JPS61244588A - Optical information-recording medium - Google Patents

Optical information-recording medium

Info

Publication number
JPS61244588A
JPS61244588A JP60086928A JP8692885A JPS61244588A JP S61244588 A JPS61244588 A JP S61244588A JP 60086928 A JP60086928 A JP 60086928A JP 8692885 A JP8692885 A JP 8692885A JP S61244588 A JPS61244588 A JP S61244588A
Authority
JP
Japan
Prior art keywords
recording
medium
recording medium
substrate
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086928A
Other languages
Japanese (ja)
Inventor
Sotaro Edokoro
繪所 壯太郎
Masaki Ito
雅樹 伊藤
Masaru Matsuoka
賢 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60086928A priority Critical patent/JPS61244588A/en
Publication of JPS61244588A publication Critical patent/JPS61244588A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a recording medium having high sensitivity, being chemically stable and capable of being easily produced, by providing an organic thin film comprising a specified anthraquinone coloring matter as a main constituent on the surface of a base. CONSTITUTION:An organic thin film comprising an anthraquinone coloring matter of formula (I) as a main constituent is provided as a recording layer, in an optical information-recording medium for recording and reading information by laser beams which comprises a recording layer 20 on either one or both sides of a base 10. The coloring matter shows a high absorption in a near infrared region, and is suitable for recording and reproduction by semiconductor laser light.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザ元によって情報を記録再生することので
きる光学記録媒体に関し、さらに詳しくは元エネルギー
によ勺物質状態の変化を利用して記録を行う光学的情報
記録媒体に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an optical recording medium on which information can be recorded and reproduced using a laser source, and more specifically, the present invention relates to an optical recording medium that can record and reproduce information using a laser source, and more specifically, it relates to an optical recording medium that can record and reproduce information using a laser source. The present invention relates to an optical information recording medium that performs.

(従来技術とその問題点) 従来、この種の光学記録媒体としてTe合金、Te酸化
物、バブル形成媒体及び有機色素等が用いられていた。
(Prior Art and its Problems) Conventionally, Te alloys, Te oxides, bubble-forming media, organic dyes, and the like have been used as this type of optical recording medium.

Te合金は%Teと半導体、例えばAs、Se等の固溶
合金として用いられている。この媒体は、比較的書き込
み感度が高く、又記録再生の光学系を小型にし得る半導
体レーザにも適合するが、化学的に不安定であり、空気
中放置で容易に劣化することと、構成材料(Te、 A
s、 8s等)が毒性を示すという問題点がある。
Te alloy is used as a solid solution alloy of %Te and semiconductors such as As and Se. This medium has relatively high writing sensitivity and is compatible with semiconductor lasers, which can make the optical system for recording and reproduction compact, but it is chemically unstable and easily deteriorates when left in the air. (Te, A
s, 8s, etc.) are toxic.

Te酸化物は、 Te合金より安定であるが、その光学
特性、例えば吸収率、反射率が酸化状態に敏感に依存す
る。そのため、この媒体は媒体形成時に酸化状態を厳し
く制御しなければならないという欠点を有する。
Although Te oxide is more stable than Te alloy, its optical properties, such as absorption and reflectance, depend sensitively on the oxidation state. Therefore, this medium has the disadvantage that the oxidation state must be tightly controlled during the formation of the medium.

バブル形成媒体は、反射層、透過層、吸収層から成る層
構造であり、繰り返し反射干渉によυ元の吸収率を高め
高感度化を図っている。したがって、この媒体は現在数
も高感度な媒体の一つであるが、多層構造のため成膜回
数が多いことと、繰り返し反射干渉が各層の厚さに大き
く依存するため、成膜時の膜厚制御を厳しく行なわなけ
ればならないという欠点がある。
The bubble-forming medium has a layered structure consisting of a reflective layer, a transmitting layer, and an absorbing layer, and uses repeated reflection interference to increase the absorption rate of the υ element to achieve high sensitivity. Therefore, this medium is currently one of the most highly sensitive media, but because of its multilayer structure it requires a large number of film formations, and because the repeated reflection interference largely depends on the thickness of each layer, The disadvantage is that the thickness must be strictly controlled.

一方、有機色素媒体は種々の形態で開発されている。そ
れらを大別すると色素単体型と色素を高分子樹脂中に溶
剤で溶解させた相溶型に分けられる0相溶型の媒体はた
とえば特開昭55−161690号に開示されているよ
うに、高分子樹脂であるポリビニールアセテートに色素
としてポリエステルイエローを浴剤で相溶し、回転塗布
法で基板上に形成される。しかしながら一般に相溶型の
媒体は、媒体形成法が溶媒塗布に限られ、基板に脱脂を
使用する場合は、樹脂を溶解しない溶剤を選択しなけれ
ばならないという制約がある。一方、色素単体型の媒体
としては、たとえばスクアリリウム色素を蒸着法で形成
する媒体が特開昭56−4622.1号に開示されてい
る。この色素は半導体レーザの発振波長である近赤外成
長領域に比較的大きな吸収があるが、記録感度はTe合
金よりも悪い。
On the other hand, organic dye media have been developed in various forms. Broadly speaking, they can be divided into a simple dye type and a compatible type in which the dye is dissolved in a polymer resin using a solvent.The 0-compatible type medium is disclosed in JP-A-55-161690, for example. Polyester yellow as a pigment is dissolved in polyvinyl acetate, which is a polymeric resin, using a bath agent, and it is formed on a substrate by spin coating. However, in general, the method for forming a compatible medium is limited to solvent coating, and when degreasing the substrate, a solvent must be selected that does not dissolve the resin. On the other hand, as a single dye medium, for example, a medium in which a squarylium dye is formed by vapor deposition is disclosed in Japanese Patent Application Laid-open No. 4622.1/1983. Although this dye has relatively large absorption in the near-infrared growth region, which is the oscillation wavelength of a semiconductor laser, its recording sensitivity is lower than that of Te alloy.

(発明の目的) 本発明の目的は、前述の従来技術の欠点を改良し、高感
度で化学的に安定な光学的情報記録媒体を提供すること
である。
(Objective of the Invention) An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a highly sensitive and chemically stable optical information recording medium.

(発明の構成) すなわち本発明は、基板の片側または両側に記録層を設
け、情報をレーザ光線によって記録し。
(Structure of the Invention) That is, in the present invention, a recording layer is provided on one or both sides of a substrate, and information is recorded using a laser beam.

かつ読み取る光学的情報記録媒体において、前記記録層
として化学構造式 で表わされるアントラキノン系色素を主成分とする有機
薄膜を形成したことを特徴とする。
The optical information recording medium to be read is characterized in that the recording layer is an organic thin film containing an anthraquinone dye represented by the chemical structural formula as a main component.

(構成の詳細な説明) 上記化学構造式で表わされるアントラキノン系色素は近
赤外線領域に大きな吸収を示し、半導体レーザ元による
記録再生に好適である。この色素の合成例を次に示す。
(Detailed description of the structure) The anthraquinone dye represented by the above chemical structural formula exhibits large absorption in the near-infrared region, and is suitable for recording and reproduction using a semiconductor laser source. An example of synthesis of this dye is shown below.

(合成例) 2.3−ジブロモ−6,7,8,9−テトラフルオロキ
ニザリン10mmoI!をエタノール800mJに50
℃で俗解させる。一方%2−アミノチオフェノール24
 m matと水酸化カリウム24mmo/をエタノー
ル150mI!に加えて溶液とし、この溶液を上記キニ
ザリンの溶液に50℃で少しずつ加える。添加後50℃
で5時間反応させ冷却後生成物をろ過すると、はぼ定量
的収率でビス壌化体が得られ、クロロホルムから再結晶
することにより精製品が得られる。このビス項化体の同
定は質量分析と元素分析で行ない、目的物であることを
確認した。
(Synthesis example) 2.3-dibromo-6,7,8,9-tetrafluoroquinizaline 10 mmol! 50 to 800 mJ of ethanol
℃ to make it easy to understand. while% 2-aminothiophenol 24
m mat and 24 mmo/potassium hydroxide in 150 mI of ethanol! This solution is added little by little to the above quinizarin solution at 50°C. 50℃ after addition
After cooling for 5 hours and filtering the product, a bisammonium compound is obtained in an almost quantitative yield, and a purified product is obtained by recrystallization from chloroform. This bis-terminated product was identified by mass spectrometry and elemental analysis, and was confirmed to be the target product.

この色素の吸収スペクトルをクロロホルム中で測定する
と700.770.840 nmに吸収ピークが観測さ
れ、λmaxは770 nmであるとか分った。
When the absorption spectrum of this dye was measured in chloroform, an absorption peak was observed at 700.770.840 nm, and λmax was found to be 770 nm.

前記アントラキノン系色素は、比較的高温、高湿の環境
条件でも安定であり、Te合金のような空気中酸化によ
る劣化は示さない。このことは、保護膜無しで長期間の
使用に耐えることを意味する。
The anthraquinone dye is stable even under relatively high temperature and high humidity environmental conditions, and does not show deterioration due to air oxidation unlike Te alloys. This means that it can withstand long-term use without a protective film.

又この化合物は、一般の有機色素と同様に低い熱伝導率
を有してお多、その値は金属の1〜上である。したがっ
て、レーザ光記録時の媒体中での熱の拡散が少なくなり
、光照射部の媒体温度を効率良く高めることができる口 記録媒体は、上記アントラキノン系色素を蒸着又は溶剤
塗布法にょル基板の片面又は両面に付着して形成される
。基板材料としては種々のものが使用できるが、一般に
はガラス、AI!、合成樹脂が望ましい0合成樹脂とし
てはポリメチルメタクリル(PMMA)y ポリビニー
ルクロライド(pvc ) 。
Also, this compound, like general organic dyes, has a low thermal conductivity, and its value is 1 to higher than that of metals. Therefore, a recording medium that can reduce the diffusion of heat in the medium during laser beam recording and efficiently increase the medium temperature at the light irradiated part is produced by applying the above-mentioned anthraquinone dye to the substrate by vapor deposition or solvent coating. It is formed by being attached to one or both sides. Various substrate materials can be used, but generally glass, AI! , a synthetic resin is preferable. Examples of the synthetic resin include polymethyl methacrylate (PMMA), polyvinyl chloride (PVC).

ポリサルホン、ポリカーボネート等がある。基板形状は
円板形状、テープ形状、シート形状が適用できる。基板
上に形成されたアントラキノン系色素膜にレーザ光をレ
ンズで収光して照射すると、照射部の色素膜が除去され
て孔が形成される。この孔形成の機構は明確ではないが
、蒸発(昇華)をともなう融解凝集に因ると考えられる
。形成される孔の大きさは、レーザ光の収元径、レーザ
パワー、照射時間に依存するが、大体0,2〜3μmで
あることが望ましい0このような孔形成に必要なレーザ
エネルギーは小さなものであり、したがって、短時間で
孔形成が可能である。情報の記録は、2進情報を孔の有
無に対応させてることによりなされる。通常円板状媒体
を等速回転させて、記録情報に合わせて孔を形成して情
報を記録する。なお、以上の場合において色素膜の膜厚
は0.01〜0.5μmで、好適には0.02〜0.2
 μmである。
Examples include polysulfone and polycarbonate. The substrate shape can be a disk shape, a tape shape, or a sheet shape. When the anthraquinone dye film formed on the substrate is irradiated with a laser beam focused by a lens, the dye film in the irradiated area is removed and holes are formed. Although the mechanism of this pore formation is not clear, it is thought to be due to melting and aggregation accompanied by evaporation (sublimation). The size of the hole formed depends on the focused diameter of the laser beam, laser power, and irradiation time, but it is preferably approximately 0.2 to 3 μm.The laser energy required to form such a hole is small. Therefore, pore formation is possible in a short time. Information is recorded by associating binary information with the presence or absence of holes. Information is usually recorded by rotating a disk-shaped medium at a constant speed and forming holes in accordance with the recorded information. In addition, in the above case, the film thickness of the pigment film is 0.01 to 0.5 μm, preferably 0.02 to 0.2 μm.
It is μm.

このように記録された情報(孔)の読み出しは。To read out the information (holes) recorded in this way.

媒体からの反射光又は透過光の″It、蓋変化全変化す
ることによりなされる。一般に反射光を検出する方法が
採用される。これは、反射光検出の方が光学系が簡単に
なるためである。即ち、一つの光学系で投光と集光が可
能であるためである。読み出しはレーザ光を連続させて
照射する。その時の光量は媒体に何らかの形状変化が起
らない弱いエネルギーに設定され、通常記録時の光量の
百〜「6である。
This is done by completely changing the amount of light reflected or transmitted from the medium.Generally, a method of detecting reflected light is adopted.This is because the optical system is simpler when detecting reflected light. In other words, it is possible to project and focus light with one optical system.Reading is performed by continuously irradiating laser light.The amount of light at that time is low energy that does not cause any shape change to the medium. The amount of light is set to 100 to 6, which is the amount of light during normal recording.

記録、再生時の元の入射方向として、媒体面側と基板面
側の2通りがある。本例の如き単層媒体では両方向の配
置とも使用可能である。基板面側入射では、媒体面上に
付着した塵埃に影響されることなく記録、再生が可能で
あり、より望ましい形態である。なお、媒体が形成され
ている面の反対側の基板面上に付着した塵埃及びその面
のキズ等の欠陥は、基板厚さが1mm以上であれば、そ
の面でのビーム径が充分大きいので記録、再生に悪影響
を与えない。
There are two original incident directions during recording and reproduction: one toward the medium surface and one toward the substrate surface. Both orientations can be used with single layer media such as the present example. When the light is incident on the substrate surface side, recording and reproduction are possible without being affected by dust attached to the medium surface, which is a more desirable form. Note that if the substrate thickness is 1 mm or more, the beam diameter on that surface is sufficiently large to prevent dust adhering to the surface of the substrate opposite to the surface on which the medium is formed, as well as defects such as scratches on that surface. Does not adversely affect recording or playback.

情報は孔列として記録される。孔列は一般に同心円状又
はスパイラル状の多数のトラックを形成する。再生する
場合、光ビームは特定トラックの孔列上を精度良く追跡
する必要がある。これを実現する一つの手段として回転
機構の精度を空気軸受などを使用して高めるという方法
がある。しかし、この場合は、回転系が複雑となり、又
高価となるので実用的ではない。より望ましいのは、基
板上に光の案内溝を設ける方法である。ビーム径程度の
溝に元が入射すると、光が回折される。ビーム中心が溝
からずれるにつれて回折光強度の空間分布が異なり、こ
れを検出して、ビームを溝の中心に入射させるようにサ
ーボ系を構成することができる。通常溝の幅は、0.6
〜1.2μm、その深さは使用する記録再生波長の1〜
上の範囲に設定される。したがって記録層は溝付基板面
上に形成される。
Information is recorded as a series of holes. The rows of holes generally form a number of concentric or spiral tracks. When reproducing, the light beam needs to accurately track the hole array of a specific track. One way to achieve this is to increase the precision of the rotating mechanism by using air bearings or the like. However, in this case, the rotation system becomes complicated and expensive, so it is not practical. More desirable is a method in which light guide grooves are provided on the substrate. When a beam of light enters a groove about the diameter of the beam, the light is diffracted. As the beam center shifts from the groove, the spatial distribution of the diffracted light intensity changes, and a servo system can be configured to detect this and direct the beam to the center of the groove. Normal groove width is 0.6
~1.2 μm, the depth is 1 ~ of the recording/reproducing wavelength used
set to the upper range. The recording layer is therefore formed on the grooved substrate surface.

以下に図面を参照して本発明の詳細な説明する0 (実施例) 1.2mm厚の円板状のアクリル基板上に、アントラキ
ノン系色素を抵抗加熱法で蒸着し、膜厚800Xの膜を
得た。抵抗加熱ボート材はMoであシ、蒸着時の真空度
は3XIO’I’orr以下とした0基板は室温自然放
置とし、蒸着による基板温度の上昇はほとんど認められ
なかった。ボート温度を徐々に上けて行き350℃に固
定して蒸着した。蒸着速度はIX/secである0この
膜の吸収率を波長830 nmで基板側よシ測定すると
42%、膜面側よシ測定すると33%であった。
The present invention will be described in detail below with reference to the drawings.0 (Example) Anthraquinone dyes were vapor-deposited using a resistance heating method on a disk-shaped acrylic substrate with a thickness of 1.2 mm to form a film with a thickness of 800×. Obtained. The resistance heating boat material was Mo, and the degree of vacuum during vapor deposition was 3XIO'I'orr or less, and the substrate was left to stand at room temperature, and almost no increase in substrate temperature was observed due to vapor deposition. The boat temperature was gradually raised and fixed at 350° C. for vapor deposition. The vapor deposition rate was IX/sec. The absorption rate of this film was 42% when measured from the substrate side at a wavelength of 830 nm, and 33% when measured from the film surface side.

添付図は、このようにして形成された媒体を示している
。アクリル基板10上に色素膜20が形成されている0
この媒体に矢印30の方向から波長830 nmの半導
体レーザ光を光学系(図示せず)で集光して照射した。
The accompanying figures show the media thus formed. A dye film 20 is formed on an acrylic substrate 10.
This medium was irradiated with semiconductor laser light having a wavelength of 830 nm in the direction of arrow 30, condensed by an optical system (not shown).

この場合、レーザ光は媒体面上のパワーで10 mW、
照射時間500nsec。
In this case, the laser beam has a power of 10 mW on the medium surface,
Irradiation time: 500 nsec.

線速3m/seeである。この記録により、色素膜20
中に約1μm前後の径の孔(ビット)40が形成された
。なお、レーザ光の媒体面上でのビ・−ム径は約1.5
μmφである。レーザ光を0.4 mWの連続光として
、記録ビットを再生すると良好な再生信号が得られた。
The linear speed is 3 m/see. With this recording, the pigment film 20
A hole (bit) 40 having a diameter of about 1 μm was formed inside. Note that the beam diameter of the laser beam on the medium surface is approximately 1.5
It is μmφ. When the recorded bits were reproduced using a continuous laser beam of 0.4 mW, a good reproduced signal was obtained.

矢印50の方向からレーザ光を入射しても、同様な記録
再生特性が得られた。
Even when laser light was incident from the direction of arrow 50, similar recording and reproducing characteristics were obtained.

本実施例では色素単層を記録層として用いる例を示した
が、記録J捕の上又は記録層と基板の間に、金属、酸化
物、有機物などを保護、反射増幅などの目的に応じて付
加することができる。なお本発明の媒体を高温、高湿で
寿命試験を行なった結果数年以上の寿命が予想できた。
Although this example shows an example in which a single dye layer is used as the recording layer, metals, oxides, organic substances, etc. may be placed on the recording layer or between the recording layer and the substrate depending on the purpose of protection, reflection amplification, etc. can be added. Furthermore, as a result of life tests conducted on the media of the present invention at high temperatures and high humidity, it was predicted that the media would have a lifespan of several years or more.

(発明の効果) 上記実施例から明らかなように、本発明により得られる
光学的情報記録媒体は、高感度であり。
(Effects of the Invention) As is clear from the above examples, the optical information recording medium obtained by the present invention has high sensitivity.

かつ化学的に安定でアリ、加えて媒体形成が容易である
という優れた工業的利点を有していることが判る。
It can be seen that it has the excellent industrial advantages of being chemically stable and easy to form a medium.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明による光学的情報媒体の断面図であシ、図
中lOは基板、20は色素膜、30゜50は光の入射方
向s40は孔を示す。
The figure is a cross-sectional view of an optical information medium according to the present invention, in which lO indicates a substrate, 20 indicates a dye film, and 30.degree. 50 indicates a light incident direction s40 indicates a hole.

Claims (1)

【特許請求の範囲】 基板の片側または両側に記録層を設け、情報をレーザ光
線によって記録し、かつ読み取る光学的情報記録媒体に
おいて、前記記録層として化学構造式 ▲数式、化学式、表等があります▼ で表わされるアントラキノン系色素を主成分とする有機
薄膜を形成したことを特徴とする光学的情報記録媒体。
[Claims] In an optical information recording medium in which a recording layer is provided on one or both sides of a substrate and information is recorded and read by a laser beam, the recording layer includes a chemical structural formula, a mathematical formula, a chemical formula, a table, etc. An optical information recording medium characterized by forming an organic thin film containing an anthraquinone dye represented by ▼ as a main component.
JP60086928A 1985-04-23 1985-04-23 Optical information-recording medium Pending JPS61244588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086928A JPS61244588A (en) 1985-04-23 1985-04-23 Optical information-recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086928A JPS61244588A (en) 1985-04-23 1985-04-23 Optical information-recording medium

Publications (1)

Publication Number Publication Date
JPS61244588A true JPS61244588A (en) 1986-10-30

Family

ID=13900520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086928A Pending JPS61244588A (en) 1985-04-23 1985-04-23 Optical information-recording medium

Country Status (1)

Country Link
JP (1) JPS61244588A (en)

Similar Documents

Publication Publication Date Title
JPH0415115B2 (en)
JPH0415112B2 (en)
JPS6052940A (en) Optical recording medium
JPS6063744A (en) Optical information recording medium
JP4090127B2 (en) Optical recording material
US4829509A (en) Optical recording medium, its preparation and its use as a read only memory information carrier
JPS6141597A (en) Optical information recording medium
JPS61244588A (en) Optical information-recording medium
JP3841534B2 (en) Optical recording material
JPH0567438B2 (en)
JPH0568016B2 (en)
JPH0472711B2 (en)
JPS61246092A (en) Optical information-recording medium
JPH0251392B2 (en)
JPS639577A (en) Optical information recording medium
JPS61273987A (en) Optical information recording medium
JPS639578A (en) Optical recording medium
JPS6089842A (en) Optical recording medium
JPH0251393B2 (en)
JPH0251391B2 (en)
JPH0250874B2 (en)
JPH0549474B2 (en)
JPS60197954A (en) Optical information recording medium
JPH041710B2 (en)
JPS60150241A (en) Optical recording medium and its manufacture