JPS61244025A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS61244025A
JPS61244025A JP60086116A JP8611685A JPS61244025A JP S61244025 A JPS61244025 A JP S61244025A JP 60086116 A JP60086116 A JP 60086116A JP 8611685 A JP8611685 A JP 8611685A JP S61244025 A JPS61244025 A JP S61244025A
Authority
JP
Japan
Prior art keywords
substrate
ultrasonic
thin film
raw material
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086116A
Other languages
Japanese (ja)
Inventor
Osamu Nakamura
修 中村
Mitsuo Matsumura
松村 光雄
Keitaro Fukui
福井 慶太郎
Hideo Yamamoto
英雄 山本
Toshihiko Yoshida
利彦 吉田
Hisashi Kakigi
柿木 寿
Masami Endo
正己 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP60086116A priority Critical patent/JPS61244025A/en
Publication of JPS61244025A publication Critical patent/JPS61244025A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers

Abstract

PURPOSE:To improve the yield of raw material making distribution of film pressure even by a method wherein a material solution is vaporized using an ultrasonic vibrating means to feed vaporized product to a heating substrate forming a thin film on the substrate by thermal decomposition reaction. CONSTITUTION:An apparatus 10 is provided with a hot plate 14 heated by a heat source 12 while a substrate 2a e.g. a glass plate is mounted on the heat plate 14. On the other hand, material solution 16 containing material 2b to be filmed on the substrate 2a is fed to an ultrasonic jetting means 20 by a constant delivery pump 18 for changing the solution 16 into fine particles i.e. vaporizing. The fine particles of material solution 16 are fed to the substrate 2a through a duct 22 which is provided with a fan 24 to feed the fine particles of material solution 16 vaporized by the ultrasonic jetting means 20 efficiently to the substrate 2b. Through these procedures, the material solution can be vaporized into fine particles with even particle diameter making it feasible to form an even film with a large size and even distribution of film thickness.

Description

【発明の詳細な説明】 本発明は、薄膜の製造方法に関するものであり、特に超
音波技術及び熱分解反応を利用した薄膜製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin film, and particularly to a method for manufacturing a thin film using ultrasonic technology and a thermal decomposition reaction.

び。Beauty.

近年、半導体装置、液晶ディスプレー装置、反射鏡、そ
の他の用途において、ガラス等のような基板上に酸化す
ず、酸化インジウム等の金属酸化物の薄膜を形成する必
要性が増大している。
In recent years, there has been an increasing need to form thin films of metal oxides such as tin oxide and indium oxide on substrates such as glass in semiconductor devices, liquid crystal display devices, reflective mirrors, and other applications.

第6図に図示するように1例えばアモルファスシリコン
太陽電池1は、透明電極?、α−3il14及び裏面金
属6が積層されて形成されている。
As shown in FIG. 6, for example, an amorphous silicon solar cell 1 has a transparent electrode. , α-3il 14 and back metal 6 are laminated.

従って、その製造工程は、 (1)ガラス基板2a上に0.2〜1.0#Lm程度の
厚さにて透明導電112bを製膜し透明電極2を形成す
る工程、 (2)プラズマCVD法にて上記透明電極2上にアモル
ファスシリコンを製膜しα−3i膜4を形成する工程、 (3)スパッタ法又は真空蒸着法を利用しAIiを0.
2pm程度の厚さにて上記α−3i膜4上に製膜し裏面
金属6を形成する工程、 から成る。
Therefore, the manufacturing process is as follows: (1) forming a transparent conductive film 112b with a thickness of about 0.2 to 1.0 #Lm on a glass substrate 2a to form a transparent electrode 2; (2) plasma CVD (3) forming an α-3i film 4 by depositing amorphous silicon on the transparent electrode 2 using a sputtering method or a vacuum evaporation method;
It consists of a step of forming a film on the α-3i film 4 to a thickness of about 2 pm to form a back metal 6.

上記透明電極形成工程(1)は、従来ガラス基板2a上
に化学気相蒸着(CVD)法又はスプレー熱分解法にて
酸化すず(S noz )!Iを製膜するのが一般的で
あった。
In the transparent electrode forming step (1), tin oxide (S noz ) is conventionally deposited on the glass substrate 2a by a chemical vapor deposition (CVD) method or a spray pyrolysis method. It was common to form a film using I.

化学気相蒸着(CVD)法は、常圧での反応であり、又
コンベア炉を用いた連続プロセスが可能であり、多量生
産が容易であり、且つ大面積に均一な製膜が容易に行な
い得るといった利点を有しており、現在主流をなしてい
る。
The chemical vapor deposition (CVD) method is a reaction at normal pressure, and a continuous process using a conveyor furnace is possible, making it easy to mass produce and uniformly forming a film over a large area. It has the advantage that it can be obtained easily, and is currently the mainstream.

一方、上記スプレー熱分解法は、CVD法と同様に常圧
化でのプロセスであるために多量生産は可能であるが、
大面積への均一な製膜が困難であること、原料の利用率
が一般にひくいことにより、現在工業的にはあまり利用
されてはいない。
On the other hand, the above-mentioned spray pyrolysis method is a process under normal pressure like the CVD method, so it is possible to produce in large quantities.
Currently, it is not used industrially much because it is difficult to uniformly form a film over a large area and the utilization rate of raw materials is generally low.

しかしながら1例えばアモルファス太陽電池を作製した
場合等には、該方法にて製造した基板を利用した方が高
い変換効率を達成し得ることが分かった。
However, it has been found that, for example, in the case of manufacturing an amorphous solar cell, higher conversion efficiency can be achieved by using a substrate manufactured by this method.

髪」Jと1缶 従って、本発明の目的は、原料液を粒径がそろった微粒
子にて霧化し、大面積への均一な製膜を可能とするスプ
レー熱分解法による薄膜の製造方法を提供することであ
る。
Therefore, the purpose of the present invention is to provide a method for producing a thin film using a spray pyrolysis method that atomizes a raw material liquid into fine particles with uniform particle sizes and enables uniform film formation over a large area. It is to provide.

本発明の他の目的は、膜圧分布を均一にし、又原料の歩
留りを向上せしめることのできるスプレー熱分解法によ
る薄膜の製造方法を提供することである。
Another object of the present invention is to provide a method for producing a thin film by spray pyrolysis, which can make the film pressure distribution uniform and improve the yield of raw materials.

一 上記目的は本発明によって達成される。*約すれば本発
明は、原料液を超音波振動手段を用いて霧化し、該霧化
物を加熱基板上に導き、熱分解反応により該基板に薄膜
を形成することを特徴とする薄膜製造方法である0本発
明の好ましい実施態様によると、超音波振動手段は超音
波発生手段によって振動する振動子を有し、該振動子は
先端部にエツジ部を形成し、該エツジ部に原料液が供給
される。
One of the above objects is achieved by the present invention. *In short, the present invention is a thin film manufacturing method characterized by atomizing a raw material liquid using an ultrasonic vibration means, guiding the atomized product onto a heated substrate, and forming a thin film on the substrate by a thermal decomposition reaction. According to a preferred embodiment of the present invention, the ultrasonic vibrating means has a vibrator that is vibrated by the ultrasonic generating means, and the vibrator has an edge portion at its tip, and the raw material liquid is in the edge portion. Supplied.

次に、本発明に係る薄膜製造方法を更に詳細に説明する
Next, the thin film manufacturing method according to the present invention will be explained in more detail.

第1図を参照すると、本発明に係る薄膜製造方法を実施
する一つの製造装置が例示される0本実施例装置10に
よると熱源12によって加熱されるホットプレート14
が設けられ、該ホットプレート14上に、例えばガラス
板のような基板2aが載置される。
Referring to FIG. 1, one manufacturing apparatus for implementing the thin film manufacturing method according to the present invention is illustrated.According to the present embodiment apparatus 10, a hot plate 14 heated by a heat source 12 is shown.
A substrate 2a, such as a glass plate, is placed on the hot plate 14.

一方、前記基板2a上に製膜される材料2bを含んだ原
料液16は、送液定量ポンプ18によって超音波噴射手
段20に送給され、微粒化即ち霧化される。該原料液の
微粒子は導管手段22によって前記基板2aへと導かれ
る。前記導管手段22には、超音波噴射手段20によっ
て霧化された原料液の微粒子を効率よく基板?bの方へ
と送給するためにファン24を設けることが好ましい。
On the other hand, the raw material liquid 16 containing the material 2b to be formed into a film on the substrate 2a is fed to the ultrasonic spraying means 20 by the liquid feeding metering pump 18, and is atomized, that is, atomized. The fine particles of the raw material liquid are guided to the substrate 2a by conduit means 22. The conduit means 22 efficiently transfers fine particles of the raw material liquid atomized by the ultrasonic jetting means 20 to the substrate. Preferably, a fan 24 is provided for feeding towards b.

他の実施例として、超音波噴射手段20を前記基板2b
に近接して配置し、該超音波噴射手段20によって霧化
された原料液の微粒子を直接加熱基板2bに吹付けるこ
とも可能であるが、上述のように、超音波噴射手段20
によって霧化された原料液の微粒子は、例えば空気のよ
うなキャリアガスと共に基板zb上へと導管手段22に
よって輸送し該基板2bに吹付ける方が均一な製膜が達
成される。
As another embodiment, the ultrasonic jetting means 20 is connected to the substrate 2b.
Although it is also possible to arrange the ultrasonic spraying means 20 close to the heating substrate 2b and directly spray the fine particles of the raw material liquid atomized by the ultrasonic spraying means 20 onto the heating substrate 2b, as described above, the ultrasonic spraying means 20
A more uniform film formation can be achieved by transporting the fine particles of the raw material liquid atomized by, for example, a carrier gas such as air onto the substrate zb by the conduit means 22 and spraying them onto the substrate 2b.

第2図は、本発明に使用し得る超音波噴射手段20の好
ましい実施例を示す。
FIG. 2 shows a preferred embodiment of an ultrasonic jetting means 20 that can be used in the present invention.

本出願人は、大容量の液体の微粒化を達成するべく、超
音波による液体微粒化メカニズム及び超音波振動子の形
状の研究及び実験を数多く行なった結果、超音波振動子
の端部にエツジ部を設け。
In order to achieve atomization of a large volume of liquid, the applicant has conducted numerous studies and experiments on the liquid atomization mechanism using ultrasonic waves and the shape of the ultrasonic vibrator, and as a result, the applicant has found that an edge is added to the end of the ultrasonic vibrator. Establishment of a department.

該エツジ部に液体を薄膜状で供給することによって、該
エツジ部より液体が大量に微粒化されることを見出し、
超音波噴射方法及び噴射ノズルを提案した(特願昭59
−77572を参照せよ)。
It has been discovered that a large amount of liquid can be atomized from the edge portion by supplying the liquid in the form of a thin film to the edge portion,
Proposed an ultrasonic injection method and an injection nozzle (patent application 1983)
-77572).

本発明者等の研究の結果、該超音波噴射ノズルは、本発
明にて使用する超音波噴射手段20として極めて好適に
使用し得ることが分かった。
As a result of research conducted by the present inventors, it has been found that the ultrasonic jet nozzle can be used very suitably as the ultrasonic jet means 20 used in the present invention.

第2図を参照すると、超音波噴射手段、即ち、超音波噴
射ノズル20は、中心に中心孔26を有した細長の概略
円筒形状の弁箱28を具備する。
Referring to FIG. 2, the ultrasonic injection means, ie, the ultrasonic injection nozzle 20, includes an elongated, generally cylindrical valve body 28 having a central hole 26 in the center.

該弁箱28の下端には、弁箱2Bの中心孔26と同軸に
て整列した貫通孔30が形成された液体供給手段、即ち
、原料液供給手段32がリテイナー34によって通常の
方法で一体的に設けられる。
At the lower end of the valve box 28, a liquid supply means, ie, a raw material liquid supply means 32, in which a through hole 30 is formed coaxially with the center hole 26 of the valve case 2B, is integrally connected by a retainer 34 in a normal manner. established in

前記弁箱28の中心孔26及び原料液供給手段32の貫
通孔30とを貫いて振動子36が配置される。該振動子
36は、上部の本体部38、該本体部38より小径の細
長円柱状の振動子軸部40及び本体部38と軸部40と
を連結する遷移部42を有する0本体部38にはより大
径とされた鍔44が設けられており、該鍔44が弁箱2
8の上端に形成された肩部46と、該弁箱28の上端面
にボルト(図示せず)によって取付られた環状の振動子
押え48とによって弁箱28に取付ちれる。
A vibrator 36 is disposed passing through the center hole 26 of the valve box 28 and the through hole 30 of the raw material liquid supply means 32. The vibrator 36 includes an upper main body part 38, an elongated cylindrical transducer shaft part 40 having a smaller diameter than the main body part 38, and a transition part 42 connecting the main body part 38 and the shaft part 40. is provided with a flange 44 having a larger diameter, and the flange 44 is connected to the valve box 2.
It is attached to the valve case 28 by a shoulder 46 formed at the upper end of the valve case 8 and an annular vibrator retainer 48 attached to the upper end surface of the valve case 28 with bolts (not shown).

振動子36の軸部40は弁箱28及び液体供給手段32
より下方に、つまり外方へと更に突出している。振動子
36の先端、つまり軸部40の先端にはエツジ部50が
形成される。
The shaft portion 40 of the vibrator 36 is connected to the valve box 28 and the liquid supply means 32.
It protrudes further downward, that is, outward. An edge portion 50 is formed at the tip of the vibrator 36, that is, the tip of the shaft portion 40.

前記振動子36のエツジ部50は、第1図によると、漸
次径が小さくされた5段から成る環状の階段状とされる
が、2段、3段又は4段の階段状とすることもでき、又
漸次径が増大したり、又漸次径が小さくなり次で大きく
なるような形状とすることもでき、更には全ての段が同
径となるように形成することもできる0重要なことは振
動子先端部にエツジが形成されることである。
According to FIG. 1, the edge portion 50 of the vibrator 36 has an annular step shape consisting of five steps whose diameter is gradually reduced, but it may also have a step shape of two steps, three steps, or four steps. It can also be shaped so that the diameter increases gradually, or the diameter gradually decreases and then increases, or even can be formed so that all stages have the same diameter. This means that an edge is formed at the tip of the vibrator.

又、第3図に図示されるように、エツジ部50のエツジ
の暢(W)及び高さくh)は、液体原料液の薄膜化が行
ない得るような且つ又液体の流れを堰止めるような寸法
形状とされる。
Further, as shown in FIG. 3, the edge width (W) and height h) of the edge portion 50 are such that the liquid raw material liquid can be made into a thin film and that the flow of the liquid can be dammed. Dimensions and shape.

前記原料液供給手段32には、振動子3Bの前記エツジ
部50に原料液を供給するための供給通路52が1つ又
は複数個環状に配列して形成される。該供給通路52の
原料液供給口54は概略前記エツジ部50の上端に隣接
して開口し、J[料液供給口54の他端56は互に連結
され且つ弁箱28に形成された原料液導通孔58に連結
される。
The raw material liquid supply means 32 is formed with one or more supply passages 52 arranged in an annular shape for supplying the raw material liquid to the edge portion 50 of the vibrator 3B. The raw material liquid supply port 54 of the supply passage 52 opens approximately adjacent to the upper end of the edge portion 50, and the other ends 56 of the raw material liquid supply ports 54 are connected to each other and are formed in the valve box 28. It is connected to the liquid passage hole 58.

原料液導通孔58には原料液16が送液定量ポンプ18
を介して供給される。
The raw material liquid 16 is supplied to the raw material liquid communication hole 58 through the liquid feeding metering pump 18.
Supplied via.

上記構成において、振動子36は、本体部38に作動的
に接続された超音波撮動発生手段100により連続的に
又は間欠的に振動される。従って、液体原料液16が供
給弁18、導通孔5B及び供給通路52を介してエツジ
部50に供給されると、液体原料液は微粒化され導管手
段22内へと噴射される。
In the above configuration, the vibrator 36 is vibrated continuously or intermittently by the ultrasonic imaging generating means 100 operatively connected to the main body 38 . Therefore, when the liquid raw material liquid 16 is supplied to the edge part 50 through the supply valve 18, the through hole 5B, and the supply passage 52, the liquid raw material liquid is atomized and injected into the conduit means 22.

第4図は、超音波噴射手段20の他の実施例を示す、該
実施例の噴射ノズル20aは、上述の噴射ノズル2とそ
の作動メカニズムは同じであるが、振動子の形状及び原
料液の供給態様において相違している。つまり、本実施
例において、振動子36aはエツジ部50aが先端内周
部に形成され、原料液は該振動子36aの内部を貫通し
て形成された供給通路52aを介して行なわれる。
FIG. 4 shows another embodiment of the ultrasonic injection means 20. The injection nozzle 20a of this embodiment has the same operating mechanism as the injection nozzle 2 described above, but the shape of the vibrator and the flow rate of the raw material liquid are the same. They differ in the way they are supplied. That is, in this embodiment, the vibrator 36a has an edge portion 50a formed at the inner circumferential portion of the tip, and the raw material liquid is supplied through a supply passage 52a formed through the inside of the vibrator 36a.

第5図は、上記構成の超音波噴射ノズル20(又は20
a)と従来の圧力噴霧器の霧化の粒径分布を示すもので
ある。該図面より、上記構成のノズル20(又は20a
)によると、霧化物の粒径分布は従来ノズルによる粒径
分布よりも狭く、均一な製膜が可能とされことが理解さ
れるであろう。
FIG. 5 shows an ultrasonic jet nozzle 20 (or 20
a) and the particle size distribution of the atomization of a conventional pressure atomizer. From the drawing, the nozzle 20 (or 20a
), it will be understood that the particle size distribution of the atomized product is narrower than that of conventional nozzles, making it possible to form a uniform film.

実施例 次に、本発明に係る方法を、半導体装置に使用される酸
化すず膜基板の作製に適用した一実施例について説明す
る。
Example Next, an example will be described in which the method according to the present invention is applied to the production of a tin oxide film substrate used in a semiconductor device.

製造装置は概略第1図に図示されるような構成とされた
。基板2aとしては表面に5iOzアンダーコートを施
した10cm角の並ガラスを用い、ホットプレート14
上に載置し、表面温度450℃にまで加熱された。
The manufacturing apparatus had a configuration as schematically shown in FIG. As the substrate 2a, a 10 cm square ordinary glass with a 5iOz undercoat on the surface is used, and a hot plate 14 is used.
It was placed on top and heated to a surface temperature of 450°C.

原料液はエタノール中に5nCJl+ ・5H2Oを0
.02モル/i、NH4Fを0.02モル/文、塩酸を
0.5重量パーセントそれぞれ溶解させたものを用いた
The raw material solution contains 5nCJl+ ・5H2O in ethanol.
.. 0.02 mol/i of NH4F, 0.02 mol/liter of NH4F, and 0.5 weight percent of hydrochloric acid were used.

超音波噴射手段としては第2図に図示される超音波噴射
ノズル20を使用した。この時、超音波噴射ノズル20
の諸寸法は次の如くであった。
As the ultrasonic injection means, an ultrasonic injection nozzle 20 shown in FIG. 2 was used. At this time, the ultrasonic jet nozzle 20
The dimensions were as follows.

超音波発生手段の出カニ   10w 振動子の振幅       30終m 振動数      38KHz 振動子の形状寸法 1段    :直径  7mm 2段    :直径  6mm 3段    :直径  5mm 4段    :直径  4mm 5段    :直径  3mm 各段の高さくh):   1.5mm 振動子の材料    :直径7mmチタン丸棒加工品 導管手段22はステンレスで作製し、基板2aが載った
ホットプレート14上を、ステンレス製のケースでおお
い、このケース内に超音波噴射弁で霧化した原料液を乾
燥空気とともに送りこんだ、 超音波噴射弁への原料液
送液量は0.15cc/秒とし、1ooccの原料液を
連続噴霧した。又、キャリアガスとして用いた乾燥空気
の液量は51/分であった。
Output of ultrasonic generating means 10w Vibrator amplitude 30m Frequency 38KHz Transducer shape and dimensions 1 stage: Diameter 7 mm 2 stages: Diameter 6 mm 3 stages: Diameter 5 mm 4 stages: Diameter 4 mm 5 stages: Diameter 3 mm Each stage Height (h): 1.5 mm Vibrator material: 7 mm diameter titanium round bar product The conduit means 22 is made of stainless steel, and the hot plate 14 on which the substrate 2a is placed is covered with a stainless steel case. The raw material liquid atomized by an ultrasonic injection valve was sent into the chamber together with dry air.The raw material liquid feed rate to the ultrasonic injection valve was 0.15 cc/sec, and 10cc of the raw material liquid was continuously sprayed. Further, the liquid volume of dry air used as a carrier gas was 51/min.

このようにして作製した酸化すず膜の特性を第1表に示
す、膜厚はエツチングしてから触針式膜厚計で、粒径分
布は走査型電子m*鏡で、シート抵抗は4端子法により
測定した。
The properties of the tin oxide film produced in this way are shown in Table 1.The film thickness was measured using a stylus thickness meter after etching, the particle size distribution was measured using a scanning electronic m* mirror, and the sheet resistance was measured using a 4-terminal It was measured by the method.

比較例 従来のスプレー熱分解法にて、上記実施例と同様に酸化
すず膜基板を製造した。
Comparative Example A tin oxide film substrate was manufactured in the same manner as in the above example using the conventional spray pyrolysis method.

該方法において、基板とスプレーヘッドの距離を40c
mとし、キャリアガスには圧力2Cg/crn’の乾燥
空気を用い、10秒間噴霧、10秒間待機、のくり返し
で噴霧を行なった。噴霧中の平均噴霧量は0.3cc/
秒であり、100ccの原料液を噴霧した。尚、連続噴
霧を行なわず間欠噴霧としたのは、ガラス表面温度の低
下を避けるためである。
In this method, the distance between the substrate and the spray head is 40c.
m, dry air at a pressure of 2 Cg/crn' was used as the carrier gas, and spraying was performed by repeating the following steps: spraying for 10 seconds, waiting for 10 seconds. Average spray amount during spraying is 0.3cc/
100 cc of raw material liquid was sprayed. The reason why the spraying was not continuous but was sprayed intermittently was to avoid a drop in the glass surface temperature.

このようにして作製した酸化すず膜の特性を第1表に示
す、膜厚は、上記実施例と同様に、エツチングしてから
触針式膜厚計で1粒径分布は走査型電子顕微鏡で、シー
ト抵抗は4端子法により測定した。
The properties of the tin oxide film produced in this way are shown in Table 1.The film thickness was determined by a stylus thickness meter after etching, as in the above example, and the grain size distribution was determined by a scanning electron microscope. The sheet resistance was measured by a four-terminal method.

表  1 皇−一察 第1表から分かるように、従来のスプレー法においては
、噴霧の不均一が避けられず、周辺部では膜厚が薄く、
シート抵抗も高くなっている。
Table 1 As can be seen from Table 1, in the conventional spray method, non-uniformity of the spray is unavoidable, and the film thickness is thinner in the peripheral areas.
Sheet resistance is also high.

一方、本発明に係る超音波噴射を利用した方法において
は、キャリアガス導入部に近い側の周辺部Aが最も厚く
、キャリアガス出口側に近い周辺部Bが幾分薄くなって
いるが、従来のスプレー法に比較すると均一性がはるか
に向上している。
On the other hand, in the method using ultrasonic jetting according to the present invention, the peripheral part A near the carrier gas introduction part is thickest, and the peripheral part B near the carrier gas outlet side is somewhat thinner. The uniformity is much improved compared to the spray method.

又、本発明の上記実施例における斯る小さな不均一性も
、導管手段22、特に基板2aを覆ったステンレスカバ
ーの形状、キャリアガスの流量等を最適化することによ
り、より均一な製膜が可能であることがその後の実験に
より確認されている。
Further, such small non-uniformity in the above embodiments of the present invention can be solved by optimizing the shape of the conduit means 22, especially the stainless steel cover covering the substrate 2a, the flow rate of the carrier gas, etc., to achieve more uniform film formation. Subsequent experiments have confirmed that this is possible.

更に1本発明により製造された酸化すず膜においては粒
径の分布が狭くなっており、均質な膜が作製されている
ことが分かる。又1本発明の方法は、上述より原料液の
歩留まりが向上しているが理解されるであろう。
Furthermore, it can be seen that in the tin oxide film produced according to the present invention, the particle size distribution is narrow, and a homogeneous film is produced. Furthermore, it will be understood that the method of the present invention improves the yield of the raw material liquid as compared to the above.

兄」Jと11 以上説明したように、本発明に係る薄膜製造方法による
と、原料液を粒径がそろった微粒子にて霧化することが
でき、大面積への均一な製膜が可能となり、且つ膜厚分
布を均一にし、更には原料の歩留りを向上せしめること
ができる。
As explained above, according to the thin film manufacturing method of the present invention, the raw material liquid can be atomized into fine particles with uniform particle sizes, making it possible to form a uniform film over a large area. In addition, it is possible to make the film thickness distribution uniform and further improve the yield of raw materials.

又、本発明に係る方法は、従来使用されている連続コン
ベア炉を使用した薄膜製造装置にて容易に実現すること
ができ、種々の薄膜を多量に生産することができる。
Further, the method according to the present invention can be easily realized with a thin film production apparatus using a conventionally used continuous conveyor furnace, and various thin films can be produced in large quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る薄膜製造方法を実施するための
装置の一実施例を説明する概略断面図である。 第2図は、超音波噴射ノズルの一実施例の断面図である
。 第3図は、超音波噴射ノズル振動子のエツジ部の部分拡
大図である。 第4図は、超音波噴射ノズルの他の実施例の断面図であ
る。 第5図は、従来のスプレーヘッドと超音波噴射ノズルの
粒径分布を示すグラフであり、従来の圧力噴射式の場合
の縦座標(頻度%)は4倍に拡大して示される。 第6図は、アモルファスシリコン太陽電池の断面図であ
る。 2a:基板 2b=薄膜 14:ホットプレート 16:J[料液 20.20a:超音波噴射手段 36.36a:振動子 50.50a:エツジ部 100:超音波振動発生手段 図面の浄書(内容に変更なし) 0a 第5図 オ%今青、J、1m 第6図 手続補正書(方丈) 昭和60年8月29日
FIG. 1 is a schematic cross-sectional view illustrating an embodiment of an apparatus for carrying out the thin film manufacturing method according to the present invention. FIG. 2 is a cross-sectional view of one embodiment of an ultrasonic jet nozzle. FIG. 3 is a partially enlarged view of the edge portion of the ultrasonic jet nozzle vibrator. FIG. 4 is a sectional view of another embodiment of the ultrasonic jet nozzle. FIG. 5 is a graph showing the particle size distribution of a conventional spray head and an ultrasonic jet nozzle, and the ordinate (frequency %) for the conventional pressure jet type is shown enlarged four times. FIG. 6 is a cross-sectional view of an amorphous silicon solar cell. 2a: substrate 2b = thin film 14: hot plate 16: J [liquid 20.20a: ultrasonic injection means 36.36a: vibrator 50.50a: edge portion 100: ultrasonic vibration generation means Engraving of drawing (changed in content) None) 0a Figure 5 O% Imao, J, 1m Figure 6 Procedural Amendment (Hojo) August 29, 1985

Claims (1)

【特許請求の範囲】 1)原料液を超音波振動手段を用いて霧化し、該霧化物
を加熱基板上に導き、熱分解反応により該基板に薄膜を
形成することを特徴とする薄膜製造方法。 2)超音波振動手段は超音波発生手段によつて振動する
振動子を有し、該振動子は先端部にエッジ部を形成し、
該エッジ部に原料液が供給されて成る特許請求の範囲第
1項記載の方法。 3)エッジ部は階段状に形成されて成る特許請求の範囲
第2項記載の方法。 4)エッジ部は振動子の外周部に形成されて成る特許請
求の範囲第3項記載の方法。 5)エッジ部は振動子の内周部に形成されて成る特許請
求の範囲第3項記載の方法。 6)薄膜は酸化すずを主成分とする薄膜である特許請求
の範囲第1項〜第5項のいずれかの項に記載の方法。
[Claims] 1) A method for producing a thin film, which comprises: atomizing a raw material liquid using ultrasonic vibration means, guiding the atomized product onto a heated substrate, and forming a thin film on the substrate through a thermal decomposition reaction. . 2) The ultrasonic vibration means has a vibrator that is vibrated by the ultrasonic generation means, and the vibrator has an edge portion at its tip,
2. The method according to claim 1, wherein the raw material liquid is supplied to the edge portion. 3) The method according to claim 2, wherein the edge portion is formed in a stepped shape. 4) The method according to claim 3, wherein the edge portion is formed on the outer periphery of the vibrator. 5) The method according to claim 3, wherein the edge portion is formed on the inner peripheral portion of the vibrator. 6) The method according to any one of claims 1 to 5, wherein the thin film is a thin film containing tin oxide as a main component.
JP60086116A 1985-04-22 1985-04-22 Manufacture of thin film Pending JPS61244025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086116A JPS61244025A (en) 1985-04-22 1985-04-22 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086116A JPS61244025A (en) 1985-04-22 1985-04-22 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPS61244025A true JPS61244025A (en) 1986-10-30

Family

ID=13877723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086116A Pending JPS61244025A (en) 1985-04-22 1985-04-22 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPS61244025A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417873A (en) * 1987-07-13 1989-01-20 Matsumoto Seiyaku Kogyo Kk Formation of thin film of metal compound decomposition product
JPH0371619A (en) * 1989-08-11 1991-03-27 Sanyo Electric Co Ltd Method of formation of semiconductor thin film
JPH0373519A (en) * 1989-08-14 1991-03-28 Hoxan Corp Formation of polycrystalline silicon film on semiconductor substrate
FR2669246A1 (en) * 1990-11-16 1992-05-22 Centre Nat Rech Scient SOL-GEL PROCESS FOR THE DEPOSITION OF THIN FILMS BY ULTRASONIC SPRAYING.
JP2006015332A (en) * 2004-06-03 2006-01-19 Canon Inc Film forming method and production method for spacer and thin type flat panel display using the same
US7819081B2 (en) 2002-10-07 2010-10-26 Sekisui Chemical Co., Ltd. Plasma film forming system
EP2484805A1 (en) * 2011-02-03 2012-08-08 Mott Corporation Sinter bonded porous metallic coatings
WO2013022032A1 (en) * 2011-08-10 2013-02-14 日本曹達株式会社 Laminate and manufacturing process therefor
US9149750B2 (en) 2006-09-29 2015-10-06 Mott Corporation Sinter bonded porous metallic coatings

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417873A (en) * 1987-07-13 1989-01-20 Matsumoto Seiyaku Kogyo Kk Formation of thin film of metal compound decomposition product
JPH0371619A (en) * 1989-08-11 1991-03-27 Sanyo Electric Co Ltd Method of formation of semiconductor thin film
JPH0373519A (en) * 1989-08-14 1991-03-28 Hoxan Corp Formation of polycrystalline silicon film on semiconductor substrate
FR2669246A1 (en) * 1990-11-16 1992-05-22 Centre Nat Rech Scient SOL-GEL PROCESS FOR THE DEPOSITION OF THIN FILMS BY ULTRASONIC SPRAYING.
US7819081B2 (en) 2002-10-07 2010-10-26 Sekisui Chemical Co., Ltd. Plasma film forming system
JP2006015332A (en) * 2004-06-03 2006-01-19 Canon Inc Film forming method and production method for spacer and thin type flat panel display using the same
US9149750B2 (en) 2006-09-29 2015-10-06 Mott Corporation Sinter bonded porous metallic coatings
EP2484805A1 (en) * 2011-02-03 2012-08-08 Mott Corporation Sinter bonded porous metallic coatings
WO2013022032A1 (en) * 2011-08-10 2013-02-14 日本曹達株式会社 Laminate and manufacturing process therefor
US9338884B2 (en) 2011-08-10 2016-05-10 Nippon Soda Co., Ltd. Laminated body and manufacturing process therefor

Similar Documents

Publication Publication Date Title
CN1121511C (en) Apparatus and process for controlled atmosphere chemical vapor deposition
US6800333B2 (en) Method of depositing in situ a solid film on a substrate
CN102465281A (en) Film coating system and method and gas supply device used by same
JPS61244025A (en) Manufacture of thin film
NZ582387A (en) Film forming apparatus and film forming method
KR20100116400A (en) Method and apparatus depositing trans-phase aerosol
WO1998055668A1 (en) Method and apparatus for vapor generation and film deposition
JPH038330A (en) Apparatus for vaporizing and supplying liquid material for semiconductor
JP2007077436A (en) Film deposition system
CN1194821C (en) Nozzle for large-area uniform transparent conducting film
CN105121699B (en) Film build method
CN106630669B (en) The equipment and preparation method thereof for preparing solar cell coated glass
JPH01189815A (en) Manufacture of transparent conductive film
JPH06206796A (en) Generator of raw material gas for cvd
JP4991950B1 (en) Mist deposition system
JP2012062527A (en) Method for producing metal oxide thin film, and metal oxide thin film formation device using the method
TWI841064B (en) Device and method for spraying perovskite film
JP4086627B2 (en) Deposition method
CN213266693U (en) Device for continuously plating metal sulfide on titanium substrate
RU2403327C1 (en) Method of depositing diamond phase nucleation centres onto substrate
JPH07150362A (en) Production of ysz buffer layer on sapphire
JP2004107686A (en) Air open type cvd system
TWI511796B (en) Curtain-style supersonic spray coating system and technique of substrate spraying material
JP2701477B2 (en) Manufacture of manganese dioxide cathode
Ando et al. TiO 2 Film Deposition by Atmospheric Thermal Plasma CVD Using Laminar and Turbulence Plasma Jets