JPS61243122A - Production of extra-low iron loss grain oriented electrical steel sheet - Google Patents

Production of extra-low iron loss grain oriented electrical steel sheet

Info

Publication number
JPS61243122A
JPS61243122A JP60081433A JP8143385A JPS61243122A JP S61243122 A JPS61243122 A JP S61243122A JP 60081433 A JP60081433 A JP 60081433A JP 8143385 A JP8143385 A JP 8143385A JP S61243122 A JPS61243122 A JP S61243122A
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
intervals
electrical steel
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60081433A
Other languages
Japanese (ja)
Other versions
JPS6319569B2 (en
Inventor
Makoto Yoshida
誠 吉田
Yukinobu Higuchi
樋口 征順
Teruaki Isaki
輝明 伊崎
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60081433A priority Critical patent/JPS61243122A/en
Priority to IT67867/85A priority patent/IT1182608B/en
Priority to SE8504752A priority patent/SE465128B/en
Priority to FR858515269A priority patent/FR2571884B1/en
Priority to KR1019850007583A priority patent/KR900008852B1/en
Priority to DE19853536737 priority patent/DE3536737A1/en
Priority to GB08525352A priority patent/GB2167324B/en
Publication of JPS61243122A publication Critical patent/JPS61243122A/en
Priority to US07/002,394 priority patent/US4863531A/en
Publication of JPS6319569B2 publication Critical patent/JPS6319569B2/ja
Priority to US07/470,997 priority patent/US4960652A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain the titled steel sheet without the loss in the effect of improving an iron loss by removing the surface film of a grain oriented electrical steel sheet subjected to finish annealing, electroplating intrusive bodies thereon under specific conditions and forming the intruding bodies at intervals on the steel sheet thereby attaining the finer segmentation of magnetic domains. CONSTITUTION:The surface film such as glass film, insulating film or oxide film of the grain oriented electrical steel sheet subjected to the finish annealing is removed at intervals or over the entire surface to expose the base metal of the steel sheet. The intervals thereof are made about 1-30mm, the removing width is made about 0.01-5mm and the removing direction is made about 30-90 deg. with respect to the rolling direction in the case of removing the surface film at intervals. The intrusive bodies are then electroplated on such steel sheet within 1g/cm<2> coating weight by a fluoric bath or hydrofluoric bath to form the intruding bodies at intervals and to attain the finer segmentation of magnetic domain. Metals such as Sb, Cu, Sn, Zn, Fe, Ni, Cr, Mn, Mo and Co and the alloys thereof are used for the intrusive bodies. The titled electrical steel sheet which does not lose the effect of improving the iron loss even if subjected to strain relief annealing by heating to a high temp. is thus produced.

Description

【発明の詳細な説明】 本発明は鉄損が極めて低い方向性電磁鋼板の製造方法に
係わり、詳しくは熱処理を施されても鉄損改善効果が消
失しない耐熱性のある磁区細分化により超鉄損方向性電
磁鋼板を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing grain-oriented electrical steel sheets with extremely low iron loss, and more specifically, the present invention relates to a method for manufacturing grain-oriented electrical steel sheets with extremely low iron loss. The present invention relates to a method of manufacturing a loss-oriented electrical steel sheet.

〔従来の技術〕[Conventional technology]

方向性電磁鋼板は主として変圧器、その他、電気機器の
鉄芯材料として使用されるので、励磁特性、鉄損特性が
良好である必要がある。
Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, so they need to have good excitation characteristics and iron loss characteristics.

この鋼板は2次再結晶現象を利用し、圧延面に(110
)面を、圧延方向に<001>軸をもつ、いわゆるゴス
方位を有する2次再結晶粒が発達している・該(110
)、 <001>方位の集積度を高めるとともに、圧延
方向からの偏りを可及的に減少せしめることにより、励
磁特性、鉄損特性等のすぐれたものが製造されるように
なっている。
This steel plate utilizes the secondary recrystallization phenomenon and has a rolling surface of (110
) plane has developed secondary recrystallized grains with the <001> axis in the rolling direction, the so-called Goss orientation.
), by increasing the degree of integration of the <001> orientation and reducing deviation from the rolling direction as much as possible, products with excellent excitation characteristics, iron loss characteristics, etc. are being manufactured.

ところで、(110)、 <001>方位の集積度を高
めるにつれて結晶粒は大きくなり、また磁壁が粒界を貫
通するために磁区が大となり、集積度を高めた割りには
鉄損が低くならない現象がある。
By the way, as the degree of integration of the (110) and <001> orientations increases, the crystal grains become larger, and since the domain wall penetrates the grain boundary, the magnetic domain becomes larger, and the iron loss does not decrease even though the degree of integration increases. There is a phenomenon.

上述の現象を解消し、鉄損の低下を図る技術として、例
えば特公昭58−5968号公報がある。これは最終仕
上焼純情の一方向性電磁鋼板の表面に小球等を押圧して
深さ5μ以下の凹みを形成して線状の微小ひずみを付与
することによって磁区の細分化を行い、鉄損を改善する
ものである。また、特公昭58−26410号公報には
、最終仕上焼鈍により生成した2次再結晶の各結晶粒表
面にレーザー照射による痕跡を少なくとも1個形成せし
めて、磁区を細分化し鉄損を低下させることが提案され
ている。
For example, Japanese Patent Publication No. 58-5968 discloses a technique for eliminating the above-mentioned phenomenon and reducing iron loss. This is done by pressing small balls etc. onto the surface of the final finish fired pure unidirectional electromagnetic steel sheet to form dents with a depth of 5μ or less and applying linear minute strain to subdivide the magnetic domains. It is intended to improve losses. Furthermore, Japanese Patent Publication No. 58-26410 discloses that at least one trace of laser irradiation is formed on the surface of each crystal grain of secondary recrystallization generated by final finish annealing to subdivide the magnetic domain and reduce iron loss. is proposed.

これら特公昭第58−5968号および特公昭第58−
26410号に示された方法によれば一方向性電磁鋼板
表面に局部的な微小ひずみを付与することで鉄損が改善
され、超低鉄損材料を得ることができる令〔発明が解決
しようとする問題点〕 しかしながら、上記の如く得られた超低鉄損材料も焼鈍
すると鉄損の改善効果が失われ、例えば巻鉄芯を製造す
る際の歪取り焼鈍では該鉄損改善効果が消失する問題が
ある0本発明は超低鉄損であって、例えば前記歪取焼鈍
されても鉄損が劣化しない磁気特性のすぐれた方向性電
磁鋼板を高い生産性でかつ安定して工業的に製造するこ
とを目的とする。
These Special Publications No. 58-5968 and Special Publication No. 58-
According to the method disclosed in No. 26410, the iron loss is improved by applying local minute strain to the surface of a unidirectional electrical steel sheet, and an ultra-low iron loss material can be obtained. However, when the ultra-low iron loss material obtained as described above is annealed, the iron loss improvement effect is lost; for example, the iron loss improvement effect is lost in strain relief annealing when manufacturing a wound iron core. 0 Problems The present invention provides highly productive and stable industrial production of grain-oriented electrical steel sheets with ultra-low core loss and excellent magnetic properties that do not deteriorate in core loss even when subjected to strain relief annealing, for example. The purpose is to

本発明者達は磁区細分化後に歪取焼鈍などの熱処理を施
されても鉄損改善効果が消失しない磁区細分化を、効率
的に安定して行って超低鉄損で磁気特性のすぐれた方向
性電磁鋼板を製造すべく種々の実験を行った。
The inventors of the present invention have achieved efficient and stable magnetic domain refining in which the iron loss improvement effect does not disappear even when heat treatment such as strain relief annealing is applied after magnetic domain refining, resulting in ultra-low iron loss and excellent magnetic properties. Various experiments were conducted to produce grain-oriented electrical steel sheets.

〔問題点を解決するための手段〕[Means for solving problems]

その結果、仕上焼鈍された方向性電磁鋼板に、該鋼板の
鋼成分或いは鋼組織と異なった侵入体、例えば可侵入体
と鋼板や表面被膜等との反応による合金層、表面反応生
成物、拡散物等を、間隔をおいて綱板に入り込ませて形
成すると、該侵入体の両側に磁区の芽が生じ、鋼板が磁
化されるとき磁区が細分化され、その後に歪取焼鈍など
の熱処理を施しても磁区細分化による鉄損改善効果は消
失せず、鉄損の極めて低い方向性電磁鋼板が得られるこ
とを見出した。さらに磁区細分化を効率的にかつ安定し
て行うべく検討したところ、方向性電磁鋼板のグラス被
膜、絶縁被膜などの表面被膜を間隔をおいであるいは全
面的に除去し、該鋼板に可侵入体をフッ他塔またはホウ
フッ化浴にて電気メッキすると、低電流密度から高電流
密度にわたって高電流効率で侵入体が形成されると、侵
入体は鋼板に強固に結合し剥離しにくいこと、さらに鉄
損がより低くくなることをつきとめた。
As a result, in the finish annealed grain-oriented electrical steel sheet, intruders different from the steel composition or steel structure of the steel sheet, such as an alloy layer due to the reaction between the intruder and the steel sheet or surface coating, surface reaction products, and diffusion. When objects, etc. are inserted into the steel plate at intervals, magnetic domain buds are generated on both sides of the intruder, and when the steel plate is magnetized, the magnetic domains are subdivided, and then heat treatment such as strain relief annealing is performed. It has been found that the iron loss improvement effect due to magnetic domain refinement does not disappear even if the magnetic domain refinement is applied, and grain-oriented electrical steel sheets with extremely low iron loss can be obtained. Furthermore, we investigated how to perform magnetic domain refining efficiently and stably, and found that surface coatings such as glass coatings and insulating coatings on grain-oriented electrical steel sheets were removed at intervals or entirely, and penetrants were removed from the steel sheets. When electroplating is performed in a fluoride column or a borofluoride bath, the interstitial bodies are formed with high current efficiency over a range from low current density to high current density. It was found that the value became lower.

本発明は係る知見に基づいてなされたもので、その特徴
とするところは仕上焼鈍された方向性電磁鋼板O板会グ
ラス被膜、絶縁被膜などの表面被膜を除去し、該鋼板に
可侵入体をフッ他塔またはホウフッ化浴にて目付量1g
/rr1以上に電気メッキして、さらに必要に応じて熱
処理し、鋼成分あるいは鋼組織と異なった侵入体を間隔
をおいて形成し磁区細分化を図ることを特徴とする超低
鉄損方向性電磁鋼板の製造方法にある。
The present invention has been made based on the above knowledge, and its characteristics include removing surface coatings such as finish annealed grain-oriented electrical steel sheets, glass coatings, insulation coatings, etc., and removing penetrable bodies from the steel sheets. The basis weight is 1g in a fluoride tower or borofluoride bath.
Ultra-low iron loss directionality characterized by electroplating to /rr1 or higher, further heat-treating if necessary, and forming interstitial bodies different from the steel composition or steel structure at intervals to refine magnetic domains. It is in the manufacturing method of electromagnetic steel sheets.

本発明において「可侵入体」とは鋼板にメッキにより入
り込む物質であって、例えばSb、Cu。
In the present invention, the "penetrable body" refers to a substance that enters a steel plate by plating, such as Sb and Cu.

Sn、Zn、Fe、Ni、Cr、Mn、Mo。Sn, Zn, Fe, Ni, Cr, Mn, Mo.

Go等の金属、および合金が用いられる。Metals such as Go and alloys are used.

「侵入体」とは前記可侵入体がそのもの単独、または鋼
板側成分等と結合した状態で鋼板中に粒または塊りとな
って存在する様子を表現するものである。
The term "intruder" refers to the state in which the intruder is present in the steel sheet as grains or lumps, either alone or in combination with components on the steel sheet side.

本発明による耐熱性のある磁区細分化は次のよ    
・うにして行える。即ち、仕上焼鈍された方向性電磁鋼
板に形成されているグラス被膜、酸化被膜、絶縁被膜な
どの表面被膜を、レーザー照射、研削、切削、溶剤、化
学研磨、酸洗、腐食、ショツトブラスト等により間隔を
おいであるいは全面的に除去して鋼板地鉄を露出させ、
次いで該鋼板に、可侵入体例えば前記金属、および合金
を電気メッキする。但し、表面被膜の除去が全面的にな
されている場合は部分電気メッキをする。この電気メッ
キにおいては例えばフッ酸、ホウフッ酸、ホウ酸、を含
み、硫酸ソーダ、食塩、塩化アンモン、苛性ソーダなど
を選択的に含んだフッ他塔またはホウフッ化浴にて、I
g/nr以上の目付量でメッキする。該フッ他塔または
ホウフッ化浴でメッキすると、高い電流効率でしかも低
電流密度から高電流耐熱性のある磁区細分化が行われる
The heat-resistant magnetic domain refining according to the present invention is as follows.
・You can do it like this. That is, surface coatings such as glass coatings, oxide coatings, and insulation coatings formed on finish-annealed grain-oriented electrical steel sheets are removed by laser irradiation, grinding, cutting, solvent, chemical polishing, pickling, corrosion, shot blasting, etc. The steel sheet base is exposed by removing it at intervals or completely,
The steel plate is then electroplated with penetrants such as the metals and alloys mentioned above. However, if the surface coating has been completely removed, partial electroplating is performed. In this electroplating, I is used in a fluoride bath or a fluoride bath containing, for example, hydrofluoric acid, fluoroboric acid, or boric acid, and selectively containing sodium sulfate, common salt, ammonium chloride, caustic soda, etc.
Plating with a basis weight of g/nr or more. When plated with the fluoride tower or borofluoride bath, magnetic domain refining is performed with high current efficiency and low current density to high current heat resistance.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明では仕上焼鈍された方向性電磁鋼板に、磁区細分
化を行うが、該方向性電磁鋼板の鋼成分、および仕上焼
鈍されるまでの製造条件は特定する必要はなく、例えば
インヒビターとしてAIN  。
In the present invention, the finish annealed grain-oriented electrical steel sheet is subjected to magnetic domain refining, but the steel composition of the grain-oriented electrical steel sheet and the manufacturing conditions until finish annealing do not need to be specified. For example, AIN is used as an inhibitor.

MnS 、 MnSe 、 BN * CuzS等が適
宜なものが用いられ、必要に応じてCu、Sn、Cr、
Ni 、Mo。
MnS, MnSe, BN*CuzS, etc. are used as appropriate, and Cu, Sn, Cr,
Ni, Mo.

sb等の元素が含有され、さらにスラブを熱間圧延し、
焼鈍して1回または焼鈍をはさんで2回以上の冷間圧延
により最終板厚とされ、脱炭焼鈍され、焼鈍分離剤を塗
布され仕上焼鈍される一連のプロセスの条件についても
特定する必要はない。
contains elements such as sb, and further hot-rolls the slab,
It is also necessary to specify the conditions of a series of processes in which the final plate thickness is achieved by annealing and cold rolling once or twice or more with annealing in between, decarburizing annealing, applying an annealing separator, and finish annealing. There isn't.

ところで、仕上焼鈍された方向性電磁鋼板には、前工程
の脱炭焼鈍で形成されたSiOxを含む酸化膜とMgO
を主成分とする焼鈍分離剤との反応によりグラス被膜(
フォルステライト被膜)が形成されている。このグラス
被膜は本発明の適用例で電気メッキする可侵入体と鋼板
地鉄との反応を抑制しまたその下地に若干存在する酸化
膜も上記反応を妨げる。さらに該鋼板にリン酸、リン酸
アルミニウムやリン酸マグネシウムなどのリン酸塩、無
水クロム酸、クロム酸塩、コロイド状シリカなどを塗布
し焼付けて絶縁被膜が形成されていれば、該絶縁被膜も
前記反応を妨げる。
By the way, the finish annealed grain-oriented electrical steel sheet has an oxide film containing SiOx and MgO formed in the previous decarburization annealing process.
A glass coating (
forsterite film) is formed. This glass coating suppresses the reaction between the penetrable body to be electroplated in the application example of the present invention and the steel plate base metal, and the oxide film slightly present under the glass coating also inhibits the above reaction. Furthermore, if an insulating film is formed by coating and baking phosphoric acid, phosphates such as aluminum phosphate or magnesium phosphate, chromic anhydride, chromate, colloidal silica, etc. on the steel plate, the insulating film will also be removed. prevent the reaction.

これらの弊害を除き可侵入体が鋼板地鉄などと反応し、
該鋼板に鋼成分あるいは鋼組織と異なった合金層、拡散
物などの侵入体を効率的にかつ高度に安定して形成せし
めるように、鋼板のグラス被膜、酸化膜、絶縁被膜など
の表面被膜を、間隔をおいであるいは全面的に除去する
0間隔をおいて除去するには、レーザー照射、研削、切
削、溶は0.01〜5fiである。その除去の方向は鋼
板の圧延方向に対して30〜90度の向きが好ましい。
Eliminating these harmful effects, the penetrable body reacts with the steel plate substrate, etc.
Surface coatings such as glass coatings, oxide coatings, and insulating coatings are applied to the steel plates in order to efficiently and highly stably form intruders such as alloy layers and diffused substances that differ from the steel composition or steel structure on the steel plates. To remove at intervals or completely at intervals, laser irradiation, grinding, cutting, and melting are performed at 0.01 to 5 fi. The direction of removal is preferably 30 to 90 degrees with respect to the rolling direction of the steel plate.

その除去は連続、非連続のいずれでもよい。全面的に除
去するには、酸洗、ショットプラト等で行われる。
The removal may be continuous or discontinuous. To completely remove it, pickling, Schottplating, etc. are used.

この表面被膜の除去により鋼板地鉄が露出される。この
露出とは鋼板地鉄の一部に若干の凹みを形成することも
含む。
Removal of this surface coating exposes the steel plate base metal. This exposure also includes forming a slight dent in a part of the steel sheet base.

次いで方向性電磁鋼板は可侵入体を電気メッキされる。The grain-oriented electrical steel sheet is then electroplated with the penetrant.

この電気メッキはフッ他塔またはホウフッ化浴にて行な
うことが重要であり、例えばホウフッ化浴を用いて電気
メッキすると、第1図に示す如く、低電流密度から高電
流密度にわたって高い電流効率にてメッキできる。この
第1図はホウフッ酸、ホウ酸からなるホウフッ化浴に化
侵入体としてsbを添加した電解液に、ガラス被膜、絶
縁被膜などの表面被膜を間隔5鶴で巾0.2■除去され
た板厚0.23w板巾9l4鶴の方向性電磁鋼板を供試
材として通板し電気メッキしたときの、電流密度と電流
効率の関係である。比較のためにクエン酸錯塩浴を用い
た場合も示す、これから明らかなようにホウフッ化浴で
は高電流密度で高析出効率でかつ安定して侵入体が形成
される。第1図はsbをある。またフッ他塔を用いて電
気メッキしても同様な作用がある。
It is important to perform this electroplating in a fluorofluoride column or a borofluoride bath. For example, when electroplating is performed using a fluoroborate bath, as shown in Figure 1, high current efficiency can be achieved over a range from low current density to high current density. It can be plated. This figure 1 shows that surface coatings such as glass coatings and insulating coatings were removed with a width of 0.2 square meters at intervals of 5 squares using an electrolytic solution containing fluoroboric acid and boric acid to which sb was added as a chemical invader. This is the relationship between current density and current efficiency when a grain-oriented electrical steel sheet with a thickness of 0.23w and a width of 9l4 was passed through as a test material and electroplated. For comparison, the case of using a citric acid complex bath is also shown.As is clear from this, in the borofluoride bath, interstitial bodies are formed stably with high current density and high precipitation efficiency. Figure 1 shows sb. A similar effect can also be obtained by electroplating using a fluorocarbon column.

前記表面被膜が間隔をおいて除去されている場合は、可
侵入体例えばSb、Sn、Zn、Fe。
If the surface coating is removed at intervals, penetrants such as Sb, Sn, Zn, Fe.

Ni 、Cr、Mn、Mo、Co等の金属、合金をホウ
フッ酸、ホウ酸、その他の電導性塩などが添加されたホ
ウフッ化浴電解液中に前記鋼板を通板し電気メッキする
。このメッキ時には、間隔をおいて表面被膜が除去され
鋼板地鉄が露出されている箇所にのみに、電気的反応が
起こり、他の箇所には係る反応が生じない。従って可侵
入体が前記鋼板地鉄の露出されている箇所のみにメッキ
される。従って所望の箇所でかつ所望の間隔をおいて合
金層、拡散物などの侵入体がメツキラインの通板速度を
高速として形成される。
The steel sheet is electroplated by passing metals and alloys such as Ni, Cr, Mn, Mo, and Co into a borofluoride bath electrolyte to which borofluoric acid, boric acid, and other conductive salts are added. During this plating, an electrical reaction occurs only at the locations where the surface coating is removed at intervals and the steel sheet base is exposed, and no such reaction occurs at other locations. Therefore, the penetrable body is plated only on the exposed portions of the steel sheet base. Therefore, intruders such as alloy layers and diffused substances are formed at desired locations and at desired intervals by increasing the sheet passing speed of the plating line.

またフッ他塔およびホウフッ化浴が他の浴系(例えば硫
酸塩浴、塩酸塩浴、有機塩浴)に比べて第1図に示す如
き利点を有し、この結果低金属付着量でより優れた低鉄
損値を得ることが出来る理由は次のように考えられる。
Furthermore, fluorofluoride baths and borofluoride baths have advantages over other bath systems (e.g. sulfate baths, hydrochloride baths, organic salt baths) as shown in Figure 1, and as a result are superior in terms of low metal deposition. The reason why it is possible to obtain such a low iron loss value is thought to be as follows.

一般に、レーザー照射、研削、切削、ショツトブラスト
等によって電磁鋼板上の表面被膜を除去する場合部分的
に表面被膜は残留するのが常である。
Generally, when a surface coating on an electrical steel sheet is removed by laser irradiation, grinding, cutting, shot blasting, etc., the surface coating usually remains partially.

従って、その上に電気メッキを施した場合残留表面被膜
が邪魔となって鋼板中に良好な侵入体が形成されないこ
とがある。
Therefore, when electroplating is performed on the steel plate, the residual surface film may become a hindrance, and good interstitial bodies may not be formed in the steel plate.

フッ化水素酸(HF)は素地鉄に対するエツチング力が
強く、かつ表面被膜であるグラス被膜や酸化被膜を若干
溶解する性質を有する。なお、ホウフッ化浴でもホウフ
ッ酸(HBF、)が分解して下記式のように一部フッ化
水素酸(HF)が生成されると考えられる。
Hydrofluoric acid (HF) has a strong etching power on the base iron, and has the property of slightly dissolving surface coatings such as glass coatings and oxide coatings. In addition, it is thought that borofluoric acid (HBF, ) is decomposed in a fluoroboric acid bath, and some hydrofluoric acid (HF) is generated as shown in the following formula.

HB Fa + 3 Hz O−4HF +Hs BO
3従って電気メッキ浴としてフッ他塔またはホウフッ化
浴を用いた場合、上記のようなフッ化水素酸の一般的性
質が有利に利用し、レーザー照射、切削、研削、ショツ
トブラスト等によって除去し損なって部分的に残留した
表面被膜が溶解されると共に素地がエツチングされる。
HB Fa + 3 Hz O-4HF +Hs BO
3. Therefore, when a fluoride bath or a fluoroborate bath is used as an electroplating bath, the above-mentioned general properties of hydrofluoric acid are advantageously used to prevent removal by laser irradiation, cutting, grinding, shot blasting, etc. The partially remaining surface coating is dissolved and the substrate is etched.

その結果電気メッキにより析出した金属が強固に付着し
、かつ素地と金属が直接接触することが可能となる。
As a result, the metal deposited by electroplating firmly adheres, and it becomes possible for the base material and the metal to come into direct contact.

このように素地と析出した金属が直接接触する面積が増
大することおよび金属が素地に強固に付着するために、
低金属付着量でより優れた鉄損値を得るものと考えられ
る。
This increases the area of direct contact between the substrate and the precipitated metal, and the metal adheres firmly to the substrate.
It is thought that a better iron loss value can be obtained with a lower amount of metal deposited.

メッキにおいては、目付量が重要であり、その量が少な
いと侵入体の形成が少なく、磁区の細分化はなされない
。鉄損特性を低下させる磁区細分化を行うにはIg/n
?以上の目付量が必要であり、該目付量以上にメッキす
ると、鋼板に合金層、拡散物等の鋼板成分あるいは組織
と異なった侵入体が形成され、耐熱性のある磁区の細分
化が行われる。またこの目付量を制御すれば侵入体の深
さや、量などが変えられ、例えば目付量をふやすと侵入
体の深さや量が増し鉄損特性は大きく改善される。
In plating, the basis weight is important, and if the amount is small, fewer intruders will be formed and the magnetic domains will not be subdivided. Ig/n to perform magnetic domain refining to reduce iron loss characteristics
? A coating weight above the above is required, and if the coating is applied above the coating weight, an alloy layer, diffused substances, and other penetrating bodies different from the steel plate composition or structure will be formed on the steel sheet, and the heat-resistant magnetic domains will be subdivided. . Furthermore, by controlling the basis weight, the depth and amount of the intruder can be changed. For example, increasing the basis weight increases the depth and amount of the intruder, and the iron loss characteristics are greatly improved.

即ち目付量の制御により、低鉄損であってかつその鉄損
特性レベルを作り分けることができる。
That is, by controlling the basis weight, it is possible to create low core loss and different levels of core loss characteristics.

さらに、特長的なことは極めて短時間でかつ効率的に侵
入体が形成され生産性がすぐれることと鋼板の表面状況
が非常に良好であることである。
Furthermore, the feature is that the intruder is formed efficiently in an extremely short time, resulting in excellent productivity and that the surface condition of the steel plate is very good.

さらに、必要に応じて、熱処理を行うと侵入体の鋼板中
への入り込みが助長される。この熱処理は500〜12
00℃の温度で行うが、連続焼鈍あるいは箱焼鈍のいず
れで行ってもよい。また熱処理においては、該熱処理前
に、鋼板にリン酸、リン酸塩、無水クロム酸、クロム酸
塩、コロイド状シリカなどを塗布し絶縁被膜を焼付ける
熱処理と兼用してもよい。
Furthermore, if necessary, heat treatment can be performed to facilitate penetration of the intruder into the steel plate. This heat treatment is 500-12
Although the annealing is carried out at a temperature of 00°C, either continuous annealing or box annealing may be used. Further, in the heat treatment, the steel plate may be coated with phosphoric acid, a phosphate, anhydrous chromic acid, a chromate, colloidal silica, etc., and an insulating coating is baked before the heat treatment.

本発明の適用により、鋼板に形成された侵入体の一例の
顕微鏡組織写真(x 1000)を第2図に示す。
FIG. 2 shows a micrograph (x 1000) of an example of an intruder formed in a steel plate by applying the present invention.

以下実施例を説明する。Examples will be described below.

実施例1 重量%でC: 0.080 、S i : 3.15、
M n : 0.075AI :0.029 、S :
0.024 、Cu :0.10、Sn:0.08残部
鉄からなる珪素鋼スラブを周知の方法によって熱間圧延
−焼鈍−冷間圧延を経て0.225m厚の鋼板を得た。
Example 1 C in weight %: 0.080, S i : 3.15,
Mn: 0.075 AI: 0.029, S:
0.024, Cu: 0.10, Sn: 0.08, balance iron: A silicon steel slab was hot rolled, annealed, and cold rolled by a well-known method to obtain a steel plate with a thickness of 0.225 m.

次いで更に周知の脱炭焼鈍−MgOを主成分とする焼鈍
分離剤を塗布−最終仕上焼鈍の各工程を実施した。最終
仕上焼鈍後に絶縁被膜を形成した綱板を「処理前」の供
試材とした。該鋼板にレーザーを照射し、圧延方向とほ
ぼ直角方向に511m間隔でグラス被膜、絶縁被膜、お
よび酸化被膜を除去し、次いで第1表に示すメッキ金属
(可侵入体)を含むフッ他塔またはホウフッ化浴を用い
て、・目付量3g/lriとなるように電気メッキして
「処理後」の供試材とした。この後火に800℃×2時
間の歪取焼鈍を行って「歪取焼鈍後」の供試材とした。
Next, the well-known steps of decarburization annealing, application of an annealing separator containing MgO as a main component, and final finish annealing were performed. The steel plate on which an insulating film was formed after final annealing was used as the "before treatment" test material. The steel plate is irradiated with a laser to remove the glass coating, insulating coating, and oxide coating at intervals of 511 m in a direction approximately perpendicular to the rolling direction, and then a fluorocarbon tower containing the plated metal (penetrable body) shown in Table 1 or Using a borofluoride bath, electroplating was performed to give a basis weight of 3 g/lri to obtain a "treated" test material. After this, strain relief annealing was performed at 800° C. for 2 hours to obtain a “strain relief annealed” test material.

以上、「処理前」 「処理後」及び「歪取焼鈍後」のそ
れぞれの供試材の磁気特性を測定した。
As described above, the magnetic properties of each sample material were measured ``before treatment'', ``after treatment'', and ``after strain relief annealing''.

その測定結果を第2表に示す。The measurement results are shown in Table 2.

第1表 以上の実施例から明らかな如く磁区細分化後に歪取焼鈍
されても鉄損改善効果は失われず、鉄損の極めて低く磁
束密度も良好な方向性電磁鋼板が提供される。
As is clear from the examples shown in Table 1 and above, even if strain relief annealing is performed after magnetic domain refining, the iron loss improving effect is not lost, and a grain-oriented electrical steel sheet with extremely low iron loss and good magnetic flux density is provided.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、該侵入体による磁
区細分化で鋼板の鉄損が低くなるとともに、その後に、
高温に加熱される歪取焼鈍が行われても、鉄損改善効果
が消失しないという、これまでの磁区細分化法に見られ
ないすぐれた特長がある。
As explained above, according to the present invention, the core loss of the steel plate is reduced by magnetic domain refining by the intruder, and after that,
It has an excellent feature not seen in previous magnetic domain refining methods, in that the iron loss improvement effect does not disappear even when strain relief annealing is performed at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に本発明においての電流密度と電流効率の関係を
示す図、 第2図は本発明によって鋼板に形成された侵入体を示す
金属顕微鏡′fJim写真(x 1000)である。 見かけの電流密度 (AAm2) 第1図 !      ・ 第2図
FIG. 1 is a diagram showing the relationship between current density and current efficiency in the present invention, and FIG. 2 is a metallurgical microscope photograph (x 1000) showing an interstitial body formed in a steel plate according to the present invention. Apparent current density (AAm2) Figure 1!・Figure 2

Claims (1)

【特許請求の範囲】 1、仕上焼鈍された方向性電磁鋼板のグラス被膜、絶縁
被膜等の表面被膜を除去し、次いで該鋼板に可侵入体を
フッ化浴またはホウフッ化浴にて目付量1g/m^2以
内に電気メッキし、鋼成分あるいは鋼組織と異なった侵
入体を間隔をおいて形成し磁区細分化を図ることを特徴
とする超低鉄損方向性電磁鋼板の製造方法。 2、前記グラス被膜、絶縁被膜等の表面被膜の除去が間
隔をおいてなされることを特徴とする特許請求の範囲第
1項記載の超低鉄損方向性電磁鋼板の製造方法。 3、仕上焼鈍された方向性電磁鋼板のグラス被膜、絶縁
被膜等の表面被膜に除去し、次いで該鋼板に可侵入体を
フッ化浴またはホウフッ化浴にて目付量1g/m^2以
上に電気メッキし、次いで熱処理し鋼成分あるいは鋼組
織と異なった侵入体を間隔をおいて形成し磁区細分化を
図ることを特徴とする超低鉄損方向性電磁鋼板の製造方
法。 4、前記グラス被膜、絶縁被膜等の表面被膜の除去が間
隔をおいてなされることを特徴とする特許請求の範囲第
3項記載の超低鉄損方向性電磁鋼板の製造方法。
[Scope of Claims] 1. Surface coatings such as glass coating and insulation coating of a grain-oriented electrical steel sheet that has been finish annealed are removed, and then a penetrant is added to the steel plate in a fluoride bath or a borofluoride bath in a basis weight of 1 g. A method for producing an ultra-low iron loss grain-oriented electrical steel sheet, characterized by electroplating within /m^2 and forming intruders different from the steel composition or steel structure at intervals to refine the magnetic domains. 2. The method for producing an ultra-low iron loss grain-oriented electrical steel sheet according to claim 1, wherein the surface coatings such as the glass coating and the insulating coating are removed at intervals. 3. Remove the surface coatings such as the glass coating and insulation coating of the grain-oriented electrical steel sheet that has been finish annealed, and then add penetrants to the steel plate in a fluoride bath or borofluoride bath to a basis weight of 1 g/m^2 or more. A method for producing an ultra-low iron loss grain-oriented electrical steel sheet, which is characterized by electroplating and then heat treatment to form interstitial bodies different from the steel composition or steel structure at intervals to refine the magnetic domains. 4. The method for producing an ultra-low core loss grain-oriented electrical steel sheet according to claim 3, wherein the surface coatings such as the glass coating and the insulating coating are removed at intervals.
JP60081433A 1984-10-15 1985-04-18 Production of extra-low iron loss grain oriented electrical steel sheet Granted JPS61243122A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP60081433A JPS61243122A (en) 1985-04-18 1985-04-18 Production of extra-low iron loss grain oriented electrical steel sheet
IT67867/85A IT1182608B (en) 1984-10-15 1985-10-14 ORIENTED GRAIN ELECTRIC STEEL SHEET WITH LOW POWER LOSS AND METHOD FOR ITS MANUFACTURE
SE8504752A SE465128B (en) 1984-10-15 1985-10-14 CORN-ORIENTED STEEL TUNNER PLATE FOR ELECTRICAL PURPOSES AND PROCEDURES FOR PREPARING THE PLATE
DE19853536737 DE3536737A1 (en) 1984-10-15 1985-10-15 GRAIN-ORIENTED ELECTRO-STEEL SHEET WITH LOW RE-MAGNETIZATION LOSS AND METHOD FOR THE PRODUCTION THEREOF
KR1019850007583A KR900008852B1 (en) 1984-10-15 1985-10-15 Grain-oriented electrical steel sheet having a low watt loss and method for producing same
FR858515269A FR2571884B1 (en) 1984-10-15 1985-10-15 ORIENTED GRAIN ELECTRIC STEEL SHEET WITH LOW ACTIVE ENERGY LOSS AND PROCESS FOR PRODUCING SAME
GB08525352A GB2167324B (en) 1984-10-15 1985-10-15 Grain-oriented electrical steel sheet having a low watt loss and method for producing same
US07/002,394 US4863531A (en) 1984-10-15 1987-01-09 Method for producing a grain-oriented electrical steel sheet having a low watt loss
US07/470,997 US4960652A (en) 1984-10-15 1990-01-22 Grain-oriented electrical steel sheet having a low watt loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60081433A JPS61243122A (en) 1985-04-18 1985-04-18 Production of extra-low iron loss grain oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPS61243122A true JPS61243122A (en) 1986-10-29
JPS6319569B2 JPS6319569B2 (en) 1988-04-23

Family

ID=13746250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60081433A Granted JPS61243122A (en) 1984-10-15 1985-04-18 Production of extra-low iron loss grain oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS61243122A (en)

Also Published As

Publication number Publication date
JPS6319569B2 (en) 1988-04-23

Similar Documents

Publication Publication Date Title
US4960652A (en) Grain-oriented electrical steel sheet having a low watt loss
WO2020149321A1 (en) Method for manufacturing grain-oriented electrical steel sheet
US6280534B1 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
JPS6376819A (en) Grain-oriented electrical steel sheet having small iron loss and its manufacture
JP3399969B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR102583464B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS61284529A (en) Manufacture of grain oriented magnetic steel sheet having extremely low iron loss
JPS61243122A (en) Production of extra-low iron loss grain oriented electrical steel sheet
JPS61210125A (en) Manufacture of grain-oriented silicon steel sheet having extremely superior magnetic property
JPS61183457A (en) Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
CN113286905B (en) Method for producing grain-oriented electrical steel sheet
JPH01309922A (en) Production of grain-oriented magnetic steel sheet having low iron loss
JPS6319574B2 (en)
JPS6330968B2 (en)
JPS6319572B2 (en)
JPS61186420A (en) Production of oriented electrical steel sheet having extremely low iron loss
JPS58144429A (en) Manufacture of unidirectional silicon steel sheet free from deterioration of iron loss
JPS61130421A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS61117222A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPH03100123A (en) Production of grain-oriented silicon sheet reduced in iron loss
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property