JPS61239224A - Electrochromic element - Google Patents

Electrochromic element

Info

Publication number
JPS61239224A
JPS61239224A JP7922185A JP7922185A JPS61239224A JP S61239224 A JPS61239224 A JP S61239224A JP 7922185 A JP7922185 A JP 7922185A JP 7922185 A JP7922185 A JP 7922185A JP S61239224 A JPS61239224 A JP S61239224A
Authority
JP
Japan
Prior art keywords
layer
film
intermediate insulating
insulating layer
color developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7922185A
Other languages
Japanese (ja)
Inventor
Ryoji Fujiwara
良治 藤原
Kazuya Ishiwatari
和也 石渡
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7922185A priority Critical patent/JPS61239224A/en
Publication of JPS61239224A publication Critical patent/JPS61239224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance responsivity, reliability, and display quality by interposing a reduction color developing layer, an intermediate insulating layer contg. an alkali metal oxide, and an oxidation color developing layer between both electrodes to form an electrochromic element. CONSTITUTION:An ITO film 2 is formed as a transparent conductive film on a glass base 1 by the reactive ion plating method, an IrOx film 3 is deposited as the oxidation color developing layer on the film 2 by the reactive sputtering method, the intermediate insulating layer 4 is vapor deposited on the film 3 by the electron beam method using a pellet mixture of 10wt% Na2O and 90wt% Ta2O5 as an evaporation source, the reduction color developing layer 5 is vapor deposited on the layer 4 by the electron beam method using WO3 pellets as an evaporation source, and finally an ITO film 6 is formed by the reactive ion plating method in succession to prepare the whole solid-state electrochromic element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は全固体エレクトロクロミック素子の中間絶縁層
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in an intermediate insulating layer of an all-solid-state electrochromic device.

〔従来の技術〕[Conventional technology]

エレクトロクロミック素子はわずかな電流で発色が可能
であり、且つ非常に薄い層による構成が可能である点に
おいて液晶に替る表示体としての用途が期待されている
Electrochromic elements are expected to be used as display bodies in place of liquid crystals because they can generate color with a small amount of current and can be constructed with very thin layers.

・: ・、        全固体エレクトロクロミック素子
は第1図に示す如く、透明な基板lの上に透明導電膜よ
りなる第1電極2、酸化発色層である第1エレクトロク
ロミツク層3.誘電体膜からなる中間絶縁層4、還元発
色層である第2エレクトロクロミック層5゜透明導電膜
よりなる第2電極6を順次積層してなるものである。
As shown in FIG. 1, an all-solid-state electrochromic device consists of a transparent substrate 1, a first electrode 2 made of a transparent conductive film, a first electrochromic layer 3 which is an oxidized coloring layer, and a first electrode 2 made of a transparent conductive film on a transparent substrate 1. An intermediate insulating layer 4 made of a dielectric film, a second electrochromic layer 5 which is a reduction coloring layer, and a second electrode 6 made of a transparent conductive film are successively laminated.

この様な構造を持つ全固体エレクトロクロミック素子は
、第1電極2と第2電極6の間に電圧を印加することに
よって電気化学反応が誘起され、着色、消色を行なう。
In the all-solid-state electrochromic element having such a structure, an electrochemical reaction is induced by applying a voltage between the first electrode 2 and the second electrode 6, and coloring and decoloring are performed.

上記、酸化発色層3にIrOx、還元発色層にWO3を
用いたエレクトロクロミック素子を例にとり、IrOx
側をプラス(+)、WO3側をマイナス(−)とすると
、IrOx側では、Ir OX +y H20ad  
−+Ir Ox (OH)y +1 H’ +7 e−
−−・(x)(但し、HzOadはセル中に含まれる吸
着H20)WO3側では、 WO3+ yH・+y e−+Hy WO3・・(2)
なる反応が進行し、着色種、I r Ox (OH)y
、H,WO3(タングステンブロンズ)が形成されると
考えられている。また電界を逆転することにより、(1
)(2)の逆反応が誘起され消色する。
Taking as an example the electrochromic element using IrOx for the oxidation coloring layer 3 and WO3 for the reduction coloring layer 3, IrOx
If the side is positive (+) and the WO3 side is negative (-), on the IrOx side, Ir OX +y H20ad
-+Ir Ox (OH)y +1 H' +7 e-
--・(x) (However, HzOad is adsorbed H20 contained in the cell) On the WO3 side, WO3+ yH・+y e−+Hy WO3・・(2)
The reaction proceeds to produce a colored species, I r Ox (OH)y
, H, WO3 (tungsten bronze) is believed to be formed. Also, by reversing the electric field, (1
) The reverse reaction of (2) is induced and the color disappears.

なお、これらの反応はセル中に含まれる水分(H20a
dとして表示)により進行する。
Note that these reactions are caused by water (H20a) contained in the cell.
(denoted as d).

ところで、中間絶縁層は、上記着色種の再結合による逆
反応を防ぐ、換言すると電子のブロッキングを行なう、
と共に上記反応におけるイオンの導通の媒体としての働
きを有する。
By the way, the intermediate insulating layer prevents the reverse reaction due to recombination of the colored species, in other words, blocks electrons.
It also functions as a medium for ion conduction in the above reaction.

ところが2以上のような構成の全固体エレクトロクロミ
ック素子の中間絶縁層材料(T a 205やZr 0
2 )は誘電体であるが、それ自体はイオン導電性は小
さい。
However, the intermediate insulating layer material of an all-solid-state electrochromic device having a structure such as 2 or more (T a 205 or Zr 0
2) is a dielectric material, but it itself has low ionic conductivity.

従って、従来の全固体エレクトロクロミック素子におい
ては、中間絶縁層のイオン導電性もやはり膜作成時に雰
囲気中に存在するH20が膜内に自然に取り込まれるこ
とによって生ずるものであった・ ところが、雰囲気中に存在するH20が自然に取り込ま
れることによって中間絶縁層や酸化・還元発色層等セル
中に含まれるに至ったH20は外部環境変化(熱や光)
により容易に放出され易く、デバイスの応答性・信頼性
の上で大きな問題となっていた。すなわち、中間絶縁層
であるT a 205層の保水性を改善する必要があっ
た。
Therefore, in conventional all-solid-state electrochromic devices, the ionic conductivity of the intermediate insulating layer is also caused by the natural incorporation of H20 present in the atmosphere into the film during film fabrication. The H20 that is present in the cell is naturally incorporated into the cell, such as the intermediate insulating layer and the oxidation/reduction color forming layer, due to changes in the external environment (heat and light).
This has caused major problems in terms of device responsiveness and reliability. That is, it was necessary to improve the water retention of the T a 205 layer, which is the intermediate insulating layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如き従来の問題点に鑑み、本発明は中間絶縁層と
H20の親和力を高め環境変化に耐え得るものとし、中
間絶縁層を全固体エレクトロクロミック素子セルにおけ
るH20の供給源としての性能を向上させるために、中
間絶縁層の機能を害しない吸水性のアルカリ金属化合物
を用いて中間絶縁層を構成することにより応答性、信頼
性、表示品位の高い全固体エレクトロクロミック素子を
提供しようとするものである。
In view of the above-mentioned conventional problems, the present invention improves the affinity of H20 with the intermediate insulating layer and makes it resistant to environmental changes, thereby improving the performance of the intermediate insulating layer as a source of H20 in an all-solid-state electrochromic device cell. The present invention aims to provide an all-solid-state electrochromic device with high responsiveness, reliability, and display quality by configuring the intermediate insulating layer using a water-absorbing alkali metal compound that does not impair the function of the intermediate insulating layer. It is.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は電極間に還元発色層・中間絶縁層・
酸化発色層を挟持し、上記中間絶縁層に吸水性の高い化
合物を含有せる全固体エレクトロクロミック素子におい
て、該化合物がアルカリ金属酸化物であることを特徴と
する全固体エレクトロクロミック素子である。
That is, the present invention provides a reduction coloring layer, an intermediate insulating layer, and a layer between the electrodes.
The present invention is an all-solid-state electrochromic device in which an oxidized coloring layer is sandwiched and the intermediate insulating layer contains a highly water-absorbing compound, wherein the compound is an alkali metal oxide.

以下1本発明の詳細な説明する。The present invention will be explained in detail below.

本発明にかかる全固体エレクトロクロミック素子は前途
の第1図に示す基本的構造において、基板1は一般的に
ガラス板によって形成されるが。
The all-solid-state electrochromic device according to the present invention has a basic structure shown in FIG. 1, in which the substrate 1 is generally formed of a glass plate.

これはガラス板に限らずポリイミド樹脂等プラスチック
板などの透明基板ならば特に限定されない。
This is not limited to a glass plate, but is not particularly limited as long as it is a transparent substrate such as a plastic plate such as polyimide resin.

透明導電膜2・6としては、ITO@(酸化インジウム
In2O3中に酸化錫sn 02をドープしたもの)や
ネサ膜(SnOz)等が用いられる。
As the transparent conductive films 2 and 6, ITO@ (indium oxide In2O3 doped with tin oxide sn02), NESA film (SnOz), etc. are used.

酸化発色層である第1エレクトロクロミー、り層3は酸
化イリジウム(IrOx)、水酸化ニッケル CN+ 
(OH)2 )等によって形成されている。
The first electrochromy layer, which is an oxidation coloring layer, and the third layer are made of iridium oxide (IrOx) and nickel hydroxide CN+
(OH)2) etc.

中間絶縁層4は誘電体のみではなく、固体電解質でもよ
く、五酸化タンタル(Ta205)、二酸化ジルコン(
ZrO2)等に代表される酸化物あるいは弗化リチウム
(Li F)、弗化マグネシウムCMq F2 )等に
代表される弗化物を用いると共に本発明の特長である吸
水性のアルカリ金属酸化物を用いて形成する。
The intermediate insulating layer 4 may be made of not only a dielectric but also a solid electrolyte, such as tantalum pentoxide (Ta205), zirconium dioxide (
In addition to using oxides such as ZrO2) or fluorides such as lithium fluoride (LiF) and magnesium fluoride (CMqF2), we also use a water-absorbing alkali metal oxide, which is a feature of the present invention. Form.

吸水性のアルカリ金属酸化物としては、例えばL120
.Na2O、等である。
Examples of water-absorbing alkali metal oxides include L120
.. Na2O, etc.

また還元発色層である第2エレクトロクロミック層5に
は三酸化タングステン(WO3)が用いられる。
Further, tungsten trioxide (WO3) is used for the second electrochromic layer 5, which is a reduction coloring layer.

本発明にかかるエレクトロクロミック素子において上記
各層の形成は電子ビーム蒸着法、反応性イオンブレーテ
ィング法、反応性スパッタリング法、CVD法、陽極酸
化法等多種の薄膜形成法により行なわれる。
In the electrochromic device according to the present invention, the layers described above are formed by various thin film forming methods such as electron beam evaporation, reactive ion blating, reactive sputtering, CVD, and anodic oxidation.

〔実施例〕 以下、本発明を実施例に従って更に説明する。〔Example〕 Hereinafter, the present invention will be further explained according to examples.

ガラス基板上に、透明導電膜としてITOを100OA
の膜厚に反応性イオンブレーティング法で蒸着し、その
上に酸化発色層としてIrOx膜を反応性スパッタリン
グ法で100Aの膜厚に堆積した。
100OA of ITO was applied as a transparent conductive film on a glass substrate.
An IrOx film was deposited thereon to a thickness of 100 Å as an oxidized coloring layer by reactive sputtering.

その上に10wt%Na2C190wt%Ta2O51
x ルm 合ヘレットを蒸発源として電子ビーム法によ
り中間絶縁層を膜厚2000Aに蒸着した。
On top of that, 10wt%Na2C190wt%Ta2O51
An intermediate insulating layer was deposited to a thickness of 2000 Å by an electron beam method using a heat exchanger as an evaporation source.

さらにWO3ペレットを蒸発源とした電子ビーム法によ
り還元発色層を400OAの膜厚に逐次蒸着し、最後に
ITOを120OAの膜厚に反応性イオンブレーティン
グ法により形成し、全固体エレクトロクロミック素子を
作製した。
Furthermore, a reduction coloring layer was sequentially deposited to a thickness of 400 OA using an electron beam method using WO3 pellets as an evaporation source, and finally, ITO was formed to a thickness of 120 OA by a reactive ion blasting method to form an all-solid-state electrochromic device. Created.

得られた本発明にかかる全固体エレクトロクロミック素
子の環境変化に対する耐性を試験するためにi、sv印
加200m5ec後の、各レベルの真空度における着色
特性(Δ00)を測定し、結果を第2図のグラフに示し
た。比較のために同様の方法でT a 205を用いて
作成した従来の全固体エレクトロクロミック素子につい
ても同様の測定を行なった。
In order to test the resistance to environmental changes of the obtained all-solid-state electrochromic device according to the present invention, the coloring characteristics (Δ00) at each level of vacuum degree were measured after applying i, sv for 200 m5 ec, and the results are shown in Figure 2. This is shown in the graph below. For comparison, similar measurements were also performed on a conventional all-solid-state electrochromic device made using T a 205 using the same method.

第2図から明らかなように、従来の全固体エレクトロク
ロミック素子工2が真空度の高まりに従って急激にΔO
Dを低下させるのに対して、本発明にかかる全固体エレ
クトロクロミック素子11は5X10−6Torr、と
いう高真空領域でも十分に駆動しており、中間絶縁層中
に含まれているH2Oは放出されることなく保持されて
いることが解る。
As is clear from Fig. 2, the conventional all-solid-state electrochromic device 2 suddenly exhibits an increase in ΔO as the degree of vacuum increases.
In contrast, the all-solid-state electrochromic device 11 according to the present invention operates satisfactorily even in a high vacuum region of 5X10-6 Torr, and the H2O contained in the intermediate insulating layer is released. It can be seen that it is maintained without any problems.

〔発明の効果〕〔Effect of the invention〕

以上から明らかな如く1本発明によれば中間絶縁層を吸
水性のアルカリ金属酸化物を用いて構成する事により、
デバイス中のH20量を安定に保持させ、応答性、信頼
性、表示品位の高い全固体エレクトロクロミック素子を
提供することが可能となった。
As is clear from the above, according to the present invention, by forming the intermediate insulating layer using a water-absorbing alkali metal oxide,
It has become possible to stably maintain the amount of H20 in the device and provide an all-solid-state electrochromic element with high responsiveness, reliability, and display quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は全固体エレクトロクロミック素子の基本構成を
示す断面略図であり、@2図は各真空度における電圧印
加200m5ec後の全固体エレクトロクロミック素子
デバイスのΔODを示すグラフ図である。
FIG. 1 is a schematic cross-sectional view showing the basic structure of an all-solid-state electrochromic device, and FIG. 2 is a graph showing the ΔOD of the all-solid-state electrochromic device after voltage application of 200 m5ec at each degree of vacuum.

Claims (1)

【特許請求の範囲】[Claims] 電極間に還元発色層・中間絶縁層・酸化発色層を挟持し
、上記中間絶縁層に吸水性の高い化合物を含有せる全固
体エレクトロクロミック素子において、該化合物がアル
カリ金属酸化物であることを特徴とする全固体エレクト
ロクロミック素子。
An all-solid-state electrochromic device in which a reduction coloring layer, an intermediate insulating layer, and an oxidation coloring layer are sandwiched between electrodes, and the intermediate insulating layer contains a highly water-absorbing compound, characterized in that the compound is an alkali metal oxide. All-solid-state electrochromic device.
JP7922185A 1985-04-16 1985-04-16 Electrochromic element Pending JPS61239224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7922185A JPS61239224A (en) 1985-04-16 1985-04-16 Electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7922185A JPS61239224A (en) 1985-04-16 1985-04-16 Electrochromic element

Publications (1)

Publication Number Publication Date
JPS61239224A true JPS61239224A (en) 1986-10-24

Family

ID=13683858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7922185A Pending JPS61239224A (en) 1985-04-16 1985-04-16 Electrochromic element

Country Status (1)

Country Link
JP (1) JPS61239224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10187067B2 (en) 2014-10-14 2019-01-22 Qatar University Phase-locked loop (PLL)-type resolver/converter method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10187067B2 (en) 2014-10-14 2019-01-22 Qatar University Phase-locked loop (PLL)-type resolver/converter method and apparatus

Similar Documents

Publication Publication Date Title
US4482216A (en) Solid state complementary electrochromic display devices
US4652090A (en) Dispersed iridium based complementary electrochromic device
JP4589915B2 (en) Electrochromic display device
JPH04267227A (en) Electrochromic glass
IL101536A (en) Electrochromic system
US4303310A (en) Electrochromic display device
JPS6223293B2 (en)
JPS61239224A (en) Electrochromic element
US4632516A (en) Electrochromic element
JPS61239223A (en) Electrochromic element
JPS61239227A (en) Electrochromic element
JPS61239225A (en) Electrochromic element
JPS6186733A (en) Electrochromic element
JP2501553B2 (en) Electrochromic element
JPS61103982A (en) Electrochromic element
JPS61239226A (en) Electrochromic element
JPS61239229A (en) Electrochromic element
JPS61239228A (en) Electrochromic element
JPS5953816A (en) Fully solid state type electrochromic element
JPS61239221A (en) Electrochromic element
CA1265603A (en) Dispersed iridium based complementary electrochromic device
JPH0578805B2 (en)
JPH0371113A (en) Electrochromic element
JPS5816167B2 (en) display cell
JPS61103981A (en) Electrochromic element