JPS6124597B2 - - Google Patents

Info

Publication number
JPS6124597B2
JPS6124597B2 JP6101880A JP6101880A JPS6124597B2 JP S6124597 B2 JPS6124597 B2 JP S6124597B2 JP 6101880 A JP6101880 A JP 6101880A JP 6101880 A JP6101880 A JP 6101880A JP S6124597 B2 JPS6124597 B2 JP S6124597B2
Authority
JP
Japan
Prior art keywords
seawater
valve
pipe
seat pipe
seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6101880A
Other languages
Japanese (ja)
Other versions
JPS56156594A (en
Inventor
Kenji Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6101880A priority Critical patent/JPS56156594A/en
Publication of JPS56156594A publication Critical patent/JPS56156594A/en
Publication of JPS6124597B2 publication Critical patent/JPS6124597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Description

【発明の詳細な説明】 この発明は海水の流路中に異種金属材料を使用
した場合における防蝕方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a corrosion prevention method when dissimilar metal materials are used in a seawater flow path.

船舶の海水取入をはじめ、陸上の各種プラント
その他発電所等で海水を冷却水として使用する場
合などで、異種金属材料よりなる海水流路が通常
採用されている。こうした海水流路系の一つの代
表例として船舶の海水取水管系を示すと第1図の
とおりである。
BACKGROUND OF THE INVENTION Seawater channels made of different metal materials are commonly used for seawater intake by ships and for use as cooling water in various plants and power plants on land. As a typical example of such a seawater channel system, a seawater intake pipe system for a ship is shown in Figure 1.

同図において1は船体外板で、2は同船体外板
1の一部に明けられた海水吸入口である。この吸
入口には海洋浮遊物の侵入を防ぐための格子状ス
クリーン2Aが設けられている。3は船内で、こ
こに荒目のゴミ類が除去されたのちの海水を1時
貯える海水吸入箱4が配備され、これの側壁に防
蝕亜鉛5が取りつけられている。6は海水吸入箱
4の上方中央部に取りつけられた座管6で、その
上方に海水弁7が接続フランジ8を介して接続さ
れている。海水弁7は、さらに海水導入管9と別
の接続フランジ10を介して接続され、その後細
ゴミを除去するストレーナ11、海水ポンプ12
とつづき、船内各所へ海水が供給される。なお、
13,13′は海水導入管9,9′のサポートであ
る。これら各部の材料は、一般に船体1、海水吸
入箱4、座管6は鋼材で海水と接する部分は塗装
によつて防蝕が施されている。海水弁7はその口
径の大きさによつても異なるが、通常鋼合金又は
鋳鋼が使用されている。海水導入管9,9′も鋼
合金、亜鉛引鋼管或いは内面にポリエチレン樹脂
などの有機物を被覆した鋼管が使用されている。
こうした各種の材料の組合せは、経済性、施工
性、使用条件によつて種々あるが、いづれの場合
も海水吸入箱4内の防蝕亜鉛による電気防蝕が施
されている。
In the figure, 1 is a hull outer plate, and 2 is a seawater inlet opened in a part of the hull outer plate 1. This inlet is provided with a grid screen 2A to prevent marine floating objects from entering. Reference numeral 3 is located inside the ship, and a seawater suction box 4 is provided to temporarily store seawater after rough garbage has been removed, and corrosion-resistant zinc 5 is attached to the side wall of this box. Reference numeral 6 denotes a seat pipe 6 attached to the upper central part of the seawater suction box 4, and a seawater valve 7 is connected above the seat pipe 6 via a connecting flange 8. The seawater valve 7 is further connected to the seawater inlet pipe 9 via another connecting flange 10, and is then connected to a strainer 11 for removing fine dust and a seawater pump 12.
Next, seawater is supplied to various parts of the ship. In addition,
13, 13' are supports for the seawater inlet pipes 9, 9'. Regarding the materials of these parts, the hull 1, seawater suction box 4, and seat pipe 6 are generally made of steel, and the parts that come into contact with seawater are painted to prevent corrosion. The seawater valve 7 is usually made of steel alloy or cast steel, although it varies depending on its diameter. The seawater inlet pipes 9, 9' are also made of steel alloy, galvanized steel pipes, or steel pipes whose inner surfaces are coated with an organic material such as polyethylene resin.
There are various combinations of these various materials depending on economic efficiency, workability, and usage conditions, but in all cases, electrolytic corrosion protection is applied using corrosion-resistant zinc in the seawater suction box 4.

以上の如き通常の海水の取入管系において、船
内と海水を隔てている船体外板1、海水吸入箱
4、座管の損傷は、ただちに船内への海水侵入を
もたらし船の安全性に直接影響を与えるため、こ
れらの部分は入念な塗装と電気防蝕による防蝕対
策が施され、これらでもつて厳重に防蝕されてい
る。しかしながら、こうした充分に防蝕された従
来の装置にあつても、第1図の座管6の斜線部分
6Aで示された個所は理論的にもまた実際上も最
も防蝕効果のおよび難い部分となつていた。特
に、海水弁7に銅合金のような電位の貴な材料を
使用した場合、この海水弁7の電位を座管6の防
蝕電位以下にまで引下げる必要があり、このため
大きな防蝕電流を、座管6の内部を海水弁7の方
へ向けて流す必要がある。しかしながら、このよ
うな場合座管6内の海水抵抗による電圧降下が著
るしく大きくなつて、座管6の斜線部分6Aの防
蝕はほとんど不可能である。こうしたことから座
管6の内面塗装は一層重要となるが、この部分の
塗膜は使用中の劣化、異物による塗膜の損傷とい
つたこともあり、そうした場合は微小アノード面
積(塗膜欠陥部)に対する大面積カソード(弁)
という関係の最も好ましくない腐蝕電流が構成さ
れ、急速な破孔損傷による船内への侵水事故を惹
起する恐れがあつた。更に、従来の電気防蝕の他
の問題点としては、海水弁7による電流の消費が
大きく、必ずしも防蝕効果が充分でないのに防蝕
亜鉛5の消耗が大きいことが指摘されていた。
In the above-mentioned normal seawater intake pipe system, damage to the hull shell plating 1, seawater intake box 4, and seat pipe that separate the inside of the ship from the seawater will cause seawater to immediately enter the inside of the ship, which will directly affect the safety of the ship. In order to provide this, these parts are protected against corrosion through careful painting and electrical corrosion protection. However, even in such a conventional device that is sufficiently corrosion-resistant, the area shown by the shaded area 6A of the seat tube 6 in FIG. was. In particular, when a high potential material such as a copper alloy is used for the seawater valve 7, it is necessary to lower the potential of the seawater valve 7 to below the corrosion protection potential of the seat pipe 6. It is necessary to direct the inside of the seat pipe 6 toward the seawater valve 7. However, in such a case, the voltage drop due to seawater resistance within the seat tube 6 becomes significantly large, making it almost impossible to protect the shaded portion 6A of the seat tube 6 from corrosion. For this reason, the internal coating of the seat pipe 6 is even more important, but the coating in this area may deteriorate during use or be damaged by foreign matter, and in such cases, the minute anode area (paint film defect large area cathode (valve) for
This constituted the most unfavorable corrosive current in this relationship, and there was a risk of water intrusion into the ship due to rapid hole damage. Furthermore, it has been pointed out that another problem with the conventional electrolytic corrosion protection is that the seawater valve 7 consumes a large amount of current, and the corrosion protection zinc 5 is consumed to a large extent, although the corrosion protection effect is not necessarily sufficient.

この発明は従来の異種金属材料を用いてなる海
水流路系におけるこうした問題点を解消するため
に開発されたもので、海水取水口を側部に設け防
蝕亜鉛による電気防蝕が施されている海水吸入箱
と、この海水吸入箱から海水を導くための座管
と、この座管と連結された海水弁と、この海水弁
より流出する海水を導くための海水導入管とから
なる海水流路系において、海水弁と座管との接続
部および海水弁と海水導入管との接続部のそれぞ
れを電気的に絶縁するとともに、海水弁の海水吸
入側に連結された海水吸入箱・座管その他の通電
部材と海水導入管とを電気的に絶縁することを特
徴とする。
This invention was developed to solve these problems in conventional seawater channel systems that use dissimilar metal materials. A seawater flow path system consisting of a suction box, a seat pipe for guiding seawater from the seawater suction box, a seawater valve connected to the seat pipe, and a seawater introduction pipe for guiding seawater flowing out from the seawater valve. In addition to electrically insulating the connection between the seawater valve and the seat pipe and the connection between the seawater valve and the seawater introduction pipe, the seawater intake box, seat pipe, and other parts connected to the seawater intake side of the seawater valve should be electrically insulated. It is characterized by electrically insulating the current-carrying member and the seawater introduction pipe.

以下にこの発明の詳細を図示した1実施例にも
とづいて説明する。第2図はこの発明の1実施例
を示したものであるが、そこに附された番号は第
1図に示した使用部材と同一のものを示す。但
し、海水弁7と座管6の接続部は電気的に絶縁す
る。具体的にはここに絶縁フランジ8Aを使用す
る。また、海水弁7の出口接続部と海水導入管9
をも電気的に絶縁する。これの絶縁も上記と同様
に絶縁フランジ10Aを使用する。更に、海水導
入管9と海水吸入側に連結された海水吸入箱・座
管その他の通電部材を電気的に絶縁する。これに
は例えば絶縁サポートを使用する。
The details of the present invention will be explained below based on an illustrated embodiment. FIG. 2 shows one embodiment of the present invention, and the numbers assigned therein indicate the same members used as shown in FIG. 1. However, the connection between the seawater valve 7 and the seat pipe 6 is electrically insulated. Specifically, the insulating flange 8A is used here. In addition, the outlet connection part of the seawater valve 7 and the seawater inlet pipe 9
It is also electrically insulated. For insulation of this, the insulation flange 10A is used in the same manner as above. Further, the seawater inlet pipe 9 is electrically insulated from the seawater suction box, seat pipe, and other current-carrying members connected to the seawater suction side. This can be done, for example, by using insulating supports.

この発明の主たる目的は、防蝕の最も困難な座
管6の防蝕を完壁なものとすることにあるが、こ
の目的の達成のためには、上述した3点の電気絶
縁が同時に行なわれていることがぜひとも必要で
ある。座管6の防蝕という点からすれば、銅その
他で座管より一般に貴な材料で出来た海水弁7と
座管6を前記したように絶縁フランジ8Aで電気
絶縁することで、一般的には可能である。しかし
ながら現実の海水流路系においては、第1図に見
られるように海水導入管9,9′が各種の金属製
サポートで支持されたり、その他の配管系が廻り
込んで座管6、海水吸入箱4は電気的に接続され
るのが普通である。このような場合、絶縁フラン
ジ8Aのみでは座管6と海水弁7は、海水導入管
9、船体3を通して導通される結果となる。この
ために、海水弁7の出口フランジも絶縁フランジ
10Aを用い同様に絶縁する必要がある。こうし
た絶縁フランジ8A,10Aの使用によつて座管
6と海水弁7は完全に絶縁され、これによつて所
期の目的が達成されるようにみえるが、こうした
場合でもその次の問題として、第3図の概略回路
図で示したような電気回路が構成されることにな
る。第3図においてEは、防蝕亜鉛5と座管6、
海水導入管9の間の内部抵抗値rをもつ起電力の
大きさを示したものである。このEによつて発生
する電流は、海水吸入箱4、座管6を通つて帰還
する防蝕電流i1と、海水弁7を通つて海水導入管
9に流入帰還する電流i2の2種がある。そしてこ
の図から明らかなように、電流成分i2は座管6の
防蝕には何んら寄与せず、本来は無駄な電流であ
つて、起電力Eの実効電圧e,e=〔E−(i1
i2)r〕を小さくし、座管6の電圧降下を大きく
し、極端な場合は座管6への防蝕電流の不足をき
たすことも予想されるものである。ここにおける
内部抵抗rは、防蝕亜鉛がイオン化して電流を発
生するときの電気化学反応抵抗に相当し、一般に
分極抵抗とも呼ばれている。更に、海水弁7の出
入口を絶縁フランジ8A,10Aで電気絶縁した
ために生じる他の不都合としては、海水弁7に流
入した電流成分が、海水弁7から流出する部分
(第3図A)では金属の容解を発生させ、高価な
海水弁7を腐蝕させることである。従つてこうし
た作用を防止する手段を別途講じておかなければ
ならない。このため本発明では、前述したように
座管6と海水弁7及び海水弁7と海水導入管9と
の間を電気的に絶縁すると同時に、更に海水導入
管9と座管6との金属による接触を防止する手段
を別途行なうものである。これの具体的手段とし
ては各種の方法があるが、例示すれば、 海水導入管9,9′とサポート13,13′間
の電気絶縁 サポート13,13′と船体部3との電気絶
縁 海水導入管の電気絶縁体、例えばプラスチツ
ク管の使用 海水導入管の内面の塗装又はプラステイツク
ライニングによる電気絶縁塗装 などがある。
The main purpose of this invention is to provide complete corrosion protection for the seat pipe 6, which is the most difficult area to protect against corrosion. It is absolutely necessary to be there. From the point of view of corrosion protection of the seat pipe 6, it is generally possible to prevent corrosion by electrically insulating the seawater valve 7 and the seat pipe 6, which are made of copper or other material that is generally more noble than the seat pipe, with the insulating flange 8A as described above. It is possible. However, in an actual seawater channel system, as shown in Fig. 1, the seawater inlet pipes 9 and 9' are supported by various metal supports, and other piping systems go around the seat pipe 6 and the seawater inlet. Box 4 is typically electrically connected. In such a case, with only the insulating flange 8A, the seat pipe 6 and the seawater valve 7 will be electrically connected through the seawater introduction pipe 9 and the hull 3. For this reason, the outlet flange of the seawater valve 7 must be similarly insulated using the insulating flange 10A. By using these insulating flanges 8A and 10A, the seat pipe 6 and the seawater valve 7 are completely insulated, and this seems to achieve the desired purpose, but even in such a case, the next problem is that An electric circuit as shown in the schematic circuit diagram of FIG. 3 will be constructed. In FIG. 3, E represents the corrosion-resistant zinc 5 and the seat pipe 6;
The figure shows the magnitude of the electromotive force with the internal resistance value r between the seawater inlet pipes 9. The current generated by this E is divided into two types: a corrosion protection current i 1 that returns through the seawater suction box 4 and the seat pipe 6, and a current i 2 that flows and returns to the seawater introduction pipe 9 through the seawater valve 7. be. As is clear from this figure, the current component i 2 does not contribute to the corrosion protection of the seat tube 6 and is originally a wasteful current, and the effective voltage e of the electromotive force E, e = [E- (i 1 +
i 2 )r], the voltage drop in the seat tube 6 will increase, and in extreme cases, it is expected that the corrosion protection current to the seat tube 6 will become insufficient. The internal resistance r here corresponds to the electrochemical reaction resistance when the corrosion-protective zinc is ionized and generates an electric current, and is generally also called polarization resistance. Furthermore, another inconvenience caused by electrically insulating the inlet and outlet of the seawater valve 7 with the insulating flanges 8A and 10A is that the current component flowing into the seawater valve 7 flows out from the seawater valve 7 (Fig. 3A) due to the presence of metal. The problem is that the seawater valve 7, which is expensive, is corroded by the occurrence of melting. Therefore, separate measures must be taken to prevent such effects. Therefore, in the present invention, as described above, the seat pipe 6 and the seawater valve 7 and the seawater valve 7 and the seawater introduction pipe 9 are electrically insulated, and at the same time, the seawater introduction pipe 9 and the seat pipe 6 are made of metal. Separate measures are taken to prevent contact. There are various methods for this, but examples include: Electrical insulation between the seawater introduction pipes 9, 9' and the supports 13, 13' Electrical insulation between the supports 13, 13' and the hull section 3 Seawater introduction Use of electrical insulators for pipes, such as plastic pipes Coating the inner surface of seawater inlet pipes or electrically insulating coatings with plastic lining.

なお、海水弁7と座管6および海水弁7と海水
導入管9との接続を電気的に絶縁するための絶縁
フランジは、いづれもパツキンと絶縁ボルトによ
つて行なわれる。
Incidentally, insulating flanges for electrically insulating the connections between the seawater valve 7 and the seat pipe 6 and between the seawater valve 7 and the seawater introduction pipe 9 are all made of packing and insulating bolts.

本願発明は以上のとおり、 (a) 海水弁と座管との電気的絶縁 (b) 海水弁の出口接続部と海水導入管との電気絶
縁 (c) 海水導入管と海水弁の入口側部(海水吸入
箱、座管等)との電気絶縁 をもつて、従来から最も防蝕の困難とされていた
座管の防蝕を完壁なものとするものであり、この
いづれの手段が欠けても良好な防蝕を期待するこ
とは出来ないことになる。
The present invention is as described above: (a) Electrical insulation between the seawater valve and seat pipe (b) Electrical insulation between the outlet connection part of the seawater valve and the seawater inlet pipe (c) Inlet side part of the seawater inlet pipe and the seawater valve By providing electrical insulation from seawater suction boxes, seat pipes, etc., it completely protects seat pipes, which have traditionally been considered the most difficult to protect against corrosion. Good corrosion protection cannot be expected.

次にこの発明方法を適用した場合の防蝕効果を
第4図に示し、この発明を更に説明する。第4図
は海水流速1m/secで80mmφ×230mm長さの内面
塗装管を使用して、電位分布の変化および所要防
蝕電流を実物図(下側)と対比して示したもので
ある。第4図の実物図(下側)で第1図と同符号
の部材は第1図のものと同一の作用効果を示す部
材である。同図において()は従来方法である。
この場合は大電流が発生しているにも拘らず座管
6の深部の海水弁に近い部分で十分な防蝕が達成
されていない。これに対し本発明法によると、曲
線,に示す通り数分の1の電流で座管内部の
全域で充分防蝕されていることが示されている。
Next, the corrosion prevention effect when the method of this invention is applied is shown in FIG. 4, and this invention will be further explained. Figure 4 shows the changes in potential distribution and the required corrosion protection current compared with the actual diagram (lower side) using a seawater flow rate of 1 m/sec and an internally coated tube with a length of 80 mmφ x 230 mm. In the actual view (lower side) of FIG. 4, members having the same symbols as those in FIG. 1 are members having the same functions and effects as those in FIG. 1. In the figure, () indicates the conventional method.
In this case, even though a large current is being generated, sufficient corrosion protection has not been achieved in the deep portion of the seat pipe 6 near the seawater valve. On the other hand, according to the method of the present invention, as shown in the curve, the entire area inside the seat tube is sufficiently protected from corrosion with a fraction of the current.

なお、すでにのべたように本発明の実施の1態
様としては、海水導入管9,9′の内面塗装又は
プラステイツクライニングがあるが、これによる
電気抵抗を増加する手段の外に、 オームの方則、 電流(I)=駆動起電力(E)/電気抵抗 (R) から駆動起電力を減らす手段を講じてもよく、そ
のためにここに極力電位の卑な材料、例えば亜鉛
引鋼管などの使用が考えられる。また、海水導入
管の内面を塗装、ライニングする場合あるいは絶
縁体を使用する場合、管の長さをL,管径をD
cm,海水比抵抗をρ〓―cmとすれば、海水柱の抵
抗は、R=4ρL/πDからバルブの腐蝕が実用上差
支 えない範囲の好ましい程度の電流になるようにL
(長さ)を選定することによつて、絶縁施工と等
価な効果を得ることも出来る。
As already mentioned, one embodiment of the present invention includes coating the inner surfaces of the seawater inlet pipes 9, 9' or lining them with plastic. As a rule, current (I) = driving electromotive force (E)/electrical resistance (R) Measures may be taken to reduce the driving electromotive force, and for this purpose, materials with as low potential as possible, such as galvanized steel pipes, etc. may be used. is possible. In addition, when painting or lining the inner surface of the seawater inlet pipe or using an insulator, the length of the pipe should be L, and the pipe diameter should be D.
cm, and the seawater specific resistance is ρ〓-cm, then the resistance of the seawater column is R = 4ρL/πD From 2 , L
By selecting (length), it is possible to obtain an effect equivalent to insulation construction.

以上の実施例は船舶の海水取入管系について説
明したが、この発明は外に各種の陸上プラント、
発電所などの海水を冷却水として使用する異種金
属系よりなる海水流路系についても同様に適用可
能である。
Although the above embodiment describes a seawater intake pipe system for a ship, this invention can also be applied to various land-based plants,
The present invention can be similarly applied to seawater channel systems made of dissimilar metals that use seawater as cooling water in power plants and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の海水取入管系を、第2図はこの
発明になる海水取入管系を示す説明図、第3図は
海水取入管系で構成される電気回路を示す回路
図、第4図は海水取入管系の座管内の電位分布の
変化および所要防蝕電流を海水取入管系実物との
対比で示した線図。 1…船体側板、4…海水吸入箱、5…防蝕亜
鉛、6…座管、7…海水弁、8A…絶縁フラン
ジ、9,9′…海水導入管、10A…絶縁フラン
ジ、12…海水ポンプ、13A,13A′…サポ
ート。
Fig. 1 is a conventional seawater intake pipe system, Fig. 2 is an explanatory diagram showing the seawater intake pipe system according to the present invention, Fig. 3 is a circuit diagram showing an electric circuit constituted by the seawater intake pipe system, and Fig. 4 is an explanatory diagram showing the seawater intake pipe system according to the present invention. The figure is a diagram showing changes in potential distribution in the seat pipe of the seawater intake pipe system and the required corrosion protection current in comparison with the actual seawater intake pipe system. 1... Hull side plate, 4... Seawater suction box, 5... Corrosion-proof zinc, 6... Seat pipe, 7... Seawater valve, 8A... Insulating flange, 9, 9'... Seawater introduction pipe, 10A... Insulating flange, 12... Seawater pump, 13A, 13A'...Support.

Claims (1)

【特許請求の範囲】[Claims] 1 海水取水口を側部に設け防蝕亜鉛による電気
防蝕が施されている海水吸入箱と、この海水吸入
箱から海水を導くための座管と、この座管と連結
された海水弁と、この海水弁より流出する海水を
導くための海水導入管とからなる海水流路系にお
いて、海水弁と座管との接続部および海水弁と海
水導入管との接続部のそれぞれを電気的に絶縁す
るとともに、海水弁の海水吸入側に連結された海
水吸入箱・座管その他の通電部材と海水導入管と
を電気的に絶縁することを特徴とする異種金属材
料からなる海水流路系における防蝕方法。
1. A seawater intake box with a seawater intake port on the side and electrolytic corrosion protection using anti-corrosion zinc, a seat pipe for guiding seawater from this seawater intake box, a seawater valve connected to this seat pipe, and a seawater valve connected to this seat pipe. In a seawater flow path system consisting of a seawater inlet pipe for guiding seawater flowing out of the seawater valve, electrically insulate the connection between the seawater valve and the seat pipe and the connection between the seawater valve and the seawater inlet pipe. In addition, a method for preventing corrosion in a seawater channel system made of dissimilar metal materials, characterized by electrically insulating a seawater inlet pipe from a seawater intake box, seat pipe, and other current-carrying members connected to the seawater intake side of a seawater valve. .
JP6101880A 1980-05-08 1980-05-08 Anticorrosion method in sea water passage system made of different metallic materials Granted JPS56156594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6101880A JPS56156594A (en) 1980-05-08 1980-05-08 Anticorrosion method in sea water passage system made of different metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6101880A JPS56156594A (en) 1980-05-08 1980-05-08 Anticorrosion method in sea water passage system made of different metallic materials

Publications (2)

Publication Number Publication Date
JPS56156594A JPS56156594A (en) 1981-12-03
JPS6124597B2 true JPS6124597B2 (en) 1986-06-11

Family

ID=13159154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6101880A Granted JPS56156594A (en) 1980-05-08 1980-05-08 Anticorrosion method in sea water passage system made of different metallic materials

Country Status (1)

Country Link
JP (1) JPS56156594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258280A (en) * 1987-04-14 1988-10-25 本田技研工業株式会社 Arrangement structure of sinking type pump unit in fuel tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258280A (en) * 1987-04-14 1988-10-25 本田技研工業株式会社 Arrangement structure of sinking type pump unit in fuel tank

Also Published As

Publication number Publication date
JPS56156594A (en) 1981-12-03

Similar Documents

Publication Publication Date Title
US2459123A (en) Water heating device with corrosion protective anode
AU2017226940B2 (en) System and method for cathodic protection by distributed sacrificial anodes
JPS6124597B2 (en)
JP2007314027A (en) Ballast tank corrosion protection member and suction bell-mouth
US20190226095A1 (en) Autonomous impressed current cathodic protection device on metal surfaces with a spiral magnesium anode
JP2019026892A (en) Electric rust preventing device for power transmission steel tower and electric rust preventing method for power transmission steel tower
KR20090111483A (en) Corrosion protection method of oil tank inside by cathodic protection
JPH1161460A (en) Electric corrosion protection of titanium-coated maritime structure
KR102652545B1 (en) Impressed current cathodic protection system for pipe
JP3354818B2 (en) External Corrosion Protection Method for Ductile Cast Iron Pipe
Bartlett Galvanic corrosion
US3725225A (en) Cathodic protection method
JPH0645687Y2 (en) Anti-corrosion metal fittings for bolts
KR200486092Y1 (en) Cathodic Protection Apparatus
JP2780915B2 (en) Corrosion protection structure of metal body connected to reinforced concrete structure
EP0324440A1 (en) Cathodic protection apparatus in systems for the circulation of corrosive liquids
JPH0454752B2 (en)
Holtyn Corrosion protection guidelines for aluminum hulls
Rachman Analysis Of Laying And The Need For Cathodic Protection On Single Point Mooring Type Catenary Anchor Leg Mooring Buoy 035 By PT. Pertamina Fuel Terminal Tuban
RU191508U1 (en) FLOATING MARINE OBJECT
JP2644591B2 (en) Electrochemical corrosion protection components
JP2941543B2 (en) Cathodic protection of heat exchanger
JP4130491B2 (en) Method and apparatus for preventing electrolytic corrosion
Pludek et al. Compatibility
Lehmann Control of Corrosion in Water Systems