flowed in this state is cooled by the cooling means 5 and the cavity forming member 3, and the low temperature side electrode 9 is quickly brought to a low temperature, and the hot metal that has flowed into the high temperature side electrode 10 is changed from a high temperature state to a low temperature state. The electrode 9 is cooled more slowly than the low-temperature side electrode 9, and is given a higher temperature than the low-temperature side electrode 9. This state can be created even when the space 8 is immersed in hot metal, but if the space 8 is filled with hot metal, by pulling it out, the low-temperature side electrode 9 and the high-temperature side electrode in the hot metal collected outside the hot metal This makes it possible to measure thermoelectromotive force at 10.

溶銑から取り出した状態における両電極9,10に対す
る温度差の付与、とりわけ低温側電極9に対す条低温の
与えと且つその維持は、熱容量大なる溶銑から既に縁を
切っているので確実且つ迅速に溶銑における低温状態を
低温側電極9へ与えることができるのである。
The provision of a temperature difference between the electrodes 9 and 10 in the state taken out from the hot metal, especially the provision of a low temperature to the low temperature side electrode 9, and its maintenance can be done reliably and quickly since the hot metal has already been separated from the hot metal, which has a large heat capacity. The low temperature state of the hot metal can be applied to the low temperature side electrode 9.

又、開口6をこのように空所8内径に対しやや縮径した
状態としておくことにより流入された溶銑は、開口6部
分で速やかに凝固するので、溶銑中へ本装置を浸漬後即
座に引きあげても流入した溶銑が空所8から外部へもれ
る恐れがないのである。
Furthermore, by keeping the opening 6 in a state where the diameter is slightly reduced with respect to the inner diameter of the space 8, the inflowing hot metal quickly solidifies in the opening 6, so that the device can be immediately withdrawn after being immersed in the hot metal. There is no fear that the hot metal that has flowed in will leak out from the cavity 8.

又、図例の如く高温側電極10と開口6との間に大きな
空間を残存させておくことにより、この空間を溶銑試料
採取空間として利用できる上に、該空所内に導入される
溶銑は、冷却手段5、空所形成部材3により又、その周
囲の装置部材により急激に冷却され、その凝固組織が白
銑状態となり溶銑を物理的、化学的分析に供するサンプ
ラーとしても併用することができるのである。
Furthermore, by leaving a large space between the high-temperature side electrode 10 and the opening 6 as shown in the figure, this space can be used as a space for collecting hot metal samples, and the hot metal introduced into the space is It is rapidly cooled by the cooling means 5, the cavity forming member 3, and the surrounding equipment members, and its solidified structure turns into a white pig iron state, so that it can also be used as a sampler for physically and chemically analyzing hot metal. be.

第2図は、第1図で示した第1実施例の他の変更実施例
である。この例で示される如くプローブ先端に耐熱性流
入管7を耐熱セメント4等の保持部材で立設し開口6と
するとともに、内部には空所形成部材3を設け、該部材
3の内部に前記流入管7と連通ずるプローブの長さ方向
に設けた空所8を形成し、もって流入管7内と空所形成
部材3内の空間を全体として空所8とし、空所形成部材
3を構成する金属、セラミック、セメント等の冷却能力
のある材料が冷却手段5そのものを構成して、流入した
溶銑に対し一方の電極9付近をとくに冷却させ、他方の
電極10は、導入される溶銑側により近い、即ち開口6
側に近いという位置の差でもって温度差が与えられるも
のである。図中14は、シェルモールドや通気孔を設け
たセメントチ作成されたハウジングで、各電極9,10
はここに固定され、ハウジング14背後のコネクターか
ら両電極9.10に発生する熱起電力を測定するための
装置に連結される。なお、図中15として示すものは1
両電極と接続して設けたそれぞれの熱電対であって、各
電極9,10の測定点における温度測定を同時に可能と
している。図中で示したものは、二本の熱電対用素線1
5の温接点付近に直接溶接等の手段で各電極9,10を
固着させたものである。
FIG. 2 shows another modified embodiment of the first embodiment shown in FIG. As shown in this example, a heat-resistant inflow pipe 7 is erected at the tip of the probe using a holding member such as heat-resistant cement 4 to form an opening 6, and a cavity forming member 3 is provided inside the probe. A cavity 8 provided in the length direction of the probe communicating with the inflow pipe 7 is formed, so that the space within the inflow pipe 7 and the cavity forming member 3 is defined as a cavity 8 as a whole, and the cavity forming member 3 is configured. The cooling means 5 itself is made of a material having a cooling ability such as metal, ceramic, cement, etc., and cools the inflowing hot metal particularly in the vicinity of one electrode 9, while the other electrode 10 is cooled by the side of the introduced hot metal. close, i.e. aperture 6
The temperature difference is given by the difference in position near the side. 14 in the figure is a housing made of cement with shell molds and ventilation holes, and each electrode 9, 10
is fixed here and connected from a connector behind the housing 14 to a device for measuring the thermoelectromotive force generated at both electrodes 9,10. In addition, what is shown as 15 in the figure is 1
Each thermocouple is connected to both electrodes, and enables temperature measurement at the measurement points of each electrode 9 and 10 at the same time. What is shown in the figure is two thermocouple wires 1
Each electrode 9, 10 is fixed to the vicinity of the hot junction point 5 by means such as direct welding.

この場合、各熱電対15による温度測定を可能とし。In this case, each thermocouple 15 can measure the temperature.

更に両電極9.10における熱起電力をも測定可能とす
るが、それぞれ各電極部は、3線となっているものの、
熱電対素線の同極を共用して前記二つの電極とする構成
も当然採用されつる。
Furthermore, it is possible to measure the thermoelectromotive force at both electrodes 9 and 10, although each electrode part has three wires.
Naturally, a configuration in which the same polarity of the thermocouple wire is used as the two electrodes can also be adopted.

この実施例による硅素量測定装置では、該装置を溶銑中
に浸漬すれば、当然流入管から溶銑が流入し、内部の空
所8に溶銑が充満する。この状態で空所形成部材3が厚
肉状態であるため、且つその使用される材料が金属、セ
ラミック、セメント等の冷却能力のあるものを使用して
いる結果、冷却手段5をもかねるので、流入された溶銑
は即座に冷却され、この空所8内に保持されることにな
る。従って、この状態で溶銑から引上げれば溶銑収容容
器外において溶銑の冷却途中における高温側と低温側の
熱起電力の測定をなし、もって溶銑中の硅素量測定を可
能としているのである。このとき、各電極の温度を同時
に測定しうるので、より正確な硅素量測定をも可能とす
るものである。
In the silicon content measuring device according to this embodiment, when the device is immersed in hot metal, the hot metal naturally flows in from the inflow pipe, and the internal space 8 is filled with hot metal. In this state, since the cavity forming member 3 is thick and the material used for it is a material with cooling ability such as metal, ceramic, cement, etc., it also serves as the cooling means 5. The inflowing hot metal is immediately cooled and held within this cavity 8. Therefore, if the hot metal is pulled out of the hot metal in this state, the thermoelectromotive force on the high temperature side and the low temperature side can be measured outside the hot metal storage container during cooling of the hot metal, thereby making it possible to measure the amount of silicon in the hot metal. At this time, since the temperature of each electrode can be measured simultaneously, it is possible to measure the amount of silicon more accurately.

次に第3図〜第9図に示すものは、このような第1図並
びに第2図で示した硅素量測定装置の空所形成部材3の
他の実施例を示したものである。
Next, FIGS. 3 to 9 show other embodiments of the cavity forming member 3 of the silicon content measuring apparatus shown in FIGS. 1 and 2.

第3図のものは、筒状空所形成部材3の基端部を厚肉状
態として冷却手段5を形成し、一方の低温側電極9は、
この冷却手段5の近傍に、そして他方の高温側電極10
は、この冷却手段5から離した位置に設定している。第
4図のものは、同様な構成の中において空所8の開口6
部分をやや縮径し、溶銑が装置内に流入したとき、この
部分で凝固し、外部へ流出しないための構造例を示して
いる。第5図は、冷却手段5を設けるための他の例であ
り。
In the one shown in FIG. 3, the cooling means 5 is formed by thickening the proximal end of the cylindrical cavity forming member 3, and one of the low-temperature side electrodes 9 is
Near this cooling means 5, and the other high temperature side electrode 10
is set at a position away from this cooling means 5. The one in FIG. 4 shows the opening 6 of the cavity 8 in a similar configuration.
This shows an example of a structure in which the diameter of the part is slightly reduced so that when hot metal flows into the equipment, it solidifies in this part and does not flow out. FIG. 5 shows another example for providing the cooling means 5.

開口6側から基端部にかけて肉厚を順次厚くした構成例
である。第6図は、冷却手段5側と先端側の間に断熱材
16を配した空所形成部材3を示している。第7図は、
第4図の変形例であり、開口8部分における冷却を容易
にするため、外部へ厚肉部17を形成し、もって流入し
た溶銑が外部へ流出しないようにしている。第8図は、
空所を拡大し、低温側電極9の位置する部分の冷却手段
5を内部側へ設定した状態を示している。第9図は、高
温側電極10と開口6の間の距離を大とし、この部分で
白銑化試料を入手しやすくしているのである。
This is an example of a configuration in which the wall thickness is gradually increased from the opening 6 side to the base end. FIG. 6 shows a cavity forming member 3 in which a heat insulating material 16 is arranged between the cooling means 5 side and the tip side. Figure 7 shows
This is a modification of FIG. 4, and in order to facilitate cooling in the opening 8 portion, a thick wall portion 17 is formed on the outside, thereby preventing the molten pig iron that has flowed in from flowing out. Figure 8 shows
A state in which the space is enlarged and the cooling means 5 in the portion where the low temperature side electrode 9 is located is set to the inside is shown. In FIG. 9, the distance between the high-temperature side electrode 10 and the opening 6 is increased to make it easier to obtain the white pig iron sample in this area.

第10図〜第12図は、先の各実施例が装置先端側に開
口6部分を配したものであったが装置側方に開口6を設
は溶銑試料流入口とし、内部の空所8に低温側電極9と
高温側電極10を配した例である。
10 to 12, each of the previous embodiments had an opening 6 on the tip side of the device, but the opening 6 on the side of the device was used as a hot metal sample inlet, and the internal cavity 8 This is an example in which a low temperature side electrode 9 and a high temperature side electrode 10 are arranged.

なお、このような装置で測定する場合に、低温側電極9
と高温側電極10間の温度差を正確に与えることが大事
であるが、更に重要なことは、低温側電極9の温度をど
の程度に設定するかである。
Note that when measuring with such a device, the low temperature side electrode 9
Although it is important to accurately provide the temperature difference between the high-temperature side electrode 10 and the high-temperature side electrode 10, what is even more important is how much the temperature of the low-temperature side electrode 9 should be set.

より正確な硅素量測定を可能とするかについて実験した
ところ、略300°C以下の状態に低温側電極9を設定
することで、正確な硅素量測定が可能であることを知見
した。
As a result of experiments to determine whether it is possible to more accurately measure the amount of silicon, it has been found that by setting the low temperature side electrode 9 at approximately 300° C. or lower, it is possible to measure the amount of silicon more accurately.

表は、上欄に低温側電極の温度を示し、縦左欄に硅素量
の含有量(重量96)を示し、両槽の各交点に位置する
欄には、二つの電極間に発生する熱起電力を示している
The table shows the temperature of the low temperature side electrode in the upper column, the silicon content (weight 96) in the vertical left column, and the column located at each intersection of both tanks shows the heat generated between the two electrodes. Shows electromotive force.

注、なおこの電極にはモリブデン電極を用い丸(単位m
V)例えば、表の左欄、即ち低温側電極の温度が、10
0℃であるときには、0.0296  の硅素含有量の
溶銑ではo、6mvの熱起電力が測定されている。
Note: A molybdenum electrode is used for this electrode, and the circle (unit: m) is used.
V) For example, if the left column of the table, that is, the temperature of the low temperature side electrode, is 10
At 0°C, a thermoelectromotive force of 0.6 mv has been measured for hot metal with a silicon content of 0.0296 mv.

同様に0.9796の硅素を含有する溶銑においては。Similarly, in hot metal containing 0.9796 silicon.

1.5#IVの熱起電力が測定されている。同様に。A thermoelectromotive force of 1.5#IV has been measured. Similarly.

300°Cにおいては1.55m Vと2.0#lVが
測定され、400°C以上においても各表に示した数字
の如き熱起電力が測定されている。
At 300°C, 1.55 mV and 2.0 #lV were measured, and thermoelectromotive forces as shown in the tables were also measured at temperatures above 400°C.

なお、これらの測定値は、低温側電極の温度に対し高温
側電極は、プラス100″C1即ち両電極間の温度差は
100℃の状態を前提としている。
These measured values are based on the assumption that the temperature of the high-temperature side electrode is plus 100''C1 relative to the temperature of the low-temperature side electrode, that is, the temperature difference between the two electrodes is 100°C.

結果、これらの表を見てわかるとおり、低温側電極の温
度が低いほど熱起電力の硅素依存性が極めて大きいので
ある。又電極としてモリブデン電極以外に白金、白金合
金、銅、アルメル、クロメル等の電極においても近似し
た傾向を示した。
As a result, as can be seen from these tables, the lower the temperature of the low-temperature side electrode, the greater the dependence of thermoelectromotive force on silicon. In addition to molybdenum electrodes, electrodes made of platinum, platinum alloys, copper, alumel, chromel, etc. also showed similar trends.

この表を見てわかるとおり、低温側電極の温度が300
℃の時においては、 0.02  %の硅素含有量のも
のにおける熱起電力はi、ss m v  であり、0
.97%に対する熱起電力は2゜OmVで、画然起電力
の差は、0.45 m Vである。しかし、低温側電極
の温度が400°Cの時には、0.27m■差として、
又、500℃においては0.20711 V、同様に以
下、600°Cの時には0.20 m V 、 700
°Cの時においても0.20 #I V 、 800°
Cにおいては0−15mV  で、硅素量の低濃度のと
きと高濃度のときにおける熱起電力の差が極めて小さい
ことから、熱起電力の測定による硅素量の決定は、40
0°C以上においては不正確な状態となる。
As you can see from this table, the temperature of the low temperature side electrode is 300
℃, the thermoelectromotive force in the silicon content of 0.02% is i, ss m v, and 0
.. The thermoelectromotive force for 97% is 2°OmV, and the difference in the natural electromotive force is 0.45 mV. However, when the temperature of the low temperature side electrode is 400°C, the difference is 0.27m.
Also, at 500°C, it is 0.20711 V, and similarly, at 600°C, it is 0.20 mV, 700
Even at °C, 0.20 #IV, 800°
Since the difference in thermoelectromotive force between low and high silicon concentrations is extremely small at 0-15mV for C, the silicon content can be determined by measuring thermoelectromotive force at 40
It becomes inaccurate at temperatures above 0°C.

ここに、この実験によって低温側電極の温度が300℃
以下の状態がより好ましい硅素量測定のための条件を与
えるものであることが知見された。
Here, as a result of this experiment, the temperature of the low temperature side electrode is 300℃.
It has been found that the following conditions provide more preferable conditions for silicon content measurement.

次に第13図で示すグラフは、電極にモリブデンを用い
た場合、低温側電極の温度を200’Cとしたときの高
温側電極の温度差△Tを横軸に、熱起電力Eを縦軸に示
したときの各硅素含有量に対する熱電対を併用した実験
値と、本装置による測定値の差を示している。図中aは
、0.0296. bは、0.35%、Cは0.57%
、dは0.97 %に対するものを示す実験値のグラフ
であり、各aに対しては・が、b1ζ対してはムが、C
に対しては閣が、dに対しては口の各ドツトが、それの
測定値を示している。
Next, in the graph shown in Fig. 13, when molybdenum is used for the electrode, the temperature difference △T of the high temperature side electrode when the temperature of the low temperature side electrode is 200'C is taken as the horizontal axis, and the thermoelectromotive force E is shown as the vertical axis. The axis shows the difference between the experimental value using a thermocouple and the measured value using this device for each silicon content. In the figure, a is 0.0296. b is 0.35%, C is 0.57%
, d is a graph of experimental values for 0.97%, and for each a, , for b1ζ, and C
For d, each dot indicates the measured value.

なお、このときの溶銑温度は1300°C〜1500℃
の範囲で測定したもので、この表を見る限りにおいては
、本装置における測定値は理論値とほぼ同じ傾向を示し
、測定の正確さが裏付けられるものである。
In addition, the hot metal temperature at this time is 1300°C to 1500°C.
As far as we can see from this table, the measured values with this device show almost the same tendency as the theoretical values, which supports the accuracy of the measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の各実施例を示すもので、第1図、第2図
は本発明の実施例断面説明図、第3図〜第9図は空所形
成部材の各実施例説明図、第10図〜第12図は開口を
装置側方に設けた状態の他の実施例説明図、第13図は
1本装置による硅素量の測定値の精度を示すグラフであ
る。 1:硅素量測定装置、 2:外装管、 3:空所形成部材、  4:セメント、5:冷却手段、
    6:開 口。 7:流入管、     8:空 所、 9:低温側電極、   10:高温側電極。 11:キャップ、12:基 部、 13:コネクタ、14:ハウジング、 15:熱電対、     16:断熱材、17:厚肉部
。 特許 出 願 人    山里エレクトロナイト株式会
社第9図    @7図 fs81Z 第57      第3511 第6文         第4図 第13m 4、○ 〉 ε i」 1^ 第11図      第10図 #’12図
The drawings show each embodiment of the present invention, and FIGS. 1 and 2 are cross-sectional explanatory diagrams of the embodiments of the present invention, and FIGS. 3 to 9 are explanatory diagrams of each embodiment of the cavity forming member. 10 to 12 are explanatory diagrams of other embodiments in which the opening is provided on the side of the device, and FIG. 13 is a graph showing the accuracy of the measured value of the amount of silicon using one device. 1: Silicon content measuring device, 2: Exterior pipe, 3: Cavity forming member, 4: Cement, 5: Cooling means,
6: Opening. 7: Inflow pipe, 8: Space, 9: Low temperature side electrode, 10: High temperature side electrode. 11: cap, 12: base, 13: connector, 14: housing, 15: thermocouple, 16: heat insulator, 17: thick wall part. Patent applicant Yamazato Electronite Co., Ltd. Figure 9 @ Figure 7 fs81Z 57 3511 6th sentence Figure 4 Figure 13m 4, 〉 ε i'' 1^ Figure 11 Figure 10 Figure #'12

Claims (1)

【特許請求の範囲】[Claims] 1)装置本体の先端部に外部へ開口した空所を形成し、
この空所内に導入溶銑に対する少なくとも二つの電極を
設けるとともに一方の電極に対し他方の電極に温度差を
生じさせるべく降温手段を一方の電極に関係づけ、両電
極間に発生する熱起電力を測定し硅素量を決定すること
を特徴とする溶銑中の硅素量測定装置。
1) Forming a cavity opening to the outside at the tip of the device body,
At least two electrodes for the introduced hot metal are provided in this space, and a temperature lowering means is associated with one electrode to create a temperature difference between one electrode and the other electrode, and the thermoelectromotive force generated between the two electrodes is measured. A device for measuring the amount of silicon in hot metal, characterized by determining the amount of silicon.
JP5128785A 1985-03-13 1985-03-13 Measuring apparatus for amount of silicon in molten iron Pending JPS61246657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5128785A JPS61246657A (en) 1985-03-13 1985-03-13 Measuring apparatus for amount of silicon in molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5128785A JPS61246657A (en) 1985-03-13 1985-03-13 Measuring apparatus for amount of silicon in molten iron

Publications (1)

Publication Number Publication Date
JPS61246657A true JPS61246657A (en) 1986-11-01

Family

ID=12882713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5128785A Pending JPS61246657A (en) 1985-03-13 1985-03-13 Measuring apparatus for amount of silicon in molten iron

Country Status (1)

Country Link
JP (1) JPS61246657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282643A (en) * 1987-05-14 1988-11-18 Nippon Steel Corp Instrument for measuring quantity of element contained in molten metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039760U (en) * 1973-08-09 1975-04-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039760U (en) * 1973-08-09 1975-04-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282643A (en) * 1987-05-14 1988-11-18 Nippon Steel Corp Instrument for measuring quantity of element contained in molten metal

Similar Documents

Publication Publication Date Title
US3455164A (en) Immersion molten metal sampler
US3463005A (en) Immersion molten metal sampler device
US3559452A (en) Thermal analysis of molten steel
US3369406A (en) Molten material sampling apparatus and method
US3630874A (en) Device for determining the activity of oxygen in molten metals
FI77731B (en) NEDSAENKBAR MAETSOND FOER MAETNINGAR AV METALLER I VAETSKEFORM.
GB1118062A (en) Temperature detector and sampling device
US3709040A (en) Lances for taking samples of molten metal
US3643509A (en) Thermocouple lance
US4007106A (en) Device for measuring oxygen concentration in molten-metal
US3661749A (en) Apparatus for measuring in a continuous manner the oxygen in a molten metal
RU2323423C2 (en) Probe for bath filled with melt of cryolite
JPS61246657A (en) Measuring apparatus for amount of silicon in molten iron
GB2204732A (en) Sensor for the measurement of temperature in metal or alloy melts
JP3073927B2 (en) Probe for continuous measurement of oxygen in molten metal
US9958405B2 (en) Reverse filling carbon and temperature drop-in sensor
US2359794A (en) Temperature determination
JP2000131311A (en) Sample collecting container for thermal analysis of molten metal
GB1565215A (en) Two-part ceramic probe for sampling a steel converter
JPH0120691Y2 (en)
RU2672646C1 (en) Steel melts process parameters measuring device with simultaneous sample selection
JPH0321464Y2 (en)
JPH0222690Y2 (en)
JPS5973763A (en) Rapid measurement of silicon content in molten metal
JPH0376699B2 (en)