JPS61244460A - Method of polishing wafer - Google Patents

Method of polishing wafer

Info

Publication number
JPS61244460A
JPS61244460A JP60086917A JP8691785A JPS61244460A JP S61244460 A JPS61244460 A JP S61244460A JP 60086917 A JP60086917 A JP 60086917A JP 8691785 A JP8691785 A JP 8691785A JP S61244460 A JPS61244460 A JP S61244460A
Authority
JP
Japan
Prior art keywords
polishing
wafer
cloth
load current
drive motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086917A
Other languages
Japanese (ja)
Inventor
Michio Ishikawa
石川 通夫
Shigenobu Wada
重伸 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60086917A priority Critical patent/JPS61244460A/en
Publication of JPS61244460A publication Critical patent/JPS61244460A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To make it possible to obtain a stable polish condition and an excellent distortionless mirror surface, by detecting the load current of a drive motor for a polishing machine to regulate the machining pressure of a wafer. CONSTITUTION:The uncontact polishing of a wafer 7' is carried out such that when a polishing cloth 2' is rotated while a polishing liquid is fed from a nozzle 6', the assembly of the wafer 7' and a holder 8 is floated up from the surface of the polishing cloth 2' by a small amount H and is rotated around a support shaft 10' as a rotating center, following the rotation of the cloth 2'. The control of this float-up amount H is carried out such that a detector 23 detects variations in the load current of a drive motor 21 for a polishing machine 1', a comparator 24 compares the thus detected value with a set value, and therefore, a controller 25 drives an air cylinder 26 in accordance with the obtained deviation to control the machining pressure of the wafer 7'. Thus, a stable polish condition and an excellent tortionless mirror surface may be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エレクトロニクス工業に広く用いられている
化合物半導体結晶などのウニノー表面を平坦で加工歪の
ない表面(無歪鏡面)に仕上げると共に板厚寸法、平面
度などの形状槽Kt良好に加工するための研摩方法に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention aims to finish the surface of a compound semiconductor crystal, etc., which is widely used in the electronics industry, into a flat surface without processing distortion (a distortion-free mirror surface), and to The present invention relates to a polishing method for processing the shape of the tank Kt in terms of thickness, flatness, etc.

(従来技術とその問題点) 一般に、化合物半導体結晶例えば、GaASウェハの無
歪鏡面研摩は、被加工物であるウェハを研摩ホルダーに
数個同時にワックス接着して保持し、一定速度で回転す
る軟かい研摩布上に押圧して両者を摺動運動させながら
化学研摩液を供給して加工する方式のメカノケミカルボ
リジングによって行われている。
(Prior art and its problems) In general, distortion-free mirror polishing of compound semiconductor crystals, such as GaAS wafers, involves holding several wafers as workpieces simultaneously bonded with wax to a polishing holder, and rotating at a constant speed. Mechanochemical polishing is performed by supplying a chemical polishing liquid while pressing the polishing cloth onto the polishing cloth and causing the two to slide.

この方法は、ウェハと研摩布表面が直接接触するため、
GaAsのような軟質(モース硬さ3)結晶の表面に加
工歪が残留しており、エピタキシャル成長を施した場合
には、欠陥のない単結晶薄膜が形成されない問題が生ず
る。
This method involves direct contact between the wafer and the polishing cloth surface.
Processing strain remains on the surface of a soft (Mohs hardness: 3) crystal such as GaAs, and when epitaxial growth is performed, a problem arises in that a defect-free single crystal thin film cannot be formed.

そこで最近では、カロエ歪の減少を目的としてウェハと
研摩布表面を接触させずに化学研摩液のエツチング作用
だけを用いて無歪鏡面を得る加工方法すなわち非接触研
摩法が試みられている。
Recently, attempts have been made to reduce the Caloe strain by using only the etching action of a chemical polishing liquid without bringing the wafer into contact with the surface of the polishing cloth to obtain a distortion-free mirror surface, that is, a non-contact polishing method.

従来の非接触研摩法の一つとして、第2図に示すように
、研摩液を連続供給しながら研摩盤を高速回転させるこ
とにより被加工物を微小量浮上させて研摩する方法があ
る。
As one of the conventional non-contact polishing methods, as shown in FIG. 2, there is a method in which a polishing machine is rotated at high speed while continuously supplying a polishing liquid to levitate a workpiece by a minute amount and polish it.

1はモータなどにより一定速度で回転される円板状の研
摩盤、2は研摩盤の表面に設けられた研摩布% 3け被
加工物を歪のない鏡面に仕上げることができる化学薬品
の研摩液、4は研摩液を貯えるタンク、5は研摩液の流
量′fI:調整するためのコック、6は研摩液3を研摩
盤1の中央部分に供給するためのノズル、7は被加工物
のウェハ、8はウェハ7を接着用ワックスによって数個
同時に保持でき、かつ反対面(背面)の中心に球面座9
が設けられたホルダー%10は球面座9に組込まれる球
11が先端に形成された支持棒で、ウェハ7とホルダー
8から成る集合体が支持棒10″fI:中心おして自由
に回転できると共に研摩布2の表面に対してウェハ7の
表面が平行に設足できる構造である。
1 is a disc-shaped polishing machine that is rotated at a constant speed by a motor, etc., 2 is an abrasive cloth provided on the surface of the polishing machine, and 3 is chemical polishing that can finish the workpiece to a mirror surface without distortion. 4 is a tank for storing the polishing liquid, 5 is a cock for adjusting the flow rate of the polishing liquid 'fI, 6 is a nozzle for supplying the polishing liquid 3 to the central part of the polishing machine 1, and 7 is a tank for storing the polishing liquid. The wafer 8 can hold several wafers 7 at the same time with adhesive wax, and has a spherical seat 9 at the center of the opposite side (back side).
The holder % 10 is a support rod with a ball 11 formed at the tip, which is incorporated into a spherical seat 9, and the assembly consisting of the wafer 7 and the holder 8 can rotate freely around the center of the support rod 10''fI: and can be polished. This structure allows the surface of the wafer 7 to be placed parallel to the surface of the cloth 2.

12は支持棒10に結合された円板、13は一端に円板
12に接触するローラー14が取付られ、他端にはおも
v15がネジ結合された横棒で、中央部分が支柱16に
ピン結合されている。おもシ15け、ウェハ7とホルダ
ー8と支持棒10から成る集合体のβAt釣上げる役目
をし、ウェハ7の表面に微小な圧力が作用するようにお
もり15の位置を変えることによって調整できる方式で
ある。17は支持棒10が上下に移動できるように支持
され之アームで、基板18に固足されている。
12 is a disc connected to the support rod 10; 13 is a horizontal bar having a roller 14 attached to one end that contacts the disc 12; and a main shaft 15 screwed to the other end; combined. The weight 15 serves to lift the βAt of the assembly consisting of the wafer 7, holder 8, and support rod 10, and can be adjusted by changing the position of the weight 15 so that a minute pressure is applied to the surface of the wafer 7. It is a method. An arm 17 supports the support rod 10 so that it can move up and down, and is fixed to a base plate 18.

図において、研摩液全連続供給しながらgf単盤上の研
摩布2を矢印の方向に回転させると、研摩布表面の研摩
液層が遠心力で中心から外周方向に流出しながら研摩布
と共に高速で移動する之め、つ、エバ7と研摩布2の間
に流体による動圧が発生しウェハが微小量(均浮上する
現象すなわちハイドロプレーニング現象が達成され、か
つ研摩布の内周部と外周部の相対速度の差によってウェ
ハとホルダー8の集合体が支持棒10を中心として従属
回転し、非接触研摩が行われる。
In the figure, when the abrasive cloth 2 on the gf single disk is rotated in the direction of the arrow while the abrasive liquid is completely continuously supplied, the abrasive liquid layer on the surface of the abrasive cloth flows out from the center to the outer periphery due to centrifugal force and flows at high speed together with the abrasive cloth. As the wafer moves, dynamic pressure is generated by the fluid between the evaporator 7 and the polishing cloth 2, and the wafer is moved by a minute amount (level floating phenomenon, that is, hydroplaning phenomenon is achieved, and the inner and outer peripheries of the polishing cloth are The assembly of the wafer and holder 8 rotates around the support rod 10 due to the difference in relative speed between the two parts, and non-contact polishing is performed.

ウェハ浮上量は、例えばGaAsyHNaOcJ系の研
摩液とスウェードタイプの研摩布を用いて加工する場合
、10μm前後に制御する必要があシ、この値よシ大き
くなってもあるいは小さくなっても無歪鏡面は達成され
なくなる。
For example, when processing using a GaAsyHNaOcJ-based polishing liquid and a suede type polishing cloth, the wafer flying height needs to be controlled to around 10 μm; even if it becomes larger or smaller than this value, it will still produce a distortion-free mirror surface. will not be achieved.

しかし、このようなウェハの非接触研摩方法は加工中の
条件変化例えば研摩液の流量変動、電圧変動による研摩
盤回転数のバラツキ、研摩布表面の不拘−及び劣化やウ
ニ凸表面状態の凹凸面から鏡面への変化などによって研
摩液層の流れに変動を生ずるため、ウェハの浮上量が常
に一定に保持されず、研摩布と接触し交り、大きな浮上
量になったりして、加工面K〈もり(Ha Ze )や
加工歪が発生する欠点がある。
However, such a non-contact polishing method for wafers is difficult due to changes in conditions during processing, such as fluctuations in the flow rate of the polishing liquid, variations in the number of revolutions of the polishing machine due to voltage fluctuations, inconsistency and deterioration of the polishing cloth surface, and uneven surfaces such as sea urchin convex surface conditions. Due to changes in the flow of the polishing liquid layer due to the change from surface to mirror surface, the flying height of the wafer is not always maintained constant, and the wafer comes into contact with the polishing cloth, resulting in a large flying height, which causes the surface to be processed K. 〈There is a drawback that warp (Ha Ze) and processing distortion occur.

(発明の目的) 本発明は、このような従来の欠点を除去せしめて、浮上
量の変動による欠陥がなく優れた無歪鏡面加工が可能と
なるウェハの非接触研摩方法を提供することにある。
(Object of the Invention) An object of the present invention is to provide a non-contact polishing method for a wafer that eliminates such conventional drawbacks and enables excellent distortion-free mirror polishing without defects due to variations in flying height. .

(発明の構成) 本発明によれば、ウェハと研摩布面間の摺動抵抗を検出
し、ウェハの加工圧力を調整してウェハ浮上量を制御す
ることにより、加工条件のバラツキによるウェハ浮上量
の変化が全く解消されるととt−特徴とするウェハの非
接触研摩方法が得られる。
(Structure of the Invention) According to the present invention, the sliding resistance between the wafer and the polishing cloth surface is detected, and the wafer flying height is controlled by adjusting the processing pressure of the wafer. A non-contact polishing method for wafers having T-characteristics can be obtained if the change in .

(構成の詳細な説明) 本発明は、上述の構成をとることにより従来技術の問題
点を解決し次。研摩盤を駆動するモータの負荷電流の変
動に応じて、ウェハの加工圧力の大きさを調整し、ウェ
ハの浮上量すなわちウェハと研摩布面の隙間を一定に制
御することにより従来のウェハの加工圧力を制御しない
場合に生じてい友研摩液流量、研摩盤の回転数、研摩布
やウニへ表面の変化による浮上量の変動が全く解消され
完全な無歪鏡面と安定な研摩が達成される利点がある。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-mentioned configuration. Conventional wafer processing is achieved by adjusting the amount of wafer processing pressure according to fluctuations in the load current of the motor that drives the polishing machine, and by controlling the wafer flying height, that is, the gap between the wafer and the polishing cloth surface, to a constant level. The advantage is that fluctuations in flying height due to changes in the polishing liquid flow rate, rotation speed of the polishing machine, and surface changes to the polishing cloth and sea urchin that occur when the pressure is not controlled are completely eliminated, achieving a completely distortion-free mirror surface and stable polishing. There is.

(実施例) 以下、本発明の実施例について図面を参照して詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は1本発明のウェハを非接触研摩する方法の一実
施例を説明するための図で、1′は研摩盤、2′は研摩
布、6′はノズル、7′はウェハ、8′はホルダー、1
0’は支持棒、17’はアーム、18′は基板、21は
研摩盤1′を回転するための駆動モータで、軸22によ
って連結されている。詔はモータ21の負荷電流を検知
する友めの検出器、24は検出@詔の信号が設定値に対
して差があるか否かを調べる比較器、25Fi比較器2
4の信号によりウェハ7′の加工圧力を調整する几めの
エアシリンダ26を駆動させる制御器で、制御器25と
エアシリンダ26は送圧パイプ27で接続され、さらに
制御器25は圧力を発生するコンプレッサ(図示せず)
に駆動パイプ28ヲ介して連結されて因る。29はエア
シリンダ2bの軸で、先端は支持棒10’とビン30に
より結合されている。
FIG. 1 is a diagram for explaining an embodiment of the method of non-contact polishing of a wafer according to the present invention, in which 1' is a polishing machine, 2' is a polishing cloth, 6' is a nozzle, 7' is a wafer, and 8 ' is the holder, 1
0' is a support rod, 17' is an arm, 18' is a substrate, and 21 is a drive motor for rotating the polishing machine 1', which are connected by a shaft 22. Yaku is a friend detector that detects the load current of the motor 21, 24 is a comparator that checks whether the detection @ Yaku signal is different from the set value, and 25 Fi comparator 2
The controller 25 and the air cylinder 26 are connected by a pressure pipe 27, and the controller 25 also generates pressure. compressor (not shown)
The drive pipe 28 is connected to the drive pipe 28. Reference numeral 29 denotes a shaft of the air cylinder 2b, the tip of which is connected to the support rod 10' by a bottle 30.

ウェハ7′の非接触研摩は、研摩液をノズル6′から連
続供給しながら研摩布2′を矢印の方向に回転させると
、ウェハ7′とホルダー8′の集合体が研摩布2′の面
上から微小f(f()#上し、支持棒10′ヲ中心とし
て従属回転することによって行われる。ウェハの浮上量
の制御は、ウェハと研摩布の隙間が変化すると両者間の
摺動抵抗が変化し研摩盤1′を回転している駆動モータ
21の負荷電流が変わることを検出して行う。即ち駆動
モータ21の負荷電流の変化を検出6四で検知し、その
信号を比較器24に送り、設定値との比較を行う。
Non-contact polishing of the wafer 7' is performed by rotating the polishing cloth 2' in the direction of the arrow while continuously supplying polishing liquid from the nozzle 6', so that the aggregate of the wafer 7' and the holder 8' is aligned with the surface of the polishing cloth 2'. The wafer's flying height is controlled by raising the wafer by a small amount f(f()#) and rotating it around the support rod 10'.As the gap between the wafer and the polishing cloth changes, the sliding resistance between them changes. This is done by detecting a change in the load current of the drive motor 21 that rotates the polishing machine 1' due to a change in the load current of the drive motor 21. That is, a change in the load current of the drive motor 21 is detected by the detector 64, and the signal is sent to the comparator 24. and compare it with the set value.

設定値よりもはずれた値の時には、制御器ゐに信号が送
られ、信号の大きさに応じてエアシリンダ26を駆動す
ることに工り、ウェハ7′の加工圧力の調整が行われる
。その結果、研摩布2′とウェハ7′の隙間が加工圧力
の大きさに応じて修正され、常に一定の値が維持される
When the value deviates from the set value, a signal is sent to the controller 2, and the air cylinder 26 is driven according to the magnitude of the signal, thereby adjusting the processing pressure of the wafer 7'. As a result, the gap between the polishing cloth 2' and the wafer 7' is corrected according to the magnitude of the processing pressure, and is always maintained at a constant value.

本実施例では、ウェハの加工圧力t−副調整る方法とし
て、エアシリンダを用い几場合を述べ比が同様な効果が
得られる手段例えばばねやおもりを用いた方法でも良い
In this embodiment, as a method for sub-adjusting the wafer processing pressure t, an air cylinder is used, but a method using a means such as a spring or a weight that achieves the same effect may also be used.

(発明の効果) 本発明のウェハ研摩方法によれば、ウェハ浮上量を制御
する方式として、研摩盤の駆動モータの負荷電流を検出
し、ウェハの加工圧力を調整する方法を用いることによ
り、従来のウェハ圧力を制御しない場合に生じてい次浮
上を変動による加工面のくもりや加工歪などが薯消され
るため、安定しt研摩状態と優れ几無歪説面が得られ、
ウェハの非接触研摩にとって簡めて有効である。
(Effects of the Invention) According to the wafer polishing method of the present invention, as a method of controlling the wafer flying height, the load current of the drive motor of the polishing machine is detected and the wafer processing pressure is adjusted. The cloudiness and processing distortion on the machined surface due to fluctuations in the next floatation, which occur when the wafer pressure is not controlled, are eliminated, resulting in a stable polishing condition and an excellent distortion-free surface.
It is simple and effective for non-contact polishing of wafers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のウェハを非接触研摩する方法の一実
施例を説明する図%第2図は従来のウェハを非接触研摩
する方法の一例を説明する図である。 図において、】と1′は@摩盤、2と2′は研摩布、3
は研摩液、4はタンク、7と7′はウェハ、8と8′は
ホルダー、1(lと10′は支持棒、12は円板、13
は横棒、15はおもり、17と17′はアーム、21は
駆動モータ、詔は検出器、24は比較器、25は制御器
、26はエアシリンダを示す。
FIG. 1 is a diagram illustrating an embodiment of the method of non-contact polishing of a wafer according to the present invention. FIG. 2 is a diagram illustrating an example of a conventional method of polishing a wafer in a non-contact manner. In the figure, ] and 1' are @grinding machines, 2 and 2' are polishing cloths, and 3
is a polishing liquid, 4 is a tank, 7 and 7' are wafers, 8 and 8' are holders, 1 (l and 10' are support rods, 12 is a disk, 13
15 is a horizontal bar, 15 is a weight, 17 and 17' are arms, 21 is a drive motor, 24 is a detector, 25 is a controller, and 26 is an air cylinder.

Claims (1)

【特許請求の範囲】[Claims] 研摩液を連続供給しながら研摩盤を高速回転させること
により、被加工物を微小量浮上させて研摩する方法にお
いて、研摩盤の駆動モータの負荷電流を検出し、該負荷
電流が一定となるように被加工物の加工圧力を調整する
ことにより、被加工物の浮上量を制御することを特徴と
するウェハの研摩方法。
In the method of polishing a workpiece by floating it by a minute amount by rotating the polishing machine at high speed while continuously supplying polishing liquid, the load current of the drive motor of the polishing machine is detected and the load current is kept constant. A wafer polishing method characterized by controlling the flying height of a workpiece by adjusting the processing pressure of the workpiece.
JP60086917A 1985-04-23 1985-04-23 Method of polishing wafer Pending JPS61244460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086917A JPS61244460A (en) 1985-04-23 1985-04-23 Method of polishing wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086917A JPS61244460A (en) 1985-04-23 1985-04-23 Method of polishing wafer

Publications (1)

Publication Number Publication Date
JPS61244460A true JPS61244460A (en) 1986-10-30

Family

ID=13900204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086917A Pending JPS61244460A (en) 1985-04-23 1985-04-23 Method of polishing wafer

Country Status (1)

Country Link
JP (1) JPS61244460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700180A (en) * 1993-08-25 1997-12-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US5730642A (en) * 1993-08-25 1998-03-24 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including optical montoring

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700180A (en) * 1993-08-25 1997-12-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US5730642A (en) * 1993-08-25 1998-03-24 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including optical montoring
US5762537A (en) * 1993-08-25 1998-06-09 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including heater
US5842909A (en) * 1993-08-25 1998-12-01 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including heater
US5851135A (en) * 1993-08-25 1998-12-22 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6120347A (en) * 1993-08-25 2000-09-19 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6261151B1 (en) 1993-08-25 2001-07-17 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6306009B1 (en) 1993-08-25 2001-10-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6338667B2 (en) 1993-08-25 2002-01-15 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6464561B2 (en) 1993-08-25 2002-10-15 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6464564B2 (en) 1993-08-25 2002-10-15 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6464560B2 (en) 1993-08-25 2002-10-15 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
US6739944B2 (en) 1993-08-25 2004-05-25 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing

Similar Documents

Publication Publication Date Title
US8696405B2 (en) Pivot-balanced floating platen lapping machine
US8328600B2 (en) Workpiece spindles supported floating abrasive platen
US6951507B2 (en) Substrate polishing apparatus
US7448940B2 (en) Polishing apparatus and polishing method
US8602842B2 (en) Three-point fixed-spindle floating-platen abrasive system
US5868605A (en) In-situ polishing pad flatness control
US6565424B2 (en) Method and apparatus for planarizing semiconductor device
US20110223837A1 (en) Fixed-spindle floating-platen workpiece loader apparatus
US6322434B1 (en) Polishing apparatus including attitude controller for dressing apparatus
US6489243B2 (en) Method for polishing semiconductor device
JPH11320359A (en) Mirror machining device and method for magnetic disc substrate
US8641476B2 (en) Coplanar alignment apparatus for rotary spindles
US8430717B2 (en) Dynamic action abrasive lapping workholder
JPS61188071A (en) Polishing method of wafer
JPS61244460A (en) Method of polishing wafer
WO2018123420A1 (en) Glass plate end face processing method, production method, and glass plate
JPS61188072A (en) Polishing method of wafer
JP2000006002A (en) Polishing device
JPH03121773A (en) Polishing method for high flatness of silicon wafer
JP2688584B2 (en) Thin plate polishing method
JP2000354958A (en) Work polishing device, work polishing method and manufacture for semiconductor device
JPH04201178A (en) Polishing device and polishing method
JP2003109923A (en) Device for polishing semiconductor wafer
WO2013119261A1 (en) Coplanar alignment apparatus for rotary spindles
JPS6224963A (en) Distortion eliminating method for semiconductor base plate