JPS6124135A - Plasma x-ray generator - Google Patents

Plasma x-ray generator

Info

Publication number
JPS6124135A
JPS6124135A JP14405284A JP14405284A JPS6124135A JP S6124135 A JPS6124135 A JP S6124135A JP 14405284 A JP14405284 A JP 14405284A JP 14405284 A JP14405284 A JP 14405284A JP S6124135 A JPS6124135 A JP S6124135A
Authority
JP
Japan
Prior art keywords
gas
plasma
mass
rays
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14405284A
Other languages
Japanese (ja)
Inventor
Yasuo Kato
加藤 靖夫
▲はい▼ 碩喜
Sekiki Hai
Kozo Ando
安藤 剛三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP14405284A priority Critical patent/JPS6124135A/en
Publication of JPS6124135A publication Critical patent/JPS6124135A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To improve the efficiency of a plasma X-ray generator and enhance its X-ray luminance, by filling a discharge tube with a mixed gas comprising a main gas of an element for emitting characteristic X-rays, and an auxiliary gas of an element with a small atomic number, and by prescribing the ratio of the mass of the main gas to that of the auxiliary gas, so as to increase the intensity of X-rays emitted at a time of discharge. CONSTITUTION:A mixed gas packed in a discharge tube comprises a main gas of an element for emitting characteristic X-rays, and an auxiliary gas of an element with a smaller atomic number than the former. The ratio of the mass of the auxiliary gas to that of the entire mixed gas is 15% or less. The element for the main gas is chosen from neon, argon, krypton and the like to emit the characteristic X-rays of desired wavelength. The element for the auxiliary gas is chosen from hydrogen, helium and the like with a small atomic number. It is preferable for the increase in X-ray luminance that the ratio of the mass of the auxiliary gas to that of the entire mixed gas is 15% or less and 3% or more.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、/4ルス放電によって高温高密度のプラズマ
を形成し、ここから放射される軟Xiを利用するプラズ
マX線源に係り、特にプラズマフォーカスあるいはこれ
に類する装宜に関するものである。プラズマX線源に、
サブミクロンのICをI1)!造するX、@露光装置な
どの線源として用いられる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a plasma X-ray source that forms a high-temperature, high-density plasma by a /4 Luss discharge and utilizes soft Xi emitted from the plasma. It relates to plasma focus or similar devices. For plasma X-ray source,
I1) submicron IC! It is used as a radiation source for X, @ exposure equipment, etc.

(従来技術) プラズマフォーカスは、同軸状に虻されたコ本の円筒状
電極の一端をガラスなどの絶縁物で支持し、他端を開放
のまオ放電容器に収納し、水素、重水素などを封入して
、コンデンサからパルス電圧を印加し放電を起し、中性
子を発生する線源として、従来主に検討がなされてきた
。放電に際してX線が発生することは、公知であり、そ
の動作を診断する目的で、水素、重水素に比較的少量の
Ar  等を混ぜることも行かれている。これらのこと
は、W、H,Bostlck 、 V、Naydl a
nd W、Pr1or :X−ray  fine 5
tructure of dense plasma 
 In a co−axlal  accelerat
or  、J、Plasma、Physlcs  vo
lg。
(Prior art) Plasma focus uses an insulating material such as glass to support one end of a coaxial cylindrical electrode, and the other end is housed in an open discharge vessel to collect hydrogen, deuterium, etc. In the past, research has mainly been conducted as a radiation source that generates neutrons by enclosing a capacitor and applying a pulse voltage from the capacitor to cause discharge. It is well known that X-rays are generated during discharge, and for the purpose of diagnosing its operation, hydrogen and deuterium are mixed with a relatively small amount of Ar, etc. These are W, H, Bostlck, V, Naydla.
nd W, Pr1or: X-ray fine 5
structure of dense plasma
In a co-axlal acceleration
or, J, Plasma, Physlcs vo.
lg.

pt / * ppワク−0</9クコ)に記載されて
いる。しかし、プラズマフォーカスで強い軟X線を発生
する目的をもって、混合気体に関して系統的に実験検討
がなされた例はみられず、′その特性は不明確である。
pt/*pp waku-0</9 However, there have been no systematic experimental studies on mixed gases for the purpose of generating strong soft X-rays with plasma focus, and their characteristics are unclear.

(発明の目的) 本発明の目的は、気体の元素が発生する特性X線を利用
するプラズマX線源において、−回の放電で放射される
X線の強度を増加し、効率を改善し、線源の輝度を高め
ることにある。
(Object of the Invention) The object of the present invention is to increase the intensity of the X-rays emitted in - times of discharge and improve the efficiency in a plasma X-ray source that utilizes characteristic X-rays generated by gaseous elements. The purpose is to increase the brightness of the radiation source.

(発明の構成) 上記の目的を達成するために、本゛発明はプラズマフォ
ーカスのように気体を放電管に充填して、これをプラズ
マ化し、プラズマをフォーカスあるいはピンチして、高
温高密度のプラズマを形成し、X線を発生するプラズマ
X線源において、放電管に充填する気体を、特性X@を
放射する元素からなる主気体と、原子番号の低い元素で
構成される従気体との混合気体とし、混合気体に占める
質量の割合を主気体に光分高く従−剰体は光分低くする
ことによって、最大のxls強度を得るものである。
(Structure of the Invention) In order to achieve the above object, the present invention fills a discharge tube with gas like a plasma focus, turns it into plasma, focuses or pinches the plasma, and generates a high-temperature, high-density plasma. In a plasma X-ray source that generates The maximum XLS intensity can be obtained by setting the mass ratio of the main gas to a light amount higher and the minor mass to a light amount lower in the mixed gas.

本発明にプラズマフォーカスによるX線発生装置におい
て、種々の混合気体と圧力について、X線強度とフォー
カスする条件を調べた結果、二種類の混合気体では組成
(二種の気体の分圧の割合)を変えたとき、放電Vにつ
める気体の圧力は混合気体の質量が一定になるよう(組
成を変化しても質量が変化しないよう)vI4整した場
合に最適のフォーカスが得られるという発見と、混合気
体の質量が同じでも特に強いX線を放射する混合比が存
在するという発見から生まれた。ここで、主気体とはネ
オン、アルゴン、クリプトンなど、求める波長の特性X
線を放射する元素の気体を意味し、従気体とは水素、ヘ
リウムなど原子番号が低い元素の気体を意味している。
As a result of investigating the X-ray intensity and focusing conditions for various gas mixtures and pressures in the X-ray generator using plasma focus according to the present invention, we found that the composition (ratio of partial pressures of two gases) of two types of gas mixtures The discovery that optimal focus can be obtained when the pressure of the gas filled in the discharge V is adjusted so that the mass of the mixed gas remains constant (so that the mass does not change even if the composition changes) when changing the It was born from the discovery that there is a mixing ratio that causes particularly strong X-rays to be emitted even if the mass of the gas mixture is the same. Here, the main gas is neon, argon, krypton, etc., with the characteristics of the desired wavelength
It refers to a gas of an element that emits radiation, and a subordinate gas refers to a gas of an element with a low atomic number, such as hydrogen or helium.

上にのべた理由から、放電管につめる混合気体の質量を
一定にして組成を変えるとすれば、主気体の重い原子を
比較的少数減ら丁ことによって、従気体の軽い原子を質
量数の比だけ多数増やすことができる。
For the reasons stated above, if we change the composition while keeping the mass of the gas mixture filled in the discharge tube constant, by reducing the number of heavy atoms in the main gas by a relatively small number, the light atoms in the secondary gas will increase in mass number ratio. Only a large number can be increased.

プラズマがフォーカスするまでは、低電離であり、生気
体の原子は高々l−2価イオンにしかならないので、混
合気体の質量に占める従気体の質量の割合が光分に低く
ても、フォーカスする時点呼での電子密度は大巾に増加
する。一方、求める波長の特性X線は高温の電子によっ
て主気体イオンの内殻の電子が、励起させることによっ
て生じるが、この特性X線の強度は電子密度とイオン密
度の積に比例する。従って、混合気体の質量に占める従
気体の質量の割合が主気体の質量の割合に比べ充分低く
ても一フォーカスのときのプラズマの電子温度および電
子密度の上昇により1.X線強度が最大となる最適の組
“成が存在するのである。混合気体の質tに対する従気
体の質量が占める割合が75%以下であることが高輝度
X線を得るために必要な条件とされるが、3%以上で−
あることがより好ましい。
Until the plasma is focused, the ionization is low, and the living gas atoms only become l-2 valent ions at most, so even if the mass ratio of the secondary gas to the mass of the gas mixture is small, it will focus. The electron density at the instant call increases greatly. On the other hand, characteristic X-rays of the desired wavelength are generated by exciting electrons in the inner shell of main gas ions by high-temperature electrons, and the intensity of these characteristic X-rays is proportional to the product of electron density and ion density. Therefore, even if the mass ratio of the secondary gas to the mass of the mixed gas is sufficiently lower than the mass ratio of the main gas, the increase in the electron temperature and electron density of the plasma during one focus will cause 1. There is an optimal composition that maximizes the X-ray intensity. A necessary condition for obtaining high-intensity X-rays is that the ratio of the mass of the secondary gas to the quality t of the gas mixture is 75% or less. However, at 3% or more -
It is more preferable that there be.

(実施例) す、下、本発明を実施例により説明する。第1図ニ、プ
ラズマフォーカスでネオン、アルゴン、クリプトンをそ
れぞれ主気体とし、水素を従気体として、組成すなわち
混合気体の全圧力に対する生気体の分圧の割合(体積百
分率)いいかえれば混合気体の全分子数に対する主気体
の分子数の割合を変えて、最適のフォーカスを結ぶ混合
気体の全圧力を測定した結果である。同図には、組成に
対し混合気体の質量が一定となる混合気体の全圧力が実
線で示されている。測定値にほぼ実線に一致しており、
混合気体の組成を変えても、放電管につめる混合気体の
質量が一定になるように圧力を調整すれば、最適のフォ
ーカスが得られるという事実を証明している。
(Example) Below, the present invention will be explained with reference to an example. Figure 1 d. With plasma focus, neon, argon, and krypton are used as the main gases, and hydrogen is used as the secondary gas. This is the result of measuring the total pressure of the mixed gas that achieves optimal focus by changing the ratio of the number of molecules of the main gas to the number of molecules. In the same figure, the total pressure of the mixed gas at which the mass of the mixed gas is constant with respect to the composition is shown by a solid line. It almost corresponds to the measured value as a solid line,
This proves that even if the composition of the gas mixture is changed, optimal focus can be obtained by adjusting the pressure so that the mass of the gas mixture filled in the discharge tube remains constant.

即ち、放電管に充填あるいは注入される気体。In other words, the gas that is filled or injected into the discharge tube.

(充填ガス)が主気体のみからなる場合において最大の
輝度を生じる際の充填ガスの質量とほぼ同一の質量にな
るように、従気体を含んだ充填ガスの圧力を調整すると
、各混合比における最大の輝度を得ることができるとい
うことが理解される。
If the pressure of the filling gas containing the secondary gas is adjusted so that the mass of the filling gas that produces the maximum brightness is approximately the same as the mass of the filling gas that produces the maximum brightness when the filling gas consists only of the main gas, It is understood that maximum brightness can be obtained.

もちろん、充填ガスの質量の絶対値はコンデンサパンク
のエネルギーおよび放電空間の容積によって変化するが
、これらコンデンサパンクのエネルギー、放電空間の容
積等の装置的な条件が変化しない限りにおいて、上述し
た混合比を門化した場められた。          
    ゛゛第2図は、第1図と同じく、ネオン、アル
コ5ン、クリプトンをそれぞれ主気体とし、水素を従気
体として、組成を変え、最適のフォーカスを結ぶ混合気
体の圧力のもとでいいかえれば、第1図の実線上の圧力
のもとで、特性X線の強度を測定したものである。特性
X線の波長は、主にネオンがにの線の/、llgnm、
アルゴンがにの線の0、’12nrn、クリプトンがL
線のθ、7gnmである。測定値は厚さが30μmのベ
リリウムの窓を透過したX線を、punフォトダイオー
ドで受けて、その電流を積分して求めた値である。測定
値には、かなりのバラツキが見られるし、ベリリウムの
窓の透過率は、波長によって、アルゴンが最も高く、ク
リプトンがこれにつぎ、ネオンが最も低いなどの差があ
るために、このまま相互に比較することは適切でにない
が、それぞれの混合気体でxg強度が最大になる組成が
あることがわかる。その組成は、この測定結果から見る
限り、ネオンが70%、アルゴンがダθ%、クリプトン
が2S%となっている。
Of course, the absolute value of the mass of the filling gas changes depending on the energy of the capacitor puncture and the volume of the discharge space, but as long as the equipment conditions such as the energy of the capacitor puncture and the volume of the discharge space do not change, the above-mentioned mixing ratio He was criticized for making it a gate.
゛゛Figure 2, like Figure 1, uses neon, alkone, and krypton as the main gases, and hydrogen as the subordinate gas, changing the composition and adjusting the pressure of the mixture to achieve the optimal focus. , the intensity of characteristic X-rays was measured under the pressure indicated by the solid line in FIG. The wavelength of characteristic X-rays is mainly neon radiation /, llgnm,
Argon crab line 0, '12nrn, krypton is L
The line θ is 7 gnm. The measured value was obtained by receiving X-rays transmitted through a beryllium window with a thickness of 30 μm by a PUN photodiode, and integrating the current. There is considerable variation in the measured values, and the transmittance of beryllium windows varies depending on the wavelength, with argon being the highest, krypton being the second, and neon being the lowest. Although it is not appropriate to compare, it can be seen that there is a composition in which the xg intensity is maximum for each gas mixture. As far as the results of this measurement are concerned, its composition is 70% neon, Daθ% argon, and 2S% krypton.

この組成は、混合気体の全分子数に対する主気体の分子
量の割合であるから、各気体の分子量を考脆して混合気
体の質量に占める主気体の質量の割合を計算すると、ネ
オンでは96%、アルゴンでtrJq3%、クリプトン
ではq3にとなる。このように、プラズマフォーカスあ
るいはこれに類するプラズマX線源において、特性X線
を放射する元素からなる主気体と、原子番号の低い元素
か、らなる従気体との混合気体を使用し、混合気体の質
量に従気体の質量が占める割合を光分に低くすることに
よって、最大のx#J強度が得られる。このように、本
発明を実施することによって得られるX線の強度に主気
体のみによる場合に比べて、2倍あるいはそれ以上にな
ることが第2図から明らかである。
This composition is the ratio of the molecular weight of the main gas to the total number of molecules of the mixed gas, so if we consider the molecular weight of each gas and calculate the ratio of the mass of the main gas to the mass of the mixed gas, it is 96% for neon. , trJq3% for argon and q3 for krypton. In this way, in a plasma focus or a similar plasma X-ray source, a mixture of a main gas consisting of an element that emits characteristic X-rays and a secondary gas consisting of an element with a low atomic number is used. The maximum x#J intensity can be obtained by reducing the proportion of the mass of the secondary gas to the mass of . As described above, it is clear from FIG. 2 that the intensity of X-rays obtained by implementing the present invention is twice or more than that obtained by using only the main gas.

また、第2図からはX線輝度増大の効果を得られる混合
気体の質量に対する従気体の質量が占める割合に75%
以下であることがわかるが、この割合は3″X以上であ
ることがX線輝度増大の効果の点からより好ましい。
In addition, from Figure 2, it can be seen that the mass of the secondary gas accounts for 75% of the mass of the mixed gas, which provides the effect of increasing X-ray brightness.
Although it can be seen that the ratio is below, it is more preferable that this ratio is 3″X or more from the viewpoint of the effect of increasing the X-ray brightness.

なお、主気体および従気体はいずれも複数の種゛−の元
素からなるものであってもよく、この場合においても、
上述した質量の関係および生気体と従気体の混合関係を
満足するものであれば、高輝度X線を得られることも見
い出された。
In addition, both the main gas and the subordinate gas may be composed of a plurality of types of elements, and in this case,
It has also been found that high-intensity X-rays can be obtained as long as the above-mentioned mass relationship and mixing relationship between living gas and secondary gas are satisfied.

(発明の効果) 以上にのべたごとく、本発明によれば、プラズマフォー
カスのように気体を充填あるいは注入して、これをプラ
ズマ化し、プラズマをピンチあるいはフォーカスしてX
線を発生するプラズマX線源において、充填あるいは注
入する気体を、特性X線を発生する元素からなる生気体
と、原子番号の低い元素からなる従気体の混合気体とし
、混合気体に占める主気体の質量の割合を光分大きく、
従気体の質量の割合を充分に低くした組成において、発
生するX線の強度を最大にできることが明らかである。
(Effects of the Invention) As described above, according to the present invention, gas is filled or injected like a plasma focus, the gas is turned into plasma, the plasma is pinched or focused, and the
In a plasma X-ray source that generates rays, the gas to be filled or injected is a mixture of a live gas consisting of an element that generates characteristic X-rays and a secondary gas consisting of an element with a low atomic number, and the main gas accounts for the main gas in the mixture. The proportion of the mass of is increased by the amount of light,
It is clear that the intensity of the generated X-rays can be maximized at a composition in which the proportion of the mass of the secondary gas is sufficiently low.

このようにして得られるX線の強度は生気体のみの場合
に比べて一倍あるいはそれ以上に及ぶことが明らかであ
る。′
It is clear that the intensity of the X-rays obtained in this way is one or more times that of the case of only living gas. ′

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例について混合気体の組成と最
適のフォーカスを結ぶ混合気体の全圧力の関係を示すグ
ラフ、第2図は本発明の一実施例において、混合気体の
組成と発生するX線の強度の関係を示すグラフである。 第1図
FIG. 1 is a graph showing the relationship between the composition of the gas mixture and the total pressure of the gas mixture that connects the optimum focus in one embodiment of the present invention, and FIG. It is a graph showing the relationship between the intensity of X-rays. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)電極を含む密閉された空間に気体を充填あるいは
注入し、電極間に高電圧パルスを印加して、気体をプラ
ズマ化し、プラズマをピンチあるいはフォーカスしてX
線を発生するプラズマX線発生装置において、 充填あるいは注入される気体は、特性X線を放射する元
素からなる主気体と、この主気体よりも小さい原子番号
を有する元素からなる従気体との混合気体であり、混合
気体の質量に対する従気体の質量が占める割合が15%
以下であることを特徴とするプラズマX線発生装置。
(1) Fill or inject gas into a sealed space containing electrodes, apply a high voltage pulse between the electrodes to turn the gas into plasma, and pinch or focus the plasma to
In a plasma X-ray generator that generates rays, the gas that is filled or injected is a mixture of a main gas consisting of an element that emits characteristic X-rays and a secondary gas consisting of an element with an atomic number smaller than that of the main gas. It is a gas, and the mass of the secondary gas accounts for 15% of the mass of the mixed gas.
A plasma X-ray generator characterized by the following:
(2)前記混合気体の質量に対する前記従気体の質量が
占める割合が3%以上であることを特徴とする特許請求
の範囲第(1)項記載のプラズマX線発生装置。
(2) The plasma X-ray generating apparatus according to claim (1), wherein a ratio of the mass of the secondary gas to the mass of the mixed gas is 3% or more.
(3)前記主気体にネオン、アルゴン、クリプトンのう
ちの少なくとも一種を用いることを特徴とする特許請求
の範囲第(1)項または第(2)項記載のプラズマX線
発生装置。
(3) The plasma X-ray generator according to claim 1 or 2, wherein at least one of neon, argon, and krypton is used as the main gas.
JP14405284A 1984-07-11 1984-07-11 Plasma x-ray generator Pending JPS6124135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14405284A JPS6124135A (en) 1984-07-11 1984-07-11 Plasma x-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14405284A JPS6124135A (en) 1984-07-11 1984-07-11 Plasma x-ray generator

Publications (1)

Publication Number Publication Date
JPS6124135A true JPS6124135A (en) 1986-02-01

Family

ID=15353192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14405284A Pending JPS6124135A (en) 1984-07-11 1984-07-11 Plasma x-ray generator

Country Status (1)

Country Link
JP (1) JPS6124135A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048343A1 (en) * 1998-03-18 1999-09-23 Plex Llc Z-pinch soft x-ray source using diluent gas
WO2002076157A1 (en) * 2001-03-15 2002-09-26 Safe Food Technologies, Inc. X-ray method, system, and apparatus
US6630799B2 (en) 2001-03-15 2003-10-07 Safe Food Technologies, Inc. Resonant power supply and apparatus for producing vacuum arc discharges

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048343A1 (en) * 1998-03-18 1999-09-23 Plex Llc Z-pinch soft x-ray source using diluent gas
US6075838A (en) * 1998-03-18 2000-06-13 Plex Llc Z-pinch soft x-ray source using diluent gas
WO2002076157A1 (en) * 2001-03-15 2002-09-26 Safe Food Technologies, Inc. X-ray method, system, and apparatus
US6630799B2 (en) 2001-03-15 2003-10-07 Safe Food Technologies, Inc. Resonant power supply and apparatus for producing vacuum arc discharges

Similar Documents

Publication Publication Date Title
Beg et al. Study of x-ray emission from a table top plasma focus and its application as an x-ray backlighter
Schumacher et al. Phase dependence of intense-field ionization
Pollock et al. The Effect of Pressure on the Positive Point-to-Plane Discharge in N 2, O 2, C O 2, S O 2, S F 6, C Cl 2 F 2, A, He, and H 2
Walden et al. Polarization measurements of the Al XII resonance line emitted from micropinch plasmas of a vacuum spark discharge
Pikuz et al. Spatial, temporal, and spectral characteristics of an X pinch
Mather et al. STABILITY OF THE DENSE PLASMA FOCUS.
JPS6124135A (en) Plasma x-ray generator
Gullickson et al. X-ray analysis for electron beam enhancement in the plasma focus device
Beg et al. Effect of insulator sleeve material on neutron emission from a plasma focus
Balestra et al. Self-shunted streamer chamber
US3113213A (en) Apparatus for producing neutrons
US3426233A (en) Plasma stabilization by rotation of arc discharge tube
Gill et al. Soft X-ray measurements of the impurity density in DITE
Poole et al. A 304 Å photoelectron spectrometer for band structure studies
Shafiq et al. Soft X-ray emission optimization study with nitrogen gas in a 1.2 kJ plasma focus
US3337733A (en) Image amplifying device having a pulse generator applied to parallel electrodes separated by an ionizable gas
Kitaoka et al. Enhanced soft X-ray emission in a dense plasma focus with additional high Z gas puff
Soules et al. X-Ray K-Absorption Spectra of Solid Argon and Krypton
US1932078A (en) Television lamp
Kopeika et al. Observation of Cooper minima in excited-s-state photoionization cross sections in neon and argon
US3047760A (en) Geiger-muller counting tube
Austin et al. Analysis of positive ions in CO2 gas laser systems
Shatas et al. Soft X Rays from a Laser‐Heated Dense Plasma Focus
RU820511C (en) Method of producing electron beam
Duffendack et al. The Variation with the Density of Mercury Vapor of the Intensity of the Spectral Lines of Mercury Excited by Electron Impact