JPS61243977A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS61243977A
JPS61243977A JP8568985A JP8568985A JPS61243977A JP S61243977 A JPS61243977 A JP S61243977A JP 8568985 A JP8568985 A JP 8568985A JP 8568985 A JP8568985 A JP 8568985A JP S61243977 A JPS61243977 A JP S61243977A
Authority
JP
Japan
Prior art keywords
film
recording medium
magneto
optical recording
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8568985A
Other languages
Japanese (ja)
Other versions
JPH0445898B2 (en
Inventor
Nobuhiro Tsukagoshi
塚越 庸弘
Kiyohide Ogasawara
清秀 小笠原
Takamasa Yoshikawa
高正 吉川
Masayasu Yamaguchi
正泰 山口
Kiyoaki Fujii
藤井 清朗
Hiroshi Ito
寛 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP8568985A priority Critical patent/JPS61243977A/en
Publication of JPS61243977A publication Critical patent/JPS61243977A/en
Publication of JPH0445898B2 publication Critical patent/JPH0445898B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photomagnetic recording medium having a large Kerr rotational angle by providing two kinds of Kerr effect enhance films of ZnS and Ge, between a transparent substrate and an amorphous alloy film consisting of rare earth metal-transition metal containing Al. CONSTITUTION:A photomagnetic recording medium is prepared by providing a Kerr effect enhance (KE) film 2a consisting of ZnS of 10-100Angstrom film thickness, a KE film 2b consisting of Ge of the same film thickness, an amorphous alloy film 3 being a photomagnetic recording material, and a protective film 4 consisting of SiO2, on a main surface of a PMMA substrate 1 provided with a guide groove. Its alloy film 3 has a composition of (RxT1-x)1-yAly. In this regard, R, T, and (x) and (y) denote one kind or more of rare earth metals which have been selected from Gd, Tb and Dy, one kind or more of transition metals which have been selected from Fe and Co, and values being within a range of 0.1<=0.4 and 0.005<=y<=0.4, respectively. In this way, a photomagnetic recording medium whose Kerr rotational angle is large is obtained.

Description

【発明の詳細な説明】 技術分野 本発明はE−DRAW型光ディスクに関し、特に希土類
金属と遷移金属を主成分とするアモルファス合金からな
りかつ膜面に垂直な方向に一軸磁気異方性を有する光記
録膜を担持した光磁気記録媒体に関する。
Detailed Description of the Invention Technical Field The present invention relates to an E-DRAW type optical disk, in particular an optical disc made of an amorphous alloy mainly composed of rare earth metals and transition metals and having uniaxial magnetic anisotropy in the direction perpendicular to the film surface. The present invention relates to a magneto-optical recording medium carrying a recording film.

背景技術 従来から、一定の条件下で例えば高周波スパッタリング
等の方法で作成さ、れる希土類金属と遷移金属との合金
例えばGd1bFe(ガドリニウム−テルビウム−鉄)
、TbFeCo (テルビウム−鉄−コバルト)等の合
金薄膜は、アモルファス構造をとり、膜面に垂直な一軸
磁気異方性を有することが知られている。
BACKGROUND ART Conventionally, alloys of rare earth metals and transition metals, such as Gd1bFe (gadolinium-terbium-iron), are produced under certain conditions by a method such as high-frequency sputtering.
It is known that alloy thin films such as TbFeCo (terbium-iron-cobalt) have an amorphous structure and have uniaxial magnetic anisotropy perpendicular to the film surface.

この性質を光磁気記録媒体の記録膜として利用すること
が出来る。すなわち、情報の記録読取りについては次の
ように行う。先ず、−軸磁気異方性を有するアモルファ
ス合金膜上にレーザ光を焦光してその焦光部分を永久磁
石又は電磁石を用いて外部磁場を印加しながらキューリ
一温度又は補償温度付近まで局部的に加熱せしめる。こ
の時の焦光部分における熱消磁又は磁化反転の熱磁気的
効果によって、一方向に一様に磁化された合金膜面内に
反転磁区を形成して情報を記録することが出来る。次に
、形成された反転磁区に偏光レーザ光を入射し、その反
射光におけるポーラ・カー効果による偏波面の回転から
反転磁区の有無を信号として検出できる。このようにし
て、上記記録媒体において反転磁区の有無を“1″、“
0”に対応させることによって記録した情報の読取りが
可能となる。
This property can be utilized as a recording film of a magneto-optical recording medium. That is, recording and reading of information is performed as follows. First, a laser beam is focused on an amorphous alloy film having -axis magnetic anisotropy, and the focused portion is locally heated to around the Curie temperature or compensation temperature while applying an external magnetic field using a permanent magnet or electromagnet. Heat it up. At this time, due to the thermomagnetic effect of thermal demagnetization or magnetization reversal in the focused portion, information can be recorded by forming reversed magnetic domains in the plane of the alloy film that is uniformly magnetized in one direction. Next, a polarized laser beam is incident on the formed inverted magnetic domain, and the presence or absence of an inverted magnetic domain can be detected as a signal from the rotation of the plane of polarization due to the Polar Kerr effect in the reflected light. In this way, the presence or absence of inverted magnetic domains in the recording medium can be determined as "1" or "1".
By making it correspond to 0'', the recorded information can be read.

従来からの希土類金属と遷移金属とのアモルファス合金
例えばGdTbFe、TbFeCo等は光磁気効果及び
磁気特性、特にキューリ一点、補償温度が室温から百数
十度の範囲にあってかつ数KOeの保磁力があり光磁気
記録材料として適しているため光磁気記録媒体の記録膜
材料として注目され実用化が検討されている。
Conventional amorphous alloys of rare earth metals and transition metals, such as GdTbFe and TbFeCo, have excellent magneto-optical effects and magnetic properties, especially the Curie point, compensation temperature in the range from room temperature to 100-odd degrees, and coercive force of several KOe. Since it is suitable as a magneto-optical recording material, it is attracting attention as a recording film material for magneto-optical recording media, and its practical application is being considered.

しかしながら、これら希土類金属と遷移金属とのアモル
ファス合金薄膜は酸化し易いために長期信頼性に欠けて
いる。そのために該アモルファス合金膜においては、磁
気特性や光磁気特性に経時変化が生じ易く、特に高温で
かつ高湿度の環境中ではその劣化が大きいという欠点が
あり、該アモルファス合金膜は、光磁気記録膜として使
用する場合に安定性に問題があった。
However, these amorphous alloy thin films of rare earth metals and transition metals are easily oxidized and therefore lack long-term reliability. Therefore, the amorphous alloy film has the disadvantage that its magnetic properties and magneto-optical properties tend to change over time, and the deterioration is large especially in high temperature and high humidity environments. There was a problem with stability when used as a membrane.

また、かかるアモルファス合金膜は膜面に垂直な方向に
一軸磁気異方性を有する垂直磁化膜であることが必要で
あるが、従来のアモルファス合金は、その磁化容易軸が
理想的な膜面に垂直な方向からかなり傾いて分布してお
り、レーザ光で信号を読取るのに充分なカー回転角を有
しているとは言えなかった。そこで従来から、より大き
なカー回転角を得るような磁化容易軸が膜面に垂直な方
向に出来るだけ向いた垂直磁化膜としてのアモルファス
合金膜が求められている。
In addition, such an amorphous alloy film must be a perpendicularly magnetized film with uniaxial magnetic anisotropy in the direction perpendicular to the film surface, but in conventional amorphous alloys, the axis of easy magnetization must be aligned with the ideal film surface. The distribution was tilted considerably from the vertical direction, and it could not be said that the Kerr rotation angle was sufficient for reading signals with laser light. Therefore, there has been a demand for an amorphous alloy film as a perpendicularly magnetized film in which the axis of easy magnetization is as perpendicular to the film surface as possible so as to obtain a larger Kerr rotation angle.

更に、アモルファス合金膜のカー回転角を高めるために
、第1図の従来の光磁気記録媒体の概略断面図にて示す
如く、Zn5(硫化亜鉛)からなるカー効果エンハンス
r!A2を基板1とアモルファス合金膜3との間に設は
保護膜4を積層した光磁気記録媒体も開発されている。
Furthermore, in order to increase the Kerr rotation angle of the amorphous alloy film, as shown in the schematic cross-sectional view of a conventional magneto-optical recording medium in FIG. 1, a Kerr effect enhancing r! A magneto-optical recording medium in which a protective film 4 is laminated between the substrate 1 and the amorphous alloy film 3 has also been developed.

しかしながら、この従来の光磁気記録媒体おいても充分
大きなカー回転角を得るには至っていない。
However, even in this conventional magneto-optical recording medium, it has not been possible to obtain a sufficiently large Kerr rotation angle.

発明の概要 本発明の目的は、経時変化の小さい長期保存性に優れ、
更に大ぎなカー回転角を有した光磁気記録媒体を提供す
ることを目的としている。
Summary of the Invention The purpose of the present invention is to provide an excellent long-term storage property with little change over time;
It is an object of the present invention to provide a magneto-optical recording medium having an even larger Kerr rotation angle.

本発明の光磁気記録媒体は、基板と、該基板に担持され
かつ膜面に垂直な方向に一軸磁気異方性を有するアモル
ファス合金膜とを有する光磁気記録媒体であって、該ア
モルファス合金膜はAI(アルミニウム)を添加元素と
して含む希土類金属−遷移金属系合金膜であり、かつ基
板とアモルファス合金膜との間にZnSからなる第1カ
ー効果エンハンス膜及びGe(ゲルマニウム)からなる
第2カー効果エンハンス膜を設けたことを特徴とする。
The magneto-optical recording medium of the present invention is a magneto-optical recording medium having a substrate and an amorphous alloy film supported on the substrate and having uniaxial magnetic anisotropy in a direction perpendicular to the film surface, the amorphous alloy film is a rare earth metal-transition metal alloy film containing AI (aluminum) as an additive element, and a first Kerr effect enhancement film made of ZnS and a second Kerr effect film made of Ge (germanium) are arranged between the substrate and the amorphous alloy film. It is characterized by the provision of an effect-enhancing film.

実  施  例 以下、本発明の実施例を添附図面に基づいて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明の光磁気記録媒体の拡大部分断面概略図
である。案内溝付ぎ円板状PMMA基板1の主面上に、
膜厚830人のZnS (硫化亜鉛)からなる第1カー
効果エンハンス膜2a1膜厚50人のGe(ゲルマニウ
ム)からなる第2カー効果エンハンス膜2b、光磁気記
録材料であるアモルファス合金膜3、SiO2からなる
保護1114を真空蒸着あるいはスパッタリング等の製
膜方法により順に積層し光磁気記録媒体を作成する。尚
、アモルファス合金膜3を次式の合金組成となるように
形成する。
FIG. 2 is an enlarged partial cross-sectional schematic diagram of the magneto-optical recording medium of the present invention. On the main surface of the disc-shaped PMMA substrate 1 with guide grooves,
A first Kerr effect enhancement film 2a made of ZnS (zinc sulfide) with a thickness of 830 nm, a second Kerr effect enhancement film 2b made of Ge (germanium) with a film thickness of 50 nm, an amorphous alloy film 3 which is a magneto-optical recording material, SiO2 A magneto-optical recording medium is created by sequentially laminating the protection 1114 consisting of the following by a film forming method such as vacuum evaporation or sputtering. Note that the amorphous alloy film 3 is formed to have an alloy composition of the following formula.

CRT    ’)    AI X  1−X  1−1   % 上式では、希土類金属Rは、Gd(ガドリニウム)、T
b(テルビウム)及びDy(ジスプロシウム)から選ば
れる1種類以上の金属であり、遷移金属Tは、Fe(鉄
)及びCo(コバルト)から選ばれる1種類以上の金属
である。Xは原子比率で0.1≦X≦0.4の範囲の値
となるようにする。この範囲で垂直磁化膜が真空蒸着又
はスパッタリングによって得られることが知られている
CRT') AI X 1-X 1-1 % In the above formula, the rare earth metal R is Gd (gadolinium), T
The transition metal T is one or more metals selected from b (terbium) and Dy (dysprosium), and the transition metal T is one or more metals selected from Fe (iron) and Co (cobalt). X is set to have a value in the range of 0.1≦X≦0.4 in terms of atomic ratio. It is known that a perpendicularly magnetized film in this range can be obtained by vacuum evaporation or sputtering.

更に本実施例では、この希土類金属−遷移金属合金へ添
加元素としてAI(アルミニウム)を添加する。アモル
ファス合金における希土類金属−遷移金属合金とアルミ
ニウムとの原子比率における組成式(RT)    A
I  は、以下に述べる理1−y   y 由でyが0.005≦y≦0,4の範囲の値となるよう
にして、光磁気記録媒体のアモルファス合金膜を形成す
る。
Furthermore, in this example, AI (aluminum) is added as an additive element to this rare earth metal-transition metal alloy. Compositional formula (RT) in atomic ratio of rare earth metal-transition metal alloy and aluminum in amorphous alloy A
The amorphous alloy film of the magneto-optical recording medium is formed so that I has a value in the range of 0.005≦y≦0.4 based on the following principle 1-y y .

光磁気記録膜としての添加元素Alを含む非晶質の希土
類金属−遷移金属合金膜における添加元素Alの効果を
調べてみる。実験結果によると、Q、5at、%未満の
AI<即ちy<0.005)の希土類金属−遷移金属合
金への添加では酸化による該記録膜の経時変化を小さく
する効果がないことが確認された。また、40at、%
を超えるのAI(即ちy>0.4)の希土類金属−遷移
金属合金への添加になると光磁気記録膜の磁気的及び光
磁気特性における保磁力Hcやカー回転角の急激な低下
が生じ、光磁気記録媒体として使用することが不可能と
なることも確認された。
The effect of the additive element Al in an amorphous rare earth metal-transition metal alloy film containing the additive element Al as a magneto-optical recording film will be investigated. According to the experimental results, it has been confirmed that the addition of an AI of less than Q, 5 at% (i.e., y < 0.005) to a rare earth metal-transition metal alloy has no effect on reducing the aging change of the recording film due to oxidation. Ta. Also, 40at,%
When an AI of more than It was also confirmed that it became impossible to use it as a magneto-optical recording medium.

第3図は、本実施例の光磁気記録媒体と従来のものとに
ついて、45℃90%R,H,(湿度)の状態で波長8
30nmの半導体レーザ光によって測定した場合におけ
るカー回転角θにの経時変化を調べた結果を示すグラフ
である。第3図において、縦軸にカー回転角、横軸に経
過時間を示しており、曲線Aは(Tb  (Fe   
Co   )x     O,80,2 l−X)1−1”V合金においてx=0.18゜y=0
.08としてアモルファス合金膜として用いた本実施例
の光磁気記録媒体の経時変化を示し、曲線Bはカーエン
ハンス膜を用いることなく基板の上にTbFeCo合金
膜、そして保護膜をこの順に形成した従来の光磁気記録
媒体の経時変化を示している。グラフに示す如(本実施
例の光記録媒体は従来のものよりもθk(カー回転角)
の劣化が小さく酸化等による経時変化少ないことが分る
Figure 3 shows the wavelength 8 of the magneto-optical recording medium of this embodiment and the conventional one at 45°C and 90% R, H (humidity).
It is a graph showing the results of examining changes over time in the Kerr rotation angle θ when measured using a 30 nm semiconductor laser beam. In Fig. 3, the vertical axis shows the Kerr rotation angle and the horizontal axis shows the elapsed time, and the curve A is (Tb (Fe
Co)x O,80,2 l-X)1-1" In V alloy
.. 08 shows the change over time of the magneto-optical recording medium of this example used as an amorphous alloy film, and curve B shows the change over time of the magneto-optical recording medium of this example used as an amorphous alloy film. It shows the change over time of the magneto-optical recording medium. As shown in the graph (the optical recording medium of this embodiment has a lower θk (Kerr rotation angle) than the conventional one)
It can be seen that there is little deterioration and little change over time due to oxidation, etc.

更に、本実施例の光磁気記録媒体と従来のものとを45
℃90%R,H,(湿度)の状態である時間保持した侵
、波長830nmの半導体レーザ光を用いてそれぞれの
光磁気記録媒体のカー回転角θkについて調べて見る。
Furthermore, the magneto-optical recording medium of this example and the conventional one were
The Kerr rotation angle θk of each magneto-optical recording medium was examined using a semiconductor laser beam with a wavelength of 830 nm while maintaining the temperature at 90% R, H (humidity).

本実施例の光磁気記録媒体のカー回転角θには1.05
°となり、従来の光記録媒体のカー回転角θには0.5
4°となることが分った。このことは、本実施例では第
2図に示す如く膜厚830人のZnSからなる第1カー
効果エンハンス膜2aと膜厚50人のGeからなる第2
カー効果エンハンス膜2bを基板1とアモルファス合金
膜3との間に積層させているので、従来からのZnSの
誘電体の見掛上Qカー回転角の増大効果にざらにGeに
よる増大効果が付与されることを示している。
The Kerr rotation angle θ of the magneto-optical recording medium of this example is 1.05.
The Kerr rotation angle θ of the conventional optical recording medium is 0.5°.
It was found that the angle was 4°. This means that in this example, as shown in FIG.
Since the Kerr effect enhancing film 2b is laminated between the substrate 1 and the amorphous alloy film 3, the increasing effect of Ge is roughly added to the apparent Q Kerr rotation angle increasing effect of the conventional ZnS dielectric. This indicates that the

また、ZnSからなる第1カー効果エンハンス膜の膜厚
は50人〜1500人の範囲で変化させ、かつまた、G
e(ゲルマニウム)からなる第2カー効果エンハンス膜
の膜厚は10人〜100Aの範囲で変化させるなど、こ
れら両者のカー効果エンハンス膜の膜厚を適当に選択す
ることによって、45℃90%R,H,の状態で波長8
30nmの半導体レーザ光を用いてカー回転角Okを測
定したところ、上記同様のカー回転角の増大効果が得ら
れることが確認できた。
In addition, the thickness of the first Kerr effect enhancing film made of ZnS was varied in the range of 50 to 1500, and
By appropriately selecting the thickness of both Kerr effect enhancement films, such as changing the thickness of the second Kerr effect enhancement film made of e (germanium) in the range of 10A to 100A, it is possible to ,H, and the wavelength is 8.
When the Kerr rotation angle Ok was measured using a 30 nm semiconductor laser beam, it was confirmed that the same effect of increasing the Kerr rotation angle as described above was obtained.

1艶立11 以上の如く本発明によれば、希土類金属−遷移金属合金
に添加元素としてAlを添加することにより、さらにま
たZnSからなる第1カー効果エンハンス膜及びGeか
らなる第2カー効果エンハンス膜を記録膜と基板との間
に設けることにより1、経時変化の少ない長期保存性に
優れかつカー回転角の増大した光磁気記録媒体を得るこ
とができる。
1. Polishing 11. As described above, according to the present invention, by adding Al as an additive element to the rare earth metal-transition metal alloy, the first Kerr effect enhancement film made of ZnS and the second Kerr effect enhancement film made of Ge are further formed. By providing the film between the recording film and the substrate, it is possible to obtain a magneto-optical recording medium which is 1. excellent in long-term storage with little change over time and has an increased Kerr rotation angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光磁気配記録媒体の概略断面図であや、
第2図は本発明による光磁気記録媒体の概略断面図であ
り、第3図は従来の光記録媒体と本発明にの光記録媒体
との45℃、湿度90%の状態におけるカー回転角θに
の経時変化を示すグラフである。 主要部分の符号の説明 1・・・・・・PMMA基板 2.2a、2b・・・・・・カー効果エンハンス膜3・
・・・・・アモルファス合金膜 4・・・・・・保護膜
Figure 1 is a schematic cross-sectional view of a conventional magneto-optical recording medium.
FIG. 2 is a schematic cross-sectional view of a magneto-optical recording medium according to the present invention, and FIG. 3 is a Kerr rotation angle θ of a conventional optical recording medium and an optical recording medium according to the present invention at 45° C. and 90% humidity. It is a graph showing the change over time. Explanation of symbols of main parts 1...PMMA substrate 2.2a, 2b...Kerr effect enhancement film 3.
...Amorphous alloy film 4...Protective film

Claims (3)

【特許請求の範囲】[Claims] (1)透明基板と該透明基板に担持されかつ膜面に垂直
な方向に一軸磁気異方性を有するアモルファス合金膜と
を有する光磁気記録媒体であつて、前記アモルファス合
金膜はAlを添加元素として含む希土類金属−遷移金属
合金膜であり、かつ前記基板と前記アモルファス合金膜
との間にZnSからなる第1カー効果エンハンス膜及び
Geからなる第2カー効果エンハンス膜を設けたことを
特徴とする光磁気記録媒体。
(1) A magneto-optical recording medium comprising a transparent substrate and an amorphous alloy film supported on the transparent substrate and having uniaxial magnetic anisotropy in a direction perpendicular to the film surface, wherein the amorphous alloy film contains Al as an added element. A rare earth metal-transition metal alloy film comprising: a first Kerr effect enhancement film made of ZnS and a second Kerr effect enhancement film made of Ge are provided between the substrate and the amorphous alloy film. magneto-optical recording medium.
(2)前記アモルファス合金膜は原子比としてx、yを
用いて、 (R_xT_1_−_x)_1_−_yAl_yで示さ
れる組成を有する多元合金の膜であり、RはGd、Tb
、Dyから選ばれる1種類以上の希土類金属であり、T
はFe、Coから選ばれる1種類以上の遷移金属であり
、かつx及びyは0.1≦x≦0.4及び0.005≦
y≦0.4の各々の範囲にある値であることを特徴とす
る特許請求の範囲第1項記載の光磁気記録媒体。
(2) The amorphous alloy film is a multi-component alloy film having a composition represented by (R_xT_1_-_x)_1_-_yAl_y, where x and y are used as atomic ratios, and R is Gd, Tb
, one or more rare earth metals selected from Dy, T
is one or more transition metals selected from Fe and Co, and x and y are 0.1≦x≦0.4 and 0.005≦
2. The magneto-optical recording medium according to claim 1, wherein the value is in the range of y≦0.4.
(3)前記ZnSからなる第1カー効果エンハンス膜の
膜厚は50Å〜1500Åでありかつ前記Geからなる
第2カー効果エンハンス膜の膜厚は10Å〜100Åで
あることを特徴とする特許請求の範囲第2項記載の光磁
気記録媒体。
(3) The first Kerr effect enhancement film made of ZnS has a thickness of 50 Å to 1500 Å, and the second Kerr effect enhancement film made of Ge has a thickness of 10 Å to 100 Å. The magneto-optical recording medium according to scope 2.
JP8568985A 1985-04-22 1985-04-22 Photomagnetic recording medium Granted JPS61243977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8568985A JPS61243977A (en) 1985-04-22 1985-04-22 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8568985A JPS61243977A (en) 1985-04-22 1985-04-22 Photomagnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61243977A true JPS61243977A (en) 1986-10-30
JPH0445898B2 JPH0445898B2 (en) 1992-07-28

Family

ID=13865808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8568985A Granted JPS61243977A (en) 1985-04-22 1985-04-22 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61243977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152041A (en) * 1988-12-05 1990-06-12 Hitachi Ltd Production of optical disk
US5175715A (en) * 1990-08-03 1992-12-29 Goldstar Co., Ltd. Magneto-optical recording medium anti-reflective layers made of amorphous thin films having a specific reflective index range

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152041A (en) * 1988-12-05 1990-06-12 Hitachi Ltd Production of optical disk
US5175715A (en) * 1990-08-03 1992-12-29 Goldstar Co., Ltd. Magneto-optical recording medium anti-reflective layers made of amorphous thin films having a specific reflective index range

Also Published As

Publication number Publication date
JPH0445898B2 (en) 1992-07-28

Similar Documents

Publication Publication Date Title
US5747136A (en) High-density magneto-optic disk and method of manufacturing the same
JP2561646B2 (en) Method for manufacturing magneto-optical recording medium
JPS6227459B2 (en)
US5663935A (en) Magneto-optical recording medium having two magnetic layers of exchange-coupled at ferromagnetic phase
US5639563A (en) Magneto-optical recording medium
JPS61246946A (en) Photomagnetic recording medium
US5100741A (en) Magneto-optic recording systems
JPH0550400B2 (en)
JPS61243977A (en) Photomagnetic recording medium
JPS63179435A (en) Thin film magnetic recording medium
EP0391738A2 (en) Magneto-optic memory medium
US5529854A (en) Magneto-optic recording systems
JPH0343697B2 (en)
JPH047023B2 (en)
JPH0614416B2 (en) Magneto-optical recording / reproducing method
JPS60101702A (en) Recording method of photomagnetic recording medium
JPS61208650A (en) Photomagnetic recording medium
JPS62172547A (en) Photomagnetic recording medium
JP2705066B2 (en) Photothermal magnetic recording media
KR950004494Y1 (en) Optical recording medium
KR930002168B1 (en) Magneto-optic memory medium
JPH0259603B2 (en)
JPS63148447A (en) Thermomagneto-optical recording medium
JPH08315435A (en) Magneto-optical recording medium
JPS6068607A (en) Magnetic thin film recording medium