JPS61245455A - Atmospheric pressure ion source - Google Patents

Atmospheric pressure ion source

Info

Publication number
JPS61245455A
JPS61245455A JP60086837A JP8683785A JPS61245455A JP S61245455 A JPS61245455 A JP S61245455A JP 60086837 A JP60086837 A JP 60086837A JP 8683785 A JP8683785 A JP 8683785A JP S61245455 A JPS61245455 A JP S61245455A
Authority
JP
Japan
Prior art keywords
needle
tip
ion source
atmospheric pressure
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086837A
Other languages
Japanese (ja)
Inventor
Masahiko Tsuchiya
正彦 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP60086837A priority Critical patent/JPS61245455A/en
Publication of JPS61245455A publication Critical patent/JPS61245455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/145Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using chemical ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0468Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample

Abstract

PURPOSE:To enable continuous supply of sample liquid by arranging an insulator rod at the tip of needle electrode in an atmospheric pressure ion source then supplying the sample liquid over the surface of insulator rod while heating. CONSTITUTION:Carrier gas such as argon is fed into a tubular electrode 5 to produce corona discharge between a needle electrode 6 and the tubular electrode 5 thus to produce the exciting seed. Then it is flowed out toward a needle 4 to ionize a sample held on the needle 4 then fed through orifices 7, 8 into tetrode mass spectrometer thus to produce an atmospheric pressure ion source. Then an insulator rod 12 is arranged such that the tip section will be near to the needle 4 thus to supply sample liquid from a capillary 13 over said rod 12 while heating through a heater 14. Consequently, the sample liquid can be condensed and ionized while being fed continuously online resulting in improvement of efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は大気圧イオンI(APIイオン源)に関するも
のであり、特に液体りOマドグラフからの流出液をオン
ラインで導入しイオン化するのに好適なAPIイオン源
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an atmospheric pressure ion I (API ion source), and is particularly suitable for introducing and ionizing the effluent from a liquid O mudgraph on-line. API ion source.

[従来の技術] APIイオン源として、従来例えば第3図に示すような
構造のものが知られている。第3図において、APIイ
オン源1はガラス製の筒体2.コOす放電部3及び試料
保持針4から成る。上記コロナ放電部3においては、筒
状N極5内にアルゴンの如きキャリアガスが導入され、
針状電極6と筒状電極5との間に発生させるコロナ放電
により、励起されたキャリアガス原子(励起種)が作成
される。このようにして得られた励起種は、キャリアガ
スの流れに乗り適宜な電圧(例えば+2000V )が
印加されている試料保持針4へ向けて流れ出し、該針4
の先端に保持された試料をイオン化する。
[Prior Art] As an API ion source, one having a structure as shown in FIG. 3, for example, is conventionally known. In FIG. 3, an API ion source 1 has a glass cylinder 2. It consists of a gas discharge section 3 and a sample holding needle 4. In the corona discharge section 3, a carrier gas such as argon is introduced into the cylindrical N pole 5,
The corona discharge generated between the needle electrode 6 and the cylindrical electrode 5 creates excited carrier gas atoms (excited species). The excited species obtained in this way flows out toward the sample holding needle 4 to which an appropriate voltage (for example, +2000 V) is applied on the flow of the carrier gas, and
ionizes the sample held at the tip of the

そして、該針4の先端で生成された試料イオンは、オリ
フィス板7,8を介して四重極電極9.レンズ電極10
等から成る四重極質邑分析装置内へ導入される。11は
前記試料保持針4を適宜な温度に加熱□するためのヒー
タである。
The sample ions generated at the tip of the needle 4 are transferred to the quadrupole electrode 9 via the orifice plates 7 and 8. Lens electrode 10
It is introduced into a quadrupole analyzer consisting of Reference numeral 11 denotes a heater for heating the sample holding needle 4 to an appropriate temperature.

かかるAPIイオン源を用いれば、大気圧中で液体試料
を直接イオン化し、質量分析装置へ導入して質量分析で
きるため、今後の発達が期待されている。
If such an API ion source is used, a liquid sample can be directly ionized at atmospheric pressure, introduced into a mass spectrometer, and subjected to mass analysis, and is therefore expected to develop in the future.

[発明が解決しようとする問題点] ところが、上記APIイオン源における試料導入は、別
に設けた作業用の窓Wからマイクロシリンジをイオン源
内へ挿入し、試料保持針4の先端に試料液を付着させて
行っており、導入作業が繁雑になるばかりでなく、例え
ば液体クロマトグラフからの流出液をオンラインで連続
的に導入してイオン化するようなことは困難であった。
[Problems to be Solved by the Invention] However, in order to introduce a sample into the above API ion source, a microsyringe is inserted into the ion source through a separately provided working window W, and a sample liquid is attached to the tip of the sample holding needle 4. This not only complicates the introduction work, but also makes it difficult to continuously introduce and ionize the effluent from a liquid chromatograph online, for example.

本発明はこの点に鑑みてなされたものであり、液体試料
を連続的にイオン源内に導入しイオン化することのでき
るAPIイオン源を提供することを目的としている。
The present invention has been made in view of this point, and an object of the present invention is to provide an API ion source that can continuously introduce a liquid sample into the ion source and ionize it.

[問題点を解決するための手段] この目的を達成するため本発明は、コロナ放電により励
起されたキャリアガス原子を生成するコロナ放電部と、
励起されたキャリアガス原子の流れの中に先端が配置さ
れる針状電極とを備えた大気圧イオン源において、該針
状電極先端部に先端が近接するように絶縁体棒を配δし
、液体試料を該絶縁体棒の表面を伝わらせて前記針状電
極先端部へ供給すると共に、該絶縁体棒表面を伝わる液
体試料を外側から加熱するためのヒータを設けたことを
特徴としている。
[Means for solving the problem] In order to achieve this object, the present invention includes a corona discharge section that generates carrier gas atoms excited by corona discharge;
In an atmospheric pressure ion source equipped with a needle-shaped electrode whose tip is disposed in a flow of excited carrier gas atoms, an insulator rod is arranged so that its tip is close to the tip of the needle-shaped electrode, The present invention is characterized in that a liquid sample is supplied to the tip of the needle-like electrode by being transmitted along the surface of the insulating rod, and a heater is provided for heating the liquid sample traveling along the surface of the insulating rod from the outside.

[作用] 絶縁体棒の周囲にはヒータが巻回されているため、該絶
縁体棒を伝わる間に試料液中の溶媒成分が蒸発し、試料
成分は濃縮されることになり、°濃縮された試料成分が
針状電極先端部へ送られてイオン化される。
[Function] Since the heater is wound around the insulator rod, the solvent component in the sample liquid evaporates while passing through the insulator rod, and the sample component is concentrated. The sample components are sent to the tip of the needle-shaped electrode and ionized.

[実施例] 以下、図面を用いて本発明の一実施例を詳説する。[Example] Hereinafter, one embodiment of the present invention will be explained in detail using the drawings.

第1図は本発明を実施したAPIイオン源の一例を示す
断面図であり、第3図と同一の構成要素には同一番号が
付されている。第1図において12は化学的に安定で機
械的な強度を持つ材料例えば溶融シリカで出来た絶縁棒
で、その先端が前記試料保持針4の先端部に極めて近接
するように配置されている。13は液体クロマトグラ、
フからの流出液を導くキャピラリーで、このキャピラリ
ーを介して送られて来た流出液は絶縁棒12の表面に付
着し、更にその表面を伝わって流下し、針4の先端部へ
伝えられて行く。
FIG. 1 is a sectional view showing an example of an API ion source embodying the present invention, and the same components as in FIG. 3 are given the same numbers. In FIG. 1, reference numeral 12 denotes an insulating rod made of a chemically stable and mechanically strong material, such as fused silica, and is arranged so that its tip is very close to the tip of the sample holding needle 4. 13 is a liquid chromatograph,
This is a capillary that guides the effluent from the needle 4. The effluent sent through this capillary adheres to the surface of the insulating rod 12, flows down the surface, and is transmitted to the tip of the needle 4. go.

14は流出液が絶縁棒12の表面を伝わって流れる部分
の周囲に巻回されたコイル状ヒータで、電)I115か
らの電流によって加熱されると共に電源16より前記試
料保持針4に印加される電圧と同極性で若干低い電圧が
印加される。
Reference numeral 14 denotes a coil-shaped heater that is wound around the part where the effluent flows along the surface of the insulating rod 12, and is heated by the electric current from the electric current 115, which is also applied to the sample holding needle 4 from the power source 16. A slightly lower voltage with the same polarity as the voltage is applied.

上述の如き構成において、キャピラリー13は図示しな
い液体クロマトグラフからの流出液を例えば20μ之/
分程度の割合でイオン源内へ導く。
In the above-described configuration, the capillary 13 collects the effluent from a liquid chromatograph (not shown) at a rate of, for example, 20μ/min.
The ion source is guided into the ion source at a rate of about 100 min.

該流出液は絶縁棒12に付着し、その表面を伝わって針
4へ向けて流れて行くが、その途中でヒータ14による
加熱を受けるため、流出液中の揮発し易い溶媒成分が選
択的に蒸発し相対的に試料成分が濃縮される。従って絶
縁棒12から針4の先端部に移る時点では、流出液中に
含まれる試料成分の比率は高められることになり、その
結果針4の先端において多聞の試料イオンが生成される
The effluent adheres to the insulating rod 12 and flows along its surface toward the needle 4, but on the way it is heated by the heater 14, so that the volatile solvent components in the effluent are selectively removed. The sample components are relatively concentrated through evaporation. Therefore, at the time of transfer from the insulating rod 12 to the tip of the needle 4, the ratio of sample components contained in the effluent increases, and as a result, a large number of sample ions are generated at the tip of the needle 4.

このようにして生成された試料イオンは針4の先端とオ
リフィス板7との間に形成される電界によって質量分析
装置内へ引込まれる。前記ヒータ14に印加される電圧
はこの電界を乱さないために必要であり、この電圧をか
けることにより質量分析装置に導入されるイオンの量が
大幅に増えることが確認されている。
The sample ions thus generated are drawn into the mass spectrometer by an electric field formed between the tip of the needle 4 and the orifice plate 7. The voltage applied to the heater 14 is necessary in order not to disturb this electric field, and it has been confirmed that applying this voltage significantly increases the amount of ions introduced into the mass spectrometer.

ところで、流出液を単純に針4の先端に供給するだけな
らば、例えば針4として注射針或いはマイクロシリンジ
のようなものを用い、針の内部を通して先端部へ流出液
を送ることも考えられるが、これでは試料成分の濃縮作
用が全(なく、針4の先端部で生成されるイオンは試料
成分に比べて圧倒的にmの多い溶媒のイオンが大部分と
なり、目的とする試料イオンはその影に隠れてしまう。
By the way, if the effluent is simply supplied to the tip of the needle 4, it is conceivable to use something like a hypodermic needle or a microsyringe as the needle 4 and send the effluent to the tip through the inside of the needle. In this case, there is no concentrating effect on the sample components, and most of the ions generated at the tip of the needle 4 are ions of the solvent, which has an overwhelmingly higher m than the sample components, and the target sample ions are Hidden in the shadows.

一方、針4を多少下向きに取付け、この針4の表面を伝
わらせて流出液を先端部へ送ることも考えられ、そのよ
うにすればヒータ11による濃縮作用も期待できる。し
かしながら、そのような方法では本来針4の先端部の温
度を厳密に設定するためのヒータが溶媒の蒸発作用も受
持つことになり、溶媒の種類によって加熱量を調節しな
ければならず、それに伴って針先の温度が大幅に変化し
てしまい、イオン化が、1lqW#に行われない可能性
が多分にある。
On the other hand, it is also conceivable to attach the needle 4 somewhat downwardly and send the effluent to the tip by passing it along the surface of the needle 4. If this is done, the concentration effect of the heater 11 can also be expected. However, in such a method, the heater that was originally intended to strictly set the temperature at the tip of the needle 4 also takes charge of the evaporation effect of the solvent, and the amount of heating must be adjusted depending on the type of solvent. As a result, the temperature of the needle tip changes significantly, and there is a strong possibility that ionization will not occur to 1 lqW#.

その点、本発明においては、絶縁棒12を設けると共に
該絶縁棒の周囲にヒータを巻回して濃縮作用を専門に受
持たせているため、針4の先端部の温度を常に所定湯度
に設定することができ、そのような恐れはない。
On this point, in the present invention, the insulating rod 12 is provided and a heater is wound around the insulating rod to take charge of the concentration function, so that the temperature at the tip of the needle 4 is always maintained at a predetermined hot water temperature. You can set it and there is no such fear.

第2図は本発明の他の実施例を示し、本実施例において
はコロナ放電部3が上方に移されており、該コロナ放電
部で生成される励起されたキャリアガス原子が絶縁棒1
2に沿って針4の先端部へ向けて流れるようにされてい
る。
FIG. 2 shows another embodiment of the invention, in which the corona discharge section 3 is moved upwards, and the excited carrier gas atoms generated in the corona discharge section are transferred to the insulating rod 1.
2 toward the tip of the needle 4.

このような構成になせば、針4の先端に供給される濃縮
された試料成分が第1図の実施例と同様にイオン化され
ると共に、更に以下に述べるような過程に従っても試料
イオンが生成されるため、試料イオンの生成量を更に増
大させることができる。
With this configuration, the concentrated sample components supplied to the tip of the needle 4 will be ionized in the same way as in the embodiment shown in FIG. 1, and sample ions will also be generated according to the process described below. Therefore, the amount of sample ions generated can be further increased.

即ち、絶縁棒12に沿って流れる励起されたキャリアガ
ス原子により、該絶縁棒表面付近に存在する溶媒成分S
がイオン化されてプロトン付加イオンSH+が生成され
る。ヒータ14に印加される電圧はこの際に生ずる電子
を取除く役割をも果す。次いでこのイオンSH+とのプ
ロトン移行反応により試料Mがイオン化されてMH+が
生成される。
That is, the excited carrier gas atoms flowing along the insulating rod 12 cause the solvent component S present near the surface of the insulating rod 12 to
is ionized to generate protonated ions SH+. The voltage applied to the heater 14 also serves to remove the electrons generated at this time. Next, sample M is ionized by a proton transfer reaction with this ion SH+, and MH+ is generated.

尚、第1図、第2図の実施例とも、溶媒の種類によって
は絶縁棒12の表面に良く付着しなかったり、途中で全
部蒸発してしまう可能性がある。
In both the embodiments shown in FIGS. 1 and 2, depending on the type of solvent, it may not adhere well to the surface of the insulating rod 12, or it may completely evaporate during the process.

そのような場合には、例えば絶縁棒の表面に良く付着す
るマトリクスをその表面に針4の先端部へ向けて定常的
に流しておき、その上に流出液を乗せて針4の先端部へ
運ぶようにすることも考えられる。
In such a case, for example, a matrix that adheres well to the surface of the insulating rod is constantly flowed onto the surface toward the tip of the needle 4, and the effluent is placed on top of the matrix and the matrix is poured onto the surface of the insulating rod and directed toward the tip of the needle 4. It is also possible to carry it.

又、上記2つの実施例における筒体2は必ずしも必要で
はなく、コロナ放電部3.試料保持針4及びその他の構
成要素を適宜な支持体で支えれば取除くことが可能であ
る。
Further, the cylinder body 2 in the above two embodiments is not necessarily required, and the corona discharge section 3. It is possible to remove the sample holding needle 4 and other components by supporting them with a suitable support.

[発明の効果] 以上詳述した如く、本発明によれば、液体クロマトグラ
フからの流出液をオンラインで連続的に導入し、溶媒を
選択的に蒸発させることにより目的成分を濃縮してイオ
ン化することのできるAPIイオン源が実現される。
[Effects of the Invention] As detailed above, according to the present invention, the effluent from the liquid chromatograph is continuously introduced online, and the target component is concentrated and ionized by selectively evaporating the solvent. A capable API ion source is realized.

又、第2図の実施例によれば、プロトン移行反応によっ
て試料のイオン化効率を更に高めることが可能である。
Further, according to the embodiment shown in FIG. 2, it is possible to further increase the ionization efficiency of the sample by the proton transfer reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々本発明を実施したAPIイオン
源の一例を示す断面図、第3図は従来例を説明するため
の断面図である。 1:AP[イオン源  2:筒体 3:コロナ放電部   4:試料保持針7.8ニオリフ
イス板 11.14:ヒータ12:絶縁棒     1
3:キャビラリ−15,16:電源
FIGS. 1 and 2 are cross-sectional views showing an example of an API ion source embodying the present invention, and FIG. 3 is a cross-sectional view for explaining a conventional example. 1: AP [Ion source 2: Cylindrical body 3: Corona discharge part 4: Sample holding needle 7.8 Niorifice plate 11.14: Heater 12: Insulating rod 1
3: Cavillary 15, 16: Power supply

Claims (2)

【特許請求の範囲】[Claims] (1)コロナ放電により励起されたキャリアガス原子を
生成するコロナ放電部と、励起されたキャリアガス原子
の流れの中に先端が配置される針状電極とを備えた大気
圧イオン源において、該針状電極先端部に先端が近接す
るように絶縁体棒を配置し、液体試料を該絶縁体棒の表
面を伝わらせて前記針状電極先端部へ供給すると共に、
該絶縁体棒表面を伝わる液体試料を外側から加熱するた
めのヒータを設けたことを特徴とする大気圧イオン源。
(1) An atmospheric pressure ion source equipped with a corona discharge section that generates carrier gas atoms excited by corona discharge, and a needle-shaped electrode whose tip is disposed in the flow of the excited carrier gas atoms. Arranging an insulator rod so that its tip is close to the tip of the needle electrode, and supplying the liquid sample to the tip of the needle electrode by passing the liquid sample along the surface of the insulator rod,
An atmospheric pressure ion source characterized by being provided with a heater for heating the liquid sample traveling on the surface of the insulator rod from the outside.
(2)前記ヒータに電圧を印加するようにした特許請求
の範囲第1項記載の大気圧イオン源。
(2) The atmospheric pressure ion source according to claim 1, wherein a voltage is applied to the heater.
JP60086837A 1985-04-23 1985-04-23 Atmospheric pressure ion source Pending JPS61245455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086837A JPS61245455A (en) 1985-04-23 1985-04-23 Atmospheric pressure ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086837A JPS61245455A (en) 1985-04-23 1985-04-23 Atmospheric pressure ion source

Publications (1)

Publication Number Publication Date
JPS61245455A true JPS61245455A (en) 1986-10-31

Family

ID=13897920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086837A Pending JPS61245455A (en) 1985-04-23 1985-04-23 Atmospheric pressure ion source

Country Status (1)

Country Link
JP (1) JPS61245455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052735A1 (en) * 1999-03-05 2000-09-08 Bruker Daltronics, Inc. Ionization chamber for atmospheric pressure ionization mass spectrometry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052735A1 (en) * 1999-03-05 2000-09-08 Bruker Daltronics, Inc. Ionization chamber for atmospheric pressure ionization mass spectrometry
US6410914B1 (en) 1999-03-05 2002-06-25 Bruker Daltonics Inc. Ionization chamber for atmospheric pressure ionization mass spectrometry

Similar Documents

Publication Publication Date Title
JP4600909B2 (en) Atmospheric pressure photoionization (APPI): a new ionization method for liquid chromatography-mass spectrometry
US4842701A (en) Combined electrophoretic-separation and electrospray method and system
US8242459B2 (en) Device for desorption and ionization
JPH02503354A (en) Interfaces and methods for coupling electrophoresis-electrospray
US11631578B2 (en) Multiple gas flow ionizer
Chen et al. Thermal effects on electrospray ionization ion mobility spectrometry
Hallen et al. Preliminary investigation of ion mobility spectrometry after capillary electrophoretic introduction
JP2003035698A (en) Separation analysis method and apparatus of anionic compound
JPH08236064A (en) Liquid chromatographic mass spectrometer
JPS61245455A (en) Atmospheric pressure ion source
JPS60127453A (en) Atmospheric pressure ionizing type specimen introducing apparatus
JP3808482B2 (en) Ion source, mass spectrometry method and mass spectrometer
US5225651A (en) Device for low-temperature plasma surface treatment of a plate or a sheet of a metallic material
US10466214B2 (en) Ionization device
JPS60237354A (en) Thermal spray ion source and method of improving efficiency thereof
US6515267B1 (en) Method of and apparatus for soft ionization of analyte substances
JPH02135655A (en) Atmospheric pressure ionized mass spectrometer
JP2000106127A (en) Atmospheric pressure ion source
CA2001237A1 (en) Hollow electrode plasma excitation source
JP3618262B2 (en) Mass spectrometer and its ion source
JP3611817B2 (en) Mass spectrometer
Sikharulidze et al. Two-cascade glow discharge ion source
JPH0542609Y2 (en)
JPH0943201A (en) Liquid chromatograph mass spectrometer
JPS58197647A (en) Method of ionization