JPS61246202A - Process and apparatus for producing fine particulate polymer - Google Patents

Process and apparatus for producing fine particulate polymer

Info

Publication number
JPS61246202A
JPS61246202A JP8625485A JP8625485A JPS61246202A JP S61246202 A JPS61246202 A JP S61246202A JP 8625485 A JP8625485 A JP 8625485A JP 8625485 A JP8625485 A JP 8625485A JP S61246202 A JPS61246202 A JP S61246202A
Authority
JP
Japan
Prior art keywords
monomer
nozzle
applying
particulate
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8625485A
Other languages
Japanese (ja)
Inventor
Toru Ito
徹 伊藤
Takeshi Sekoguchi
世古口 健
Koichiro Oka
紘一郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8625485A priority Critical patent/JPS61246202A/en
Publication of JPS61246202A publication Critical patent/JPS61246202A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers

Abstract

PURPOSE:To obtain the title high-grade polymer suitable as, e.g., an additive for cosmetics, toners, etc., by discharging a monomer or an oligomer in the form of fine particles by giving a varied flow rate by applying an alternating voltage to a pressure element, dispersing the fine particles by applying thereto electric charges and curing or polymerizing the particles. CONSTITUTION:A feed solution comprising a monomer comprising an epoxy compound or its oligomer, a curing agent comprising an amine compound and a solvent and having an electric conductivity >=10<-3>OMEGAcm<-1> is sent from a feed tank 10 through a means 11 for pressurization, such as a booster pump, and a pipe 12 at a pressure of 1-20kg/cm<2> to a nozzle member 20 and this nozzle is filled with this solution to its fore end. In this state, a pressure element 22 is allowed to contract and expand alternately by applying thereto an alternating voltage of a frequency of 10,000-200,000Hz/s through a means 23 for applying an alternating voltage, whereupon the monomer stream discharged from the fore end of the nozzle can be given a varied flow rate and is discharged outward to form fine particles of uniform particle diameters. At the same time, these particles are dispersed by a application of a D.C. voltage of 1,000-10,000V through a means 24 for applying electric charges, received by a fine particle receiver 30 and cured or polymerized to obtain a fine particulate polymer of a diameter of several to several hundreds mu.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微粒子ポリマの製造技術に関する。ざらに詳し
くは、直径が数ミクロンから数百ミクロン程度の微粒子
状ポリマの製造技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a technology for producing particulate polymers. More specifically, the present invention relates to a technology for producing particulate polymers having a diameter of several microns to several hundred microns.

〔従来技術〕[Prior art]

微粒子ポリマは液晶素子のスペーサー、化粧品配合剤、
塗料等への配合剤、静電複写機のトナー配合剤、感光性
化合物への配合剤、医療用薬品への配合剤など様々の分
野において有用である。そしてこれらの分野に用いる場
合には粒径がミクロンオーダーのものであってかつ粒径
分布がシャープなものが要求されている。
Fine particle polymers are used as spacers for liquid crystal devices, cosmetic compounding agents,
It is useful in a variety of fields, including as a compounding agent for paints, etc., a toner compounding agent for electrostatic copying machines, a compounding agent for photosensitive compounds, and a compounding agent for medical drugs. When used in these fields, particles with a particle size on the micron order and a sharp particle size distribution are required.

ところで現在までに知られている技術としては、特開昭
57−19032号公報、特開昭59−170114号
公報などに提案されているように、水の中で強力に攪拌
、または水の随伴流とともにエマルジョン化する方法が
知られている。
By the way, as a technique known to date, as proposed in JP-A-57-19032 and JP-A-59-170114, strong stirring in water or entrainment of water is proposed. A method of emulsification with flow is known.

しかしながらかかる公知技術では、微小粒径のポリマを
粒径分布を整えて製造することは極めて困難なことであ
り、このままでは高品位量としては使用できず、水中で
分級することが必要であった。
However, with such known technology, it is extremely difficult to produce a polymer with a fine particle size with a uniform particle size distribution, and it cannot be used in high-grade quantities as it is, and it is necessary to classify it in water. .

また他の公知技術としては、ディスクを回転させこの遠
心力と、静電気により微粒子ポリマを得る方法がある(
特開昭58−173754号公報)。しかしこの方法も
生産性が劣り、コストを安くすることにな困難な点があ
る。
Another known technique is to rotate a disk and use the centrifugal force and static electricity to obtain fine polymer particles (
(Japanese Unexamined Patent Publication No. 173754/1982). However, this method also has low productivity and is difficult to reduce costs.

さらに別の公知例としは、特開昭57−102905号
公報に提案されているように、層流特性を有するモノマ
を混和しない溶媒に懸濁させ、これを振動的に励起する
手段によって小滴とし、ついで温和な条件でポリマ化す
る技術がある。
Another known example is as proposed in Japanese Patent Application Laid-Open No. 57-102905, in which a monomer having laminar flow characteristics is suspended in an immiscible solvent, and then small droplets are produced by vibrationally exciting the suspension. There is a technology that then turns it into a polymer under mild conditions.

しかしこの方法も生産効率が悪く実用的には問題が多い
However, this method also has poor production efficiency and many practical problems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来技術の欠点を改良し、微小粒径のポリ
マを、粒径分布を整えて製造すること、および製造コス
トを安くすることを目的とする。
The present invention aims to improve the above-mentioned drawbacks of the prior art, to produce a polymer having a fine particle size with a uniform particle size distribution, and to reduce the production cost.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明は下記の構成からなる。 In order to achieve the above object, the present invention consists of the following configuration.

「(1)  モノマまたはオリゴマの原料槽と、これに
連通ずるノズル、および微粒子受槽からなる装置を用い
て微粒子物を作り、次いで硬化または重合する方法にお
いて、ノズルから吐出するモノマまたはオリゴマ流に対
して交番する流速変化を与えつつ、気体中に吐出して微
粒子化するとともに、該微粒子物を分散手段で分散させ
、次いで微粒子受槽で受け、しかる後該微粒子物を硬化
または重合することを特徴とする微粒子ポリマの製造方
法。
(1) In a method in which fine particles are produced using a device consisting of a monomer or oligomer raw material tank, a nozzle communicating therewith, and a fine particle receiving tank, and then hardened or polymerized, the flow of monomer or oligomer discharged from the nozzle is It is characterized by discharging into a gas and turning it into fine particles while applying alternating flow velocity changes, and dispersing the fine particles with a dispersing means, then receiving them in a fine particle receiving tank, and then hardening or polymerizing the fine particles. A method for producing a particulate polymer.

(2)  モノマまたはオリゴマの原料槽と、これに連
通ずるノズル、および微粒子受槽からなる装置において
、モノマ槽とノズル間に圧力付与手段を設け、ノズルか
ら吐出するモノマまたはオリゴマの流れに交番する流速
変化を与えつつ気体中に吐出して微粒子化する手段を設
けるとともに、ノズル先端から吐出される微粒子物を分
散させる手段を設けた構成としたことを特徴とする微粒
子ポリマの製造装置。」 本発明を図面を用いて説明する。
(2) In a device consisting of a raw material tank for monomer or oligomer, a nozzle communicating with the tank, and a particulate receiving tank, pressure applying means is provided between the monomer tank and the nozzle, and the flow rate is alternating with the flow of monomer or oligomer discharged from the nozzle. 1. An apparatus for producing a particulate polymer, characterized in that it is provided with a means for discharging into a gas and turning it into fine particles while giving a change, and a means for dispersing the particulate matter discharged from the tip of a nozzle. ” The present invention will be explained using the drawings.

第1図は本発明の1実施態様の概要図である。FIG. 1 is a schematic diagram of one embodiment of the invention.

本発明においては、まずモノマまたはオリゴマの原料槽
10とこれに連通するノズル21、および微粒子受槽3
0からなる装置を用いる。かかる装置において、ノズル
21を含むノズル部20の周囲には圧電素子22を設け
、該圧電素子22には交番電圧付与手段23を設けた構
造とする。
In the present invention, first, a monomer or oligomer raw material tank 10, a nozzle 21 communicating therewith, and a particulate receiving tank 3 are provided.
A device consisting of 0 is used. In this device, a piezoelectric element 22 is provided around a nozzle portion 20 including a nozzle 21, and an alternating voltage application means 23 is provided on the piezoelectric element 22.

そして原料槽10とノズル部20の間に昇圧ポンプなど
の圧力付与手段11を設ける。圧力としては1〜20K
Q/cJが好ましい。低圧装置や脈動を吸収する装置の
併用も安定性向上のためには有用である。
A pressure applying means 11 such as a booster pump is provided between the raw material tank 10 and the nozzle section 20. The pressure is 1-20K
Q/cJ is preferred. The combined use of low-pressure equipment and equipment that absorbs pulsation is also useful for improving stability.

そしてモノマまたはオリゴマをパイプ12を通じて、ノ
ズル部2・Oの先端まで充填させておき、この状態で圧
電素子22に交番電圧を付与する。
Then, the monomer or oligomer is filled through the pipe 12 up to the tip of the nozzle portion 2.O, and in this state, an alternating voltage is applied to the piezoelectric element 22.

そうすると圧電素子22が交番的に収縮、膨張し、ノズ
ル先端部のモノマが外部へ吐出される際に、吐出流に流
速変化を与える。吐出能は流速変化により交番電圧の周
波数に対応して、規則正しく一定の長さで切断し、粒径
の整った微粒子状物を生成する。
Then, the piezoelectric element 22 alternately contracts and expands, and when the monomer at the tip of the nozzle is discharged to the outside, a flow velocity change is imparted to the discharged flow. The discharge ability corresponds to the frequency of the alternating voltage by changing the flow rate, and the material is regularly cut at a constant length to produce fine particles with a uniform particle size.

交番電圧の周波数はいかなる値でもよいが、生産効率か
らは10000〜200000H2/秒程度である。
The frequency of the alternating voltage may be any value, but from the viewpoint of production efficiency, it is approximately 10,000 to 200,000 H2/sec.

以上のようにして吐出された微粒子状物は、粒子間の間
隔が極めてみじかいので、粒子同士がくっつき易い。そ
こで微粒子上ツマを分散させる手段を利用して、粒子同
士のくっつきを防止する。
In the fine particulate material discharged as described above, the intervals between the particles are extremely small, so that the particles tend to stick together. Therefore, a means of dispersing particles is used to prevent particles from sticking together.

かかる微粒子状物を分散させる手段としては、水をシャ
ワー状にしてふりかけたり、空気の乱流を吹きかけるな
どの手段も用いることができるが、特に好ましくは、電
荷の付与によるものである。
As means for dispersing such fine particulate matter, means such as sprinkling water in a shower or blowing a turbulent flow of air can also be used, but particularly preferably, it is by applying an electric charge.

電荷付与はノズル内のモノマ液と、ノズルの吐出口の百
辺のプレートとに直流電圧をかけることにより容易にお
こなうことができる。電荷付与手段24の直流電圧は1
000〜10000ボルトの範囲であることが好ましい
。第1図の番号24はかかる電荷付与手段である。電荷
付与のための電極は、吐出流がち切れて粒子化する付近
に設置することが好ましい。
The charge can be easily imparted by applying a DC voltage to the monomer liquid in the nozzle and the plate on the 100 sides of the nozzle discharge port. The DC voltage of the charge applying means 24 is 1
The range is preferably from 000 to 10,000 volts. Reference numeral 24 in FIG. 1 is such a charge applying means. It is preferable that the electrode for applying a charge be installed near where the discharge flow breaks off and becomes particles.

また、モノマまたはオリゴマの原料液には塩類等を存在
させ、導電性を与えておくと分散効果がより一層発揮で
きる。原料液の導電率は電荷付与電極に印加する電圧に
より小滴が分散するのに充分な導電率で良いが、好まし
くは10−3Ω−1(Hl−1以上である。
Furthermore, if a salt or the like is present in the raw material liquid of the monomer or oligomer to impart conductivity, the dispersion effect can be further exhibited. The conductivity of the raw material liquid may be sufficient to disperse the droplets by the voltage applied to the charge-imparting electrode, but is preferably 10<-3 >[Omega]-1 (Hl-1 or more).

気体中に吐出された微粒子状物は、それ自体の界面張力
でほぼ球状に丸くなる。この微粒子状物を受槽30で受
【プ、その後硬化または重合するのである。従って実質
的に球状の微粒子ポリマを得ることができる。
The particulate matter discharged into the gas becomes approximately spherical due to its own interfacial tension. The fine particles are received in a receiving tank 30 and then hardened or polymerized. Therefore, substantially spherical fine particle polymers can be obtained.

以上が本発明の基本的構成である。The above is the basic configuration of the present invention.

本発明においては、ノズル部21の直径は数ミクロンか
ら数千ミクロン程度の範囲で適宜設定することができる
。すなわち、モノマの粒径はこのノズル先端部の径によ
り一義的に定まるので、小さい粒径のものを得るときは
小さな径とし、大きな粒径のときは大きな径とすればよ
く、粒径は次式によって制御することができる。
In the present invention, the diameter of the nozzle portion 21 can be appropriately set in the range of several microns to several thousand microns. In other words, the particle size of the monomer is uniquely determined by the diameter of this nozzle tip, so if you want to obtain a small particle size, you can use a small diameter, and if you want a large particle size, you can use a large diameter. can be controlled by Eq.

粒径=(1,5x (ノズル径)2X流速/周波数)力
木発明においては、モノマまたはオリゴマとしては、エ
ポキシ系、アクリル系、スチレン系、ブタジェン系など
いかなるものであってもよい。このうち特に好ましくは
、モノマがエポキシ系化合物である。取り扱い性に優れ
製造効率がよいことと、得られる微粒子ポリマの物性に
優れるからである。
Particle size = (1,5 x (nozzle diameter) 2 x flow rate/frequency) In the strength tree invention, the monomer or oligomer may be any type such as epoxy, acrylic, styrene, butadiene, etc. Among these, particularly preferred monomers are epoxy compounds. This is because it is easy to handle, has good manufacturing efficiency, and the resulting fine particle polymer has excellent physical properties.

またエポキシ系モノマを用いた際は、硬化剤はアミン系
化合物であることが好ましい。硬化反応性に優れるため
である。この硬化反応は、微粒子受槽30で行ってもよ
いし、別の容器で行ってもよい。
Furthermore, when an epoxy monomer is used, the curing agent is preferably an amine compound. This is because it has excellent curing reactivity. This curing reaction may be performed in the particulate receiving tank 30 or in a separate container.

次に粘度の高いモノマまたはオリゴマを用いる際は、モ
ノマには溶媒が含まれていることが好ましい。この理由
は粘度を下げ、細孔から吐出し易くするため、及び脱溶
媒するとその分体積が減少するので、より微小径のポリ
マが得られるためである。溶媒は水に対して親和力の高
い、ジオキサン、アルコールなどが好ましい。
Next, when using a monomer or oligomer with high viscosity, it is preferable that the monomer contains a solvent. The reason for this is to lower the viscosity and make it easier to discharge from the pores, and to obtain a polymer with a smaller diameter since the volume decreases when the solvent is removed. The solvent is preferably dioxane, alcohol, etc., which have a high affinity for water.

本発明は、モノマまたはオリゴマの界面張力を利用して
球状粒子を得ることができる。特にエポキシ系モノマを
用いた時は有効である。またモノマに溶媒が含まれてい
る場合は、受槽30で脱溶媒することが必要となるが、
脱溶媒には工業的に水を用いることが最も経済的である
。従って、ノズル先端を空気中に位置させ、下部に水を
入れた脱溶媒槽を設置することが最も好ましい。この場
合水の導入口31(第1図)、排出口32を設け、溶媒
濃度を一定の低い値に保つようにしてもよい。
In the present invention, spherical particles can be obtained by utilizing the interfacial tension of monomers or oligomers. This is particularly effective when using epoxy monomers. Furthermore, if the monomer contains a solvent, it is necessary to remove the solvent in the receiving tank 30.
Industrially, it is most economical to use water for solvent removal. Therefore, it is most preferable to position the nozzle tip in the air and install a solvent removal tank containing water at the bottom. In this case, a water inlet 31 (FIG. 1) and an outlet 32 may be provided to maintain the solvent concentration at a constant low value.

なお本発明においては、原料槽10には別の檜から供給
口13を通じて、原料を供給してもよい。
In the present invention, the raw material may be supplied to the raw material tank 10 from another cypress through the supply port 13.

さらにまた本発明は、条件を工夫すれば原料としてポリ
マを使用することもできる。すなわち溶媒や温度条件な
どを選び、粘度を低くすれば、ポリマを微粒子化するこ
ともできる。
Furthermore, in the present invention, a polymer can be used as a raw material if the conditions are devised. In other words, by selecting the solvent and temperature conditions to lower the viscosity, it is possible to make the polymer into fine particles.

〔実施例〕〔Example〕

実施例1 第1図の装置を用いて微粒子ポリマを作った。 Example 1 A particulate polymer was produced using the apparatus shown in FIG.

原料槽10にはモノマとしてビスフェノールAジグリシ
ジルエーテルタイプのエポキシ樹脂(商品名“エピコー
ト”82B、油化シェルエポキシ製)と、溶媒であるジ
オキサンを、モノマ濃度が35%となるように計量して
仕込んだ。またこれには界面活性剤であるポリオキシエ
チレン・フェノール置換エーテル系化合物を少量加えた
。ざらに導電性付与剤として、少量の亜硝酸ソーダを加
えた。
In the raw material tank 10, bisphenol A diglycidyl ether type epoxy resin (trade name "Epicote" 82B, manufactured by Yuka Shell Epoxy) as a monomer and dioxane as a solvent were weighed so that the monomer concentration was 35%. I prepared it. A small amount of a polyoxyethylene/phenol-substituted ether compound as a surfactant was also added to this. A small amount of sodium nitrite was added to the grains as a conductivity imparting agent.

モノマと溶媒の混合物の粘度は5.5CPであった。ノ
ズル部内径は’1.5mmとし、先端部の孔径は40μ
m、圧力2゜Oh/cnf、交番電圧の付与数2000
0Hz/秒で空気中にエポキシ微粒子を吐出させた。
The viscosity of the monomer and solvent mixture was 5.5CP. The inner diameter of the nozzle is 1.5mm, and the hole diameter at the tip is 40μ.
m, pressure 2゜Oh/cnf, number of applied alternating voltages 2000
Epoxy fine particles were discharged into the air at 0 Hz/sec.

電荷付与手段24の直流電圧は2000ボルトであった
。吐出された微粒子モノマは電荷により互いに反発し、
くっつき合う現象は見られなかった。
The DC voltage of the charge applying means 24 was 2000 volts. The discharged particulate monomers repel each other due to electric charge,
No phenomenon of sticking together was observed.

そして約20cm下方の水を入れた受槽でこの未硬化の
粒子を受け、同時に脱溶媒した。次いで0.6当量のピ
ペラジンを水とともに微粒子モノマに加え、25℃で5
日間硬化反応をさせた。
Then, the uncured particles were received in a receiving tank filled with water approximately 20 cm below, and the solvent was removed at the same time. Then 0.6 equivalents of piperazine was added to the particulate monomer along with water and the mixture was heated at 25°C for 5
The curing reaction was allowed to occur for several days.

得られたエポキシ微粒子のポリマは、平均粒径が32μ
mで、30〜35μmの範囲に90%以上が入るもので
あった。またこの微粒子のポリマは、形状がほぼ球状で
あり、化粧品の用途として有用であった。すなわち肌に
塗っても違和感がなく、刺激もなく、滑らかに延ばすこ
とができた。
The obtained epoxy fine particle polymer has an average particle size of 32 μm.
m, and 90% or more were in the range of 30 to 35 μm. Furthermore, this fine particle polymer was approximately spherical in shape and was useful for cosmetic applications. In other words, there was no discomfort when applied to the skin, there was no irritation, and the product could be applied smoothly.

またこの微粒子はアニオン性基を有する化合物、例えば
2,4−ジヒドロキシベンゾフェノン等の紫外線吸収剤
、その他の染料、顔料を吸着することができ、化粧品の
配合剤に使用することができた。
Furthermore, the fine particles could adsorb compounds having anionic groups, such as ultraviolet absorbers such as 2,4-dihydroxybenzophenone, other dyes, and pigments, and could be used in cosmetic formulations.

(発明の効果) 本発明は以上の構成からなるので、数ミクロンから数百
ミクロンの直径を有する微小粒径のポリマを、粒径分布
を整えて製造すること、および製造コストを安くするこ
とができるという顕著な効果を奏する。特にモノマの段
階で1つ1つ小さな粒子を形成させるので、粒径の整っ
たものとなり、その後の分級がなくても、あるいは軽減
化させても実用的に使用することができる。
(Effects of the Invention) Since the present invention has the above-described configuration, it is possible to manufacture a polymer with a micro particle size having a diameter of several microns to several hundreds of microns with a uniform particle size distribution, and to reduce the manufacturing cost. It has the remarkable effect of being able to. In particular, since small particles are formed one by one at the monomer stage, the particle size becomes uniform, and it can be used practically even without or with reduced classification.

そして本発明の微粒子状ポリマは液晶素子のスペーサー
、液晶素子の封入体の接着剤、化粧品配合剤、塗料等へ
の配合剤、静電複写機のトナー配合剤、感光性化合物へ
の配合剤、医療用薬品への配合剤など様々の分野におい
て有用である。
The particulate polymer of the present invention can be used as a spacer for liquid crystal elements, an adhesive for liquid crystal element enclosures, a cosmetic formulation, a formulation for paints, a toner formulation for electrostatic copying machines, a formulation for photosensitive compounds, It is useful in a variety of fields, including as a compounding agent for medical drugs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施態様の概要図である。 10;原料槽、    11;昇圧ポンプ、20:ノズ
ル部、   21:ノズル、22;圧電素子、   2
3;交番電圧付与手段、24:電荷付与手段、 30;
微粒子受槽。
FIG. 1 is a schematic diagram of one embodiment of the invention. 10; raw material tank, 11; boost pump, 20: nozzle section, 21: nozzle, 22; piezoelectric element, 2
3; Alternating voltage applying means, 24: Charge applying means, 30;
Particulate receiver.

Claims (5)

【特許請求の範囲】[Claims] (1)モノマまたはオリゴマの原料槽と、これに連通す
るノズル、および微粒子受槽からなる装置を用いて微粒
子物を作り、次いで硬化または重合する方法において、
ノズルから吐出するモノマまたはオリゴマ流に対して交
番する流速変化を与えつつ、気体中に吐出して微粒子化
するとともに、該微粒子物を分散手段で分散させ、次い
で微粒子受槽で受け、しかる後該微粒子物を硬化または
重合することを特徴とする微粒子ポリマの製造方法。
(1) A method in which a particulate material is produced using a device consisting of a monomer or oligomer raw material tank, a nozzle communicating therewith, and a particulate receiving tank, and then hardened or polymerized,
While applying alternating flow velocity changes to the monomer or oligomer flow discharged from the nozzle, it is discharged into the gas to form fine particles, and the fine particles are dispersed by a dispersing means, then received in a fine particle receiving tank, and then the fine particles are A method for producing a particulate polymer, which comprises curing or polymerizing a substance.
(2)モノマがエポキシ系化合物であり、硬化剤がアミ
ン系化合物であることを特徴とする特許請求の範囲第(
1)項記載の微粒子ポリマの製造方法。
(2) Claim No. 1, characterized in that the monomer is an epoxy compound and the curing agent is an amine compound.
1) A method for producing a particulate polymer as described in section 1).
(3)モノマには溶媒が含まれていることを特徴とする
特許請求の範囲第(1)項記載の微粒子ポリマの製造方
法。
(3) The method for producing a particulate polymer according to claim (1), wherein the monomer contains a solvent.
(4)微粒子状モノマを分散させる手段が、電荷の付与
によるものであることを特徴とする特許請求の範囲第(
1)項記載の微粒子ポリマの製造方法。
(4) The means for dispersing the particulate monomer is by applying an electric charge.
1) A method for producing a particulate polymer as described in section 1).
(5) ノマまたはオリゴマの原料槽と、これに連通す
るノズル、および微粒子受槽からなる装置において、モ
ノマ槽とノズル間に圧力付与手段を設け、ノズルから吐
出するモノマまたはオリゴマの流れに交番する流速変化
を与えつつ気体中に吐出して微粒子化する手段を設ける
とともに、ノズル先端から吐出される微粒子物を分散さ
せる手段を設けた構成としたことを特徴とする微粒子ポ
リマの製造装置。
(5) In a device consisting of a monomer or oligomer raw material tank, a nozzle communicating therewith, and a particulate receiving tank, pressure applying means is provided between the monomer tank and the nozzle, and the flow rate is alternated with the flow of monomer or oligomer discharged from the nozzle. 1. An apparatus for producing a particulate polymer, characterized in that it is provided with a means for discharging into a gas and turning it into fine particles while giving a change, and a means for dispersing the particulate matter discharged from the tip of a nozzle.
JP8625485A 1985-04-24 1985-04-24 Process and apparatus for producing fine particulate polymer Pending JPS61246202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8625485A JPS61246202A (en) 1985-04-24 1985-04-24 Process and apparatus for producing fine particulate polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8625485A JPS61246202A (en) 1985-04-24 1985-04-24 Process and apparatus for producing fine particulate polymer

Publications (1)

Publication Number Publication Date
JPS61246202A true JPS61246202A (en) 1986-11-01

Family

ID=13881681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8625485A Pending JPS61246202A (en) 1985-04-24 1985-04-24 Process and apparatus for producing fine particulate polymer

Country Status (1)

Country Link
JP (1) JPS61246202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078878A (en) * 2009-10-05 2011-04-21 Fuji Xerox Co Ltd Apparatus and method for production of particulate and particulate produced by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078878A (en) * 2009-10-05 2011-04-21 Fuji Xerox Co Ltd Apparatus and method for production of particulate and particulate produced by the method

Similar Documents

Publication Publication Date Title
US20220097067A1 (en) Formation and control of fluidic species
Quevedo et al. Interfacial polymerization within a simplified microfluidic device: capturing capsules
US5948328A (en) Shaping of microparticles in electric-field cages
CN103347612B (en) The system and method for division drop
KR860001833A (en) Manufacturing method of uniform particle size
JP2002544309A (en) Method for producing bead polymer
CN103328089A (en) Spray drying techniques
CN111521525A (en) System and method for generating an emulsion with low interfacial tension and method for measuring vibration frequency in such a system
US5021201A (en) Process for preparing uniform discoid particles
US3208951A (en) Electrostatic encapsulation
JPS61246202A (en) Process and apparatus for producing fine particulate polymer
US20230143252A1 (en) Method and system of producing hydrogel microspheres
Okabe et al. Self-assembly of artificially manufactured microcomponents using the entropic effect
JPS61243803A (en) Process and apparatus for producing fine particulate polymer
Zhu et al. Free‐Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications
CN106345367A (en) Liquid drop dispersing device
CN215197600U (en) Electrophoresis screening device of charged polydisperse polymer microspheres
CN116262618A (en) Composite stabilizer for preparing silica gel microspheres and preparation method of silica gel microspheres
Zhang et al. Design, Synthesis, and Application of Anisotropic Janus Particles
JPS63117039A (en) Production of uniform polymer particle
JPH03296502A (en) Apparatus and method for continuous reversed-phase suspension polymerization
Rhim et al. Containerless polymeric microsphere production for biomedical applications
Choi et al. The effect of microfluidic geometry for in situ generating monodispersed hydrogels
CN113145314A (en) Electrophoresis screening device of charged polydisperse polymer microspheres
CN116672978A (en) Microsphere preparation system and preparation method