JPS61245404A - Manufacture of conducting high polymer film - Google Patents

Manufacture of conducting high polymer film

Info

Publication number
JPS61245404A
JPS61245404A JP8648985A JP8648985A JPS61245404A JP S61245404 A JPS61245404 A JP S61245404A JP 8648985 A JP8648985 A JP 8648985A JP 8648985 A JP8648985 A JP 8648985A JP S61245404 A JPS61245404 A JP S61245404A
Authority
JP
Japan
Prior art keywords
polymer
micropores
conductive
electrode
polymer membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8648985A
Other languages
Japanese (ja)
Inventor
西 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP8648985A priority Critical patent/JPS61245404A/en
Publication of JPS61245404A publication Critical patent/JPS61245404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は導電性高分子膜の形成方法に関し、詳細には微
細孔を有する高分子膜を用いて電解重合により導電性を
付与する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of forming a conductive polymer membrane, and more particularly to a method of imparting conductivity by electrolytic polymerization using a polymer membrane having micropores.

従来の技術 従来、高分子による導電性複合体の製造方法としては、
導電性フィラーを高分子マトリックス中しψ−史畳11
1L−派t111tA方仲h1田いられていたーしかし
、この方法ではフィラー添加によって複合体の物性が著
しく低下し、使用するフィラーによって、その導電性が
、ある範囲でしかコントロールできないという欠点があ
った。またエレクトロニクス関連に使用T6aにおいて
、フィルム表面に複雑な形状の導電層を形成することが
困難であり、またフィラーの脱落が生ずるおそれもあっ
た。また、日本電信電話株式会社、IBMから発表され
ている電解重合による高分子膜の導電化技術、例えば、
ボリマーブレブリンツ、ジャパン、33巻第9号251
5〜18頁(1984年)等では、陽極上にポリ塩化ビ
ニル(PVO)溶液を塗布、乾燥して電極面にPvC薄
膜を形成せしめた後、ピロール、テトラエチルアンモニ
ウムバークロレート及びアセトニトリルからなる電解質
溶液中で電解重合を行なうことによってPvC薄膜を導
電化するものであり、上記欠点を解決するものではある
が、しかしながら、この方法では電解重合条件上の制約
によって使用可能な高分子が限られ、厚膜のものが得難
い等の欠点があった。
Conventional technology Conventionally, methods for producing conductive composites using polymers include:
Conductive filler in polymer matrix ψ-shitatami 11
However, this method has the disadvantage that the addition of filler significantly reduces the physical properties of the composite, and that the conductivity can only be controlled within a certain range depending on the filler used. Ta. Furthermore, in T6a used in electronics-related applications, it was difficult to form a conductive layer with a complicated shape on the film surface, and there was also a risk that the filler would fall off. In addition, there are also technologies for making polymer membranes conductive through electrolytic polymerization announced by Nippon Telegraph and Telephone Corporation and IBM, such as
Volima Breblinz, Japan, Vol. 33, No. 9, 251
5-18 (1984) etc., a polyvinyl chloride (PVO) solution is applied onto the anode, dried to form a PvC thin film on the electrode surface, and then an electrolyte solution consisting of pyrrole, tetraethylammonium verchlorate and acetonitrile is applied. This method solves the above-mentioned drawbacks by making the PvC thin film conductive by electrolytically polymerizing it in the medium. There were drawbacks such as difficulty in obtaining membrane products.

発明が解決しようとする問題点 本発明者は、前記欠点を解決すべく鋭意研究の結果、電
極を被覆する高分子膜に微細孔を付与することによって
、高分子素材、膜厚の如何に拘らず、導電性ポリマーが
電解重合により形成されることを見い出し、この知見に
基いて本発明を完成するに到った。
Problems to be Solved by the Invention As a result of intensive research in order to solve the above-mentioned drawbacks, the inventor of the present invention has found that by providing micropores to the polymer membrane that covers the electrode, it is possible to solve the problem regardless of the polymer material or film thickness. First, it was discovered that a conductive polymer can be formed by electrolytic polymerization, and based on this knowledge, the present invention was completed.

問題点を解決Tるための手段 本発明のかかる目的は、微細孔を有する高分子膜で電極
を被覆し、導電性高分子形成能を有する芳香族化合物、
ヘテロ環式化合物及びそれらの誘導体の少なくとも1つ
以上をモノマー成分として含む電解質溶液中で電解重合
を行なうことにより達成される。
Means for Solving the Problems An object of the present invention is to coat an electrode with a polymer membrane having micropores, and to coat an electrode with an aromatic compound having the ability to form a conductive polymer.
This is achieved by electrolytic polymerization in an electrolyte solution containing at least one of heterocyclic compounds and their derivatives as a monomer component.

微細孔を高分子膜に付与する方法としては、抽出法1分
解法及び機械的操作法が挙げられる。抽出法には、高分
子に対しては*m媒であり、高分子溶液の溶媒とは任意
の割合で混合できる溶媒中に適宜方法で層状に展延した
高分子溶液を浸漬し凝固、洗浄、乾燥させることによっ
て微細孔ををする高分子膜を作る方法、及び高分子材料
に特定の物質を均一に分散させて高分子膜に形成した後
高分子に対しては貧溶媒であり前記特定の物質に対して
は良好な溶解性を有Tる溶媒で処理し、特定物質を抽出
除去する方法があり、また分解法には、高分子膜中に均
一に分散せしめた発泡剤を、熱、触媒等で分解する方法
の他、高分子膜中に均一に分散せしめた物質を蒸発また
は昇華等により揮散せしめる方法も含まれる。また機械
的操作法としては、高分子膜のパンチングや機械撹拌発
泡による方法があり、これらそれぞれの方法又はこれら
の二つ以上の組合せにより、α001〜1,000μm
好ましくはα01〜100μmの微細孔を有する高分子
膜を形成することができる。微細孔は、できれば膜の表
裏面を導通ずることが好ましい。
Examples of methods for imparting micropores to a polymer membrane include extraction method 1 decomposition method and mechanical manipulation method. The extraction method involves immersing a polymer solution spread in a layered form using an appropriate method in a solvent that is a *m medium for polymers and can be mixed with the solvent of the polymer solution in any proportion, coagulating it, and washing it. , a method of making a polymer membrane with micropores by drying, and a method of forming a polymer membrane by uniformly dispersing a specific substance in a polymer material, and then using the specified substance as a poor solvent for the polymer. There is a method for extracting and removing specific substances by treating them with a T solvent that has good solubility.Also, for the decomposition method, a blowing agent uniformly dispersed in a polymer membrane is heated. In addition to decomposition methods using catalysts, etc., methods include methods in which a substance uniformly dispersed in a polymer membrane is volatilized by evaporation, sublimation, or the like. Mechanical manipulation methods include punching of polymer membranes and mechanical stirring and foaming, and each of these methods or a combination of two or more of these methods can be used to obtain α001 to 1,000 μm
Preferably, a polymer membrane having micropores of α01 to 100 μm can be formed. It is preferable that the micropores provide conduction between the front and back surfaces of the membrane.

一般に高分子材料は、電気絶縁性が高<、10°12s
/cm程度以下の電導度を有する0本発明の高分子とは
、かかる電導度を有する高分子材料を指称し、これに属
する高分子としては、ポリエチレン。
In general, polymer materials have high electrical insulation properties of <10°12s
The polymer of the present invention having an electrical conductivity of approximately /cm or less refers to a polymer material having such an electrical conductivity, and examples of polymers belonging to this include polyethylene.

1ポリプロピレン等オレフィン系高分子;ポリブタジェ
ン、ポリイソプレン、スチレン・ブタジェンゴム、アク
リロニトリル・ブタジェンゴム、スチレン・ブタジェン
・スチレン、スチレン・イソプレン・スチレン、アクリ
ロニトリル・ブタジェン・スチレン摺脂等のジエン系高
分子フボリ塩化ビニル、エチレン・酢酸ビニル共重合体
−塩化ビニルグラフト重合体、ポリスチレン等ビニル、
ビニリデン系高分子;ポリウレタン、ポリアミド、ポリ
ウレア、ポリイミド等含窒素系高分子;ポリアクリレー
ト、ポリアクリロニトリル等のアクリル系高分子等の重
合体又はこれらのポリマーブレンド物を挙げることがで
きる。
1 Olefin polymers such as polypropylene; diene polymers such as polybutadiene, polyisoprene, styrene/butadiene rubber, acrylonitrile/butadiene rubber, styrene/butadiene/styrene, styrene/isoprene/styrene, acrylonitrile/butadiene/styrene resin; Ethylene/vinyl acetate copolymer-vinyl chloride graft polymer, polystyrene, etc. vinyl,
Examples include vinylidene polymers; nitrogen-containing polymers such as polyurethane, polyamide, polyurea, and polyimide; polymers such as acrylic polymers such as polyacrylate and polyacrylonitrile; and polymer blends thereof.

本発明における上記高分子には、所望により、導電性フ
ィラー、導電性繊維及び帯電防止剤等を添加Tることが
できる。導電性フィラーとしてはカーボンブラックやA
g 、 Ou等の金属粉+ InO2+Sn02等の金
属酸化物粉、又はガラスピーズ等の担体に上記金属粉、
金属酸化物粉を担持させたも維または導電性ウィスカー
を言う。また、帯電防止剤としては、アニオン、カチオ
ン系界面活性剤が挙げられる。
If desired, conductive fillers, conductive fibers, antistatic agents, and the like can be added to the polymer in the present invention. Carbon black and A are used as conductive fillers.
g, metal powder such as O + metal oxide powder such as InO2 + Sn02, or the above metal powder on a carrier such as glass beads,
Refers to fibers or conductive whiskers that support metal oxide powder. Further, examples of the antistatic agent include anionic and cationic surfactants.

本発明においては、導電性高分子重合体を形成し得る芳
香族化合旬、ヘテロ環式化合物及びそれらの誘導体の少
なくとも1つ以上がモノマー成分として使用されるが、
上記芳香族化合物としてはベンゼン、トルエン、キシレ
ン、アニリン等が挙げられ、ヘテロ環式化合物の例とし
ては、ピロール、N−メチルピロール、N−フェニルピ
ロール。
In the present invention, at least one of aromatic compounds, heterocyclic compounds, and derivatives thereof that can form a conductive polymer is used as a monomer component,
Examples of the aromatic compounds include benzene, toluene, xylene, aniline, etc., and examples of the heterocyclic compounds include pyrrole, N-methylpyrrole, and N-phenylpyrrole.

21&2:3′ピロロピロール、インドール、プリン。21 & 2: 3'pyrrolopyrrole, indole, purine.

アズレン、インドリジン、イミダゾール、チオフェン、
フラン、オキサゾール、ベンゾフラン、ベンゾチオフェ
ン、チェノチオフェン、ジベンゾフラン、チェピン、1
.3.4チアダイアゾール等を挙げることができる。
azulene, indolizine, imidazole, thiophene,
Furan, oxazole, benzofuran, benzothiophene, chenothiophene, dibenzofuran, chepin, 1
.. 3.4 thiadiazole, etc. can be mentioned.

電極材料としては、金属、金属酸化物、炭素等が考えら
れる。陽極に金属、金属酸化物を用いる場合、又は陰極
に金属酸化物を用いる場合には、重合電位とそれぞれの
電極材料のイオン化電位に鰯意する必要がある。
Possible electrode materials include metals, metal oxides, carbon, and the like. When using a metal or metal oxide for the anode, or when using a metal oxide for the cathode, it is necessary to pay attention to the polymerization potential and the ionization potential of each electrode material.

特に、陽極において金属及び金属酸化瞼がイオンとして
溶出するような系では、高分子は生皮しない。
In particular, in systems where metals and metal oxides are eluted as ions at the anode, polymers do not raw.

次に、本発明方法の手順を述べる。Next, the procedure of the method of the present invention will be described.

導電性高分子を形成することができるモノマーに電解質
及び溶媒を加えて電解質溶液を調製する。
An electrolyte solution is prepared by adding an electrolyte and a solvent to a monomer capable of forming a conductive polymer.

他方、使用されるモノマーによって選択される陽極上に
、微細孔を有する高分子膜を直接形成せしめるか、また
は微細孔を有Tる高分子薄膜を別に作成し、この高分子
膜で陽極を被覆する。
On the other hand, a polymer film with micropores is directly formed on the anode selected depending on the monomer used, or a thin polymer film with micropores is separately created and the anode is covered with this polymer film. do.

この陽極と対極とから構成される電解槽を用意し、この
槽内で前記電解質溶液の電解重合反応を行なう。
An electrolytic cell consisting of this anode and a counter electrode is prepared, and the electrolytic polymerization reaction of the electrolyte solution is carried out in this cell.

この際、使用されるモノマー、高分子膜の厚さ。In this case, the monomer used and the thickness of the polymer membrane.

微細孔の孔径、電解質溶液の電導度、電解重合後の複合
膜の所属導電性等を勘案して、電圧、電解液温度、電解
時間等を適宜設定して電解重合反応を行なう。
The electrolytic polymerization reaction is carried out by appropriately setting the voltage, electrolytic solution temperature, electrolytic time, etc., taking into consideration the pore diameter of the micropores, the conductivity of the electrolytic solution, the inherent conductivity of the composite membrane after electrolytic polymerization, and the like.

電解終了後、電極を引上げ、洗浄、乾燥し、次いで高分
子膜を電極から剥離し、所望の導電性高分子膜を得るこ
とができる。
After the electrolysis is completed, the electrode is pulled up, washed and dried, and then the polymer membrane is peeled off from the electrode to obtain a desired conductive polymer membrane.

作用 本発明においては、モノマーが高分子膜中を拡散し、電
極と高分子膜の界面でで導電性高分子が成長し、高分子
膜の中に網目構造を形成するのとは異なる機構によるも
のと考えられる。
Function: In the present invention, the monomer diffuses through the polymer membrane, and the conductive polymer grows at the interface between the electrode and the polymer membrane, forming a network structure within the polymer membrane. considered to be a thing.

すなわち、高分子膜の微細孔を通して導電性高分子形成
能を有するモノマーが、高分子膜と電極との界面から導
電性高分子を速かに形成するものと推測される。
That is, it is presumed that the monomer having the ability to form a conductive polymer through the micropores of the polymer membrane quickly forms the conductive polymer from the interface between the polymer membrane and the electrode.

発明の効果 かくして、本発明によれば、所望の高分子膜に微細孔を
付与し、これを基材として用いるので、従来技術と比較
して基材高分子の高分子管性を低下せしめることなく、
電解条件を調整Tることにより、11導度100 S 
/cmから絶縁体に至る、はぼ全ての範囲にわたる導電
性を付与することが可能であり、電極の形状を工夫する
ことによって複雑な形状のパターンのものも容易に得る
ことができ、導電性高分子の脱落は生じない。
Effects of the Invention Thus, according to the present invention, since micropores are provided to a desired polymer membrane and this is used as a base material, the polymer tubularity of the base polymer is reduced compared to the prior art. Without,
By adjusting the electrolytic conditions, the conductivity is 100 S.
It is possible to provide conductivity over almost the entire range, from /cm to insulators, and by devising the shape of the electrode, complex patterns can be easily obtained. No shedding of polymer occurs.

また1本発明によればモノマーは微細孔を通じて電極界
面に到達するので、電解重合条件は大幅に緩和され、例
えば電解質溶液の溶媒に水を使用することもできる。ま
た、膜が微細孔を有しているために、膜厚が大となって
も速かに電解重合を開始することが確認されており、膜
厚の厚い導電性膜を形成することができる。
Furthermore, according to the present invention, the monomer reaches the electrode interface through the micropores, so the electrolytic polymerization conditions are significantly relaxed, and for example, water can be used as a solvent for the electrolyte solution. In addition, it has been confirmed that because the film has micropores, electrolytic polymerization starts quickly even when the film thickness becomes large, making it possible to form a thick conductive film. .

実施例 以下、本発明を実施例により具体的に説明するが、本発
明は、これら実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例 l ネサガラス(ガラス面にSnO2+ InO2を蒸着せ
しめたもの]上に、アミノ酸変性ポリウレタン溶液(U
AIω、セイコー化成(株)製)100g、メチルエチ
ルケトン100gよりなる高分子溶液を1.0鰭厚に塗
布、乾燥させることによって、α01〜α02μmの径
の微細孔を持つ100μm厚さの高分子膜を形成せしめ
た。
Example 1 An amino acid-modified polyurethane solution (U
A polymer solution consisting of 100 g of AIω (manufactured by Seiko Kasei Co., Ltd.) and 100 g of methyl ethyl ketone was applied to a thickness of 1.0 fin and dried to form a 100 μm thick polymer membrane with micropores with a diameter of α01 to α02 μm. formed.

次に、ピロールα06モル、テトラエチルアンモニウム
バークロレートα1モル、アセトニトリル11よりなる
電解質溶液に前記高分子膜を形成せしめたネサガラスを
8分間浸漬したのち、このものを陽極とし、無処理ネサ
ガラスを対極として20℃、Z5Vで2分間電解反応を
行なった。電解終了後、洗浄、乾燥し半すガラスから高
分子膜を剥離した。
Next, the Nesa Glass with the polymer film formed thereon was immersed for 8 minutes in an electrolyte solution consisting of 06 moles of pyrrole α, 1 mole of tetraethylammonium verchlorate α, and 11 moles of acetonitrile. An electrolytic reaction was carried out at ℃ and Z5V for 2 minutes. After the electrolysis was completed, the polymer membrane was washed, dried, and peeled off from the half glass.

この高分子複合膜の表面電導度は、2X10S/cr+
’+であった。
The surface conductivity of this polymer composite film is 2X10S/cr+
' It was +.

実施例 2 ネサガラス上にポリウレタンエマルジョン(UE 10
00 N (三洋化成c株)製)100g、水30g。
Example 2 Polyurethane emulsion (UE 10) on Nesa glass
00N (manufactured by Sanyo Chemical Co., Ltd.) 100g, water 30g.

トルエン15g、メチルエチルケトン45gからなる溶
液を1.0朋厚に塗布、乾燥せしめることによって、5
〜10μmの径の微細孔を持つ100μmの厚さの高分
子膜をネサガラス上に形成せしめた。このものを実施例
1と同一の電解質液に2分間浸漬後、これを陽極とし、
無処理のネサガラスを対極として20℃で25Vで2分
間電解反応を行ない、表面基導度2 X 1O−3S 
/cmの導電性高分子複合膜を得た。
A solution consisting of 15 g of toluene and 45 g of methyl ethyl ketone was applied to a thickness of 1.0 mm and dried.
A 100 μm thick polymer membrane with micropores of ~10 μm in diameter was formed on Nesa glass. This product was immersed in the same electrolyte solution as in Example 1 for 2 minutes, and then used as an anode.
An electrolytic reaction was carried out at 20°C and 25V for 2 minutes using untreated Nesa glass as a counter electrode, and the surface group conductivity was 2 x 1O-3S.
A conductive polymer composite film with a thickness of /cm was obtained.

比較例 実施例2で用いたポリウレタンエマルジョンを蒸発乾固
し、この乾固物10gにジメチルホルムアミド45gを
加えて溶解せしめ、次いでメチルエチルケトン45gを
加えてDMF/MEK50150のポリウレタン10%
溶液を調製した。この溶液をα25簡厚にネサガラス上
に塗布し乾燥したものを試料電極とし、無処理のネサガ
ラスを対極として、実施例1で用いたと同じ電解液で2
0℃、3V で10分間電解を行なったが、均質なビロ
ール重合体をネットワークとした複合膜は得られなかっ
た。
Comparative Example The polyurethane emulsion used in Example 2 was evaporated to dryness, and 45 g of dimethylformamide was added to 10 g of the dried product to dissolve it. Then, 45 g of methyl ethyl ketone was added to obtain 10% polyurethane of DMF/MEK50150.
A solution was prepared. This solution was applied to a thickness of α25 on Nesa glass and dried to serve as a sample electrode, and untreated Nesa glass was used as a counter electrode.
Electrolysis was carried out at 0°C and 3V for 10 minutes, but a composite membrane having a homogeneous virole polymer network could not be obtained.

実施例 3 ネサガラス上に実施例2で用いたと同じポリウレタンエ
マルジョン100g、水30g、トルエン45gからな
る溶液を1.0鰭厚に塗布、乾燥せしめることによって
、5〜10μmの径の微細孔を有する100μmの厚さ
の高分子膜をネサガラス上に形成せしめた。
Example 3 A solution consisting of 100 g of the same polyurethane emulsion used in Example 2, 30 g of water, and 45 g of toluene was applied onto Nesa Glass to a thickness of 1.0 fin, and dried to form 100 μm micropores with a diameter of 5 to 10 μm. A polymer film with a thickness of

このものをチオフェンα1モル、リチウムテトラフロロ
ボレートα1モル、アセトニトリル11よりなる電解質
溶液に2分間浸漬後、これを陽極とし、白金電極を対極
として20℃で20V、2分間電解反応を行ない、表面
基導度5 X 1O−3S /cm の導電性高分子複
合膜を得た。
After immersing this material in an electrolyte solution consisting of 1 mol of thiophene α, 1 mol of lithium tetrafluoroborate α, and 11 mol of acetonitrile for 2 minutes, an electrolytic reaction was carried out at 20°C for 2 minutes at 20V using this as an anode and a platinum electrode as a counter electrode, and the surface groups were A conductive polymer composite film having a conductivity of 5 x 1O-3S/cm was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1、微細孔を有する高分子膜で電極を被覆し、導電性高
分子形成能を有する芳香族化合物、ヘテロ環式化合物及
びそれらの誘導体の少なくとも1つ以上をモノマー成分
として含む電解質溶液中で電解重合を行なうことを特徴
とする導電性高分子膜の製造方法。
1. Electrode is coated with a polymer membrane having micropores and electrolyzed in an electrolyte solution containing as a monomer component at least one of aromatic compounds, heterocyclic compounds, and their derivatives capable of forming conductive polymers. A method for producing a conductive polymer film, characterized by carrying out polymerization.
JP8648985A 1985-04-24 1985-04-24 Manufacture of conducting high polymer film Pending JPS61245404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8648985A JPS61245404A (en) 1985-04-24 1985-04-24 Manufacture of conducting high polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8648985A JPS61245404A (en) 1985-04-24 1985-04-24 Manufacture of conducting high polymer film

Publications (1)

Publication Number Publication Date
JPS61245404A true JPS61245404A (en) 1986-10-31

Family

ID=13888394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8648985A Pending JPS61245404A (en) 1985-04-24 1985-04-24 Manufacture of conducting high polymer film

Country Status (1)

Country Link
JP (1) JPS61245404A (en)

Similar Documents

Publication Publication Date Title
Tieke et al. Conducting polypyrrole-polyimide composite films
US4582575A (en) Electrically conductive composites and method of preparation
US4680236A (en) Electrodeless heterogeneous polypyrrole composite
US4724053A (en) Method for the electropolymerization of conductive polymers
JPS60226524A (en) Electroconductive polymer
CA1311715C (en) Method for the electropolymerization of conductive polymers
JPH01158067A (en) Conductive polymer composition and production thereof
JP2575672B2 (en) Non-conductive material plating method
JPS61245404A (en) Manufacture of conducting high polymer film
CA1281784C (en) Flexible, electrically conductive composites, process for their manufacture, and their use
JPH0369371B2 (en)
JPH0556367B2 (en)
JPH0678493B2 (en) Method for producing conductive polymer composition
JPS61111336A (en) Preparation of composite material
JPS63128034A (en) Electrically conductive porous composite
JPS61127736A (en) Production of electrically conductive resin composite
JPH054982B2 (en)
JPH01261471A (en) Conductive polymer having improved solubility
JPH054983B2 (en)
JPH047521B2 (en)
JPS61245413A (en) Manufacture of conductive high polymer composite film
JPH0739505B2 (en) Method for producing porous electropolymerized membrane
JPH0634929B2 (en) Improved anion exchange membrane
JPH0611801B2 (en) Conductive film
JPS62138525A (en) Production of electrically conductive polymeric material