JPS61238231A - Production of minute sensor for measuring oxygen partial pressure - Google Patents

Production of minute sensor for measuring oxygen partial pressure

Info

Publication number
JPS61238231A
JPS61238231A JP60078404A JP7840485A JPS61238231A JP S61238231 A JPS61238231 A JP S61238231A JP 60078404 A JP60078404 A JP 60078404A JP 7840485 A JP7840485 A JP 7840485A JP S61238231 A JPS61238231 A JP S61238231A
Authority
JP
Japan
Prior art keywords
oxygen
partial pressure
electrode
resist
oxygen partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60078404A
Other languages
Japanese (ja)
Inventor
健一 森田
前田 芳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60078404A priority Critical patent/JPS61238231A/en
Publication of JPS61238231A publication Critical patent/JPS61238231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体中の酸素分圧、特に生体中の酸素分圧変化
を連続的に測定するための改良された酸素電極の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an improved oxygen electrode for continuously measuring oxygen partial pressure in liquids, particularly changes in oxygen partial pressure in living organisms.

〔従来の技術〕[Conventional technology]

体液の酸素分圧が生体に及ぼす影響は大きい。 The partial pressure of oxygen in body fluids has a great effect on living organisms.

近年C1ark型酸素電極の登場により、酸素の生体外
測定が精度高くできるようになり、呼吸障害をともなう
患者の治療を大きく進歩させた。
In recent years, with the advent of the C1ark type oxygen electrode, it has become possible to measure oxygen in vitro with high precision, and this has greatly advanced the treatment of patients with respiratory disorders.

また、心肺蘇生を目的とするICU(’1ntensi
vs  care  unit)の発展も酸素分圧測定
の進歩をもたらした。
In addition, the ICU ('1ntensi) for the purpose of cardiopulmonary resuscitation is
vs. care units) also led to advances in oxygen partial pressure measurements.

こうした試料採取による生体外測定は、採取に頻度上の
限界があり、しかも試料貯蔵の間に変化が生じて測定値
が不正確になることがある。
In vitro measurements using such sample collection are limited by the frequency of sample collection, and changes may occur during sample storage, resulting in inaccurate measurements.

したがって直接電極を生体中に入れ酸素分圧を連続的に
測定することが、理想的な方法であることは論をまたな
い。
Therefore, it goes without saying that the ideal method is to continuously measure oxygen partial pressure by directly inserting an electrode into a living body.

生体中の酸素分圧を連続的に測定する方法も提案されて
いる。即ち白金、イリジウム、金等の金属製作用電極と
恨−塩化銀等による参照電極を用い、これら電極間に電
圧を印加して、作用電極(陰極)で酸素の還元をおこな
い、拡散電流を測定する原理を応用したものである。
A method of continuously measuring the oxygen partial pressure in a living body has also been proposed. That is, using electrodes for manufacturing metals such as platinum, iridium, or gold and reference electrodes such as silver chloride, a voltage is applied between these electrodes, oxygen is reduced at the working electrode (cathode), and the diffusion current is measured. This is an application of the principle of

この際、生体中における心筋の動きや血液の脈動などに
よって、電極表層の酸素の濃度勾配が変化すると、測定
する拡散電液が大きな変化を受け、酸素分圧を正確に測
定できない。
At this time, if the oxygen concentration gradient on the surface of the electrode changes due to the movement of the myocardium or the pulsation of blood in the living body, the diffused electrolyte to be measured undergoes a large change, making it impossible to accurately measure the oxygen partial pressure.

この問題を解決するため種々の検討がおこなわれている
。即ち、両極を酸素透過性の膜で隔離し、電解液を内臓
したいわゆる「クラーク電極」を小型化したもの(萩原
文二編“電極法による酸素測定”講談社すイエンティフ
ィク・ 1977年、を参照)、あるいは、微細金属線
電極表面を多層構造からなる多孔質膜で被覆して、陰極
表面と溶液との間に安定接触状態を作り出さしめる方法
(特開昭57−117838号公報)等が提案されてい
る。
Various studies are being conducted to solve this problem. In other words, it is a miniaturized version of the so-called "Clark electrode", which separates both poles with an oxygen-permeable membrane and contains an electrolyte (see Bunji Hagiwara, "Oxygen Measurement by Electrode Method," Kodansha, Ltd., 1977). ), or a method in which the surface of a fine metal wire electrode is coated with a porous film having a multilayer structure to create a stable contact state between the cathode surface and the solution (Japanese Patent Laid-Open No. 117838/1983). Proposed.

しかしながら、これらの方法は、電極形態が大きく、特
定の部位、例えば太い血管中にしか挿入出来ないとか、
多孔質膜がはがれて医源病になる可能性がある等の欠点
があった。
However, these methods require large electrodes and can only be inserted into specific areas, such as large blood vessels.
There were drawbacks such as the possibility of the porous membrane peeling off and causing iatrogenic diseases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、これらの欠点を除き、連続的にしかも安定し
て正確に液体とくに生体中の酸素分圧を測定できる微小
センサーを提供することを目的とする。
An object of the present invention is to eliminate these drawbacks and provide a microsensor that can continuously, stably, and accurately measure the partial pressure of oxygen in a liquid, especially a living body.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、以下の本発明により達成される。 The above object is achieved by the present invention as described below.

すなわち本発明は、酸素還元触媒能のある材料の表面に
レジストを塗布し、次いで所定のパターンに露光現像し
、パターンニングすることを特徴とする酸素分圧測定用
微小センサーの製造法に関する。
That is, the present invention relates to a method for manufacturing a microsensor for measuring oxygen partial pressure, which comprises applying a resist to the surface of a material capable of catalyzing oxygen reduction, and then exposing and developing the resist into a predetermined pattern for patterning.

電極として作用する酸素還元能のある材料としては、炭
素、白金、イリジウム、金、炭素繊維などの先端を微細
加工して用いることができる。
As a material having an oxygen reducing ability that acts as an electrode, carbon, platinum, iridium, gold, carbon fiber, etc. can be used by finely processing the tip thereof.

これらの材料は、そのものを単独で電極として用いるこ
ともできるし、又酸素還元能を持たない部分と複数の酸
素還元能を有する電極部分とからなる複合材料として用
いることもできる。
These materials can be used alone as an electrode, or can be used as a composite material consisting of a portion without oxygen reducing ability and a plurality of electrode portions having oxygen reducing ability.

これらの材料の内、炭素繊維と酸素還元能を持たない物
質(マトリックスと呼ぶ)との複合材、すなわち炭素繊
維複合材料を電極に用いるのは好ましい方法の一つであ
る。
Among these materials, one preferable method is to use a composite material of carbon fiber and a substance without oxygen reducing ability (referred to as a matrix), that is, a carbon fiber composite material for the electrode.

炭素繊維は通常その直径が30μm以下であり、それ自
身が酸素の還元能力を持っているとともに容易に酸素還
元能力を向上させることが可能である。
Carbon fibers usually have a diameter of 30 μm or less, and have the ability to reduce oxygen by themselves, and can easily improve the ability to reduce oxygen.

用いられる炭素繊維の種類は特に制限がなく、ポリアク
リロニトリル、ピンチ、レーヨン、フェノール樹脂など
を原料とする炭素繊維や気相成長法で作製した炭素繊維
が好ましい。
The type of carbon fiber used is not particularly limited, and carbon fibers made from polyacrylonitrile, pinch, rayon, phenol resin, etc. or carbon fibers produced by vapor phase growth are preferred.

炭素繊維の直径は30μm以下であればよいが、20μ
m以下であるのが好ましい。
The diameter of carbon fiber should be 30μm or less, but 20μm or less
It is preferable that it is less than m.

複合材料のつくりかたは公知の方法に従う。The composite material is manufactured according to a known method.

マトリックスの物質としては、特に制限はないが弗素樹
脂、ポリエステル樹脂、エポキシ樹脂、ポリフェニレン
オキシド樹脂、ポリフェニレンスルフィドIt脂、ウレ
タン樹脂、シリコン樹脂、フェノール樹脂などの高分子
材料が用いられ、抗血栓性の優れた樹脂を用いるのが好
ましい。 またセラミックスや金属材料をマトリックス
として使うことも可能である。
There are no particular restrictions on the matrix material, but polymeric materials such as fluororesin, polyester resin, epoxy resin, polyphenylene oxide resin, polyphenylene sulfide It resin, urethane resin, silicone resin, and phenol resin are used, and antithrombotic materials are used. It is preferable to use a superior resin. It is also possible to use ceramics or metal materials as a matrix.

酸素還元能を有する電極部分として炭素繊維表面をその
ま\用いても差支えないが、測定すべき還元電流を大き
くして測定しやすいようにする目的で、炭素繊維の反応
面を修飾することにより改質するのも好ましい方法の一
つである。
Although it is possible to use the carbon fiber surface as it is as an electrode part with oxygen reduction ability, it is possible to use it as is by modifying the reactive surface of the carbon fiber in order to increase the reduction current to be measured and make it easier to measure. Modification is also one of the preferred methods.

修飾材料として白金、イリジウム、金、亜鉛、フタロシ
アニン類やプルシアンブルーなどの酸素還元触媒活性の
ある材料を用いる場合は、常法に従い、真空蒸着、スパ
ッタリング、メッキ、イオン注入、電解酸化重合法など
の方法が用いられる。
When using a material with oxygen reduction catalytic activity such as platinum, iridium, gold, zinc, phthalocyanines, or Prussian blue as a modification material, use conventional methods such as vacuum evaporation, sputtering, plating, ion implantation, electrolytic oxidation polymerization, etc. method is used.

この際、これらの材料で炭素繊維の表面を完全に覆って
もよいが、部分的に耐着させるか、注入させても差支え
ない。
At this time, the surface of the carbon fiber may be completely covered with these materials, but it may also be partially made to resist adhesion or injected.

上記電極の反応面もしくは、上記修飾を行った表面にレ
ジストを塗布する。
A resist is applied to the reaction surface of the electrode or the modified surface.

レジストは、ポリケイ皮酸ビニルフォトレジスト、環化
ゴム系フォトレジスト、キノン・ジアザイド系フォトレ
ジストのようなフォトレジスト、ポリメタアクリレート
レジストのような電子線レジスト、X線レジスト等のい
ずれのレジストであっても良い。
The resist may be any photoresist such as polyvinyl cinnamate photoresist, cyclized rubber photoresist, quinone diazide photoresist, electron beam resist such as polymethacrylate resist, or X-ray resist. It's okay.

塗布の方法は、スピンナーによるスピンコードでも良く
、レジスト中に浸し、ディップしても良く、又、へら等
で塗布しても良い。レジストの塗布膜厚は、通常O11
μm〜1mm 、好ましくは0.1μm〜100μmで
ある。
The coating method may be a spin code using a spinner, dipping in a resist, or a spatula or the like. The coating film thickness of the resist is usually O11.
It is μm to 1 mm, preferably 0.1 μm to 100 μm.

次いで、上記塗布を行ったレジストを所定のベクーンに
露光、現像し、パターンニングを行う。
Next, the resist coated as described above is exposed to light in a predetermined pattern, developed, and patterned.

露光、現像方法は使用するレジストに応じ、公知の方法
による。プレベーク、ポストベークは使用するレジスト
の種類によっては、必要のないものもあるが、通常ベー
キング炉、ホットプレート、赤外線ランプ等の加熱手段
を用いて行う。
Exposure and development methods are based on known methods depending on the resist used. Although pre-baking and post-baking may not be necessary depending on the type of resist used, they are usually performed using a heating means such as a baking oven, hot plate, or infrared lamp.

このパターンニングにより、上記炭素繊維表面もしくは
修飾を行った表面が、レジストにおおわれた部分と、レ
ジストが除去され露出した部分に分けられる。
By this patterning, the surface of the carbon fiber or the modified surface is divided into a portion covered with the resist and a portion exposed after the resist is removed.

レジストと電極面の接着をよくする目的で電極の表面処
理をあらかじめおこなうことは好ましい方法の一つであ
る。また、レジストは電極との接着性のよいものを用い
るのが好ましい。
One of the preferred methods is to perform a surface treatment on the electrode in advance in order to improve the adhesion between the resist and the electrode surface. Further, it is preferable to use a resist that has good adhesion to the electrode.

センサーとしての形態は、小さい方が好ましく、大きい
のは好ましくない。通常、酸素還元能を持つ電極部分く
レジストでおおわれていない部分)の面積の総計が30
〜10,000平方ミクロンの範囲であり、特に100
〜5. 000平方ミクロンであることが好ましい。
As for the shape of the sensor, it is preferable that it is small, and it is not preferable that it is large. Usually, the total area of the electrode parts with oxygen reduction ability (parts not covered with resist) is 30
~10,000 square microns, especially 100
~5. 000 square microns is preferred.

酸素還元能を有する微小電極部分の形状は円形、だ円形
、長方形、不定形等何でも構わないが、その最大径(最
長距離)が30μm以下であることが好ましい。
Although the shape of the microelectrode portion having oxygen reducing ability may be any shape such as circular, oval, rectangular, or irregular shape, it is preferable that its maximum diameter (longest distance) is 30 μm or less.

酸素還元能を有する微小部分間の間隔は最短距離6μm
以上が好ましい。これより短いと流れの影響を受けやす
くなる。間隔が広いのは差支えないが、酸素還元能を持
つ部分の面積の総計が10.000平方ミクロン以上に
なるのはセンサーの形態が太き(なりすぎるため好まし
くないので、その面積以内になるような間隔が好ましい
The shortest distance between minute parts with oxygen reducing ability is 6 μm.
The above is preferable. If it is shorter than this, it will be more susceptible to the influence of the flow. There is no problem with wide spacing, but if the total area of the parts with oxygen reduction ability exceeds 10,000 square microns, the shape of the sensor is too thick (too much, which is undesirable), so the area should be within that area. It is preferable to use a spacing of

カテコールアミン等の非還元物質が存在する溶液中(生
体)の酸素分圧を連続的に測定する場合には、これらの
物質を排除し酸素のみを透過する薄膜を常法により電極
表面にはることが好ましい。
When continuously measuring the oxygen partial pressure in a solution (living body) that contains non-reducing substances such as catecholamines, a thin film that excludes these substances and allows only oxygen to pass through is applied to the electrode surface using a conventional method. is preferred.

本発明の微小センサーは、直接生体中に挿入する用途に
用いる場合は直径1mm以下が好ましい。但し醗酵槽用
などの用途に用いる場合は必ずしも11以下である必要
はない。
The microsensor of the present invention preferably has a diameter of 1 mm or less when used for direct insertion into a living body. However, when used for purposes such as fermenters, the number does not necessarily have to be 11 or less.

また本発明のセンサーは、酵素または微生物と組合せて
バイオセンサーとして用いることもできる。
The sensor of the present invention can also be used as a biosensor in combination with enzymes or microorganisms.

〔発明の効果〕〔Effect of the invention〕

流れの影響を実質的に受けず、安定かつ正確に液体中の
酸素濃度を測定することができる微小センサーを工業的
に製造することができる。
It is possible to industrially manufacture a microsensor that is substantially unaffected by flow and can stably and accurately measure the oxygen concentration in a liquid.

以下、実施例を挙げて本発明をさらに具体的に説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1.2および比較例1 炭素繊維1000本の束(トレカT−3001K、直径
7μm)を硬化剤を含んだエポキシ樹脂中をはしらせ樹
脂を含浸させた。つぎに、この含浸した繊維束を引張っ
たま\加熱して硬化させ直径約008mmの針金状の複
合材料を得た。
Example 1.2 and Comparative Example 1 A bundle of 1000 carbon fibers (Traca T-3001K, diameter 7 μm) was soaked in an epoxy resin containing a curing agent to impregnate the resin. Next, this impregnated fiber bundle was cured by heating while being stretched to obtain a wire-like composite material with a diameter of about 0.08 mm.

この複合材料の端を、直径約3cmのアクリル樹脂製の
円板の中心に円板と直角になるよう北エポキシ樹脂で接
着し、複合材料の断面をアクリル板とともに常法により
研磨した。このアクリル板上にナフトキノンアジド系ポ
ジ型フォトレジスト(シプレーファーイースト社製“マ
イクロポジットl350”)をスピンナーを用いて膜厚
1μmにスピンコードした。
The end of this composite material was adhered to the center of an acrylic resin disk with a diameter of about 3 cm using Kita epoxy resin so as to be perpendicular to the disk, and the cross section of the composite material was polished together with the acrylic plate by a conventional method. On this acrylic plate, a naphthoquinone azide-based positive photoresist ("Microposit 1350" manufactured by Shipley Far East Co., Ltd.) was spin-coded to a film thickness of 1 μm using a spinner.

次にベーキング炉を用い90″c25分間プリベークを
行った。
Next, prebaking was performed for 25 minutes at 90" using a baking oven.

次にマスクアライナを用い所定のフォトマスクにより2
00mj/cfflの光量で露光した。次に現像液(シ
プレーファースト社製“M F −312”)で現像し
純水でリンスした。次にベーキング炉を用い135℃2
5分間ポストベークを行った。
Next, using a mask aligner, 2
Exposure was performed at a light intensity of 00 mj/cffl. Next, it was developed with a developer ("MF-312" manufactured by Shipley First) and rinsed with pure water. Next, use a baking oven to heat the oven to 135°C2.
Post-bake was performed for 5 minutes.

上記パターンニングの方法によって、電極表面のレジス
トに直径5μmの穴を10μm間隔(実施例1)および
30μm間隔(実施例2)にあけた。アクリル樹脂製の
アクリル板を外し得られたセンサーを用いて液の流動が
酸素還元に基く電流量に及ぼす影響を調べた。即ちマグ
ネチックスターラーを装着したフラスコに生理食塩水を
入れ、作動棒として上述のセンサーを、また対極に!1
!/塩化銀電極を装着し、室温で空気と触れさせ酸素を
飽和させた。作動棒に0.75ボルトの負電圧をかけ、
流れる還元電流を測定した。マグネチックスクーラーを
できるだけ早く回転させた場合と静置時に流れる電流を
それぞれ測定しその比を求めた。比較例としてレジスト
を用いパターンニングする前の電極を用いた測定値を示
した。結果を次表に示す。
By the above patterning method, holes with a diameter of 5 μm were made in the resist on the electrode surface at intervals of 10 μm (Example 1) and 30 μm (Example 2). The effect of liquid flow on the amount of current based on oxygen reduction was investigated using the sensor obtained by removing the acrylic plate made of acrylic resin. That is, put physiological saline in a flask equipped with a magnetic stirrer, use the above-mentioned sensor as the actuating rod, and use it as the opposite electrode! 1
! /A silver chloride electrode was attached and brought into contact with air at room temperature to saturate it with oxygen. Apply a negative voltage of 0.75 volts to the actuating rod,
The flowing reduction current was measured. The current flowing when the magnetic cooler was rotated as quickly as possible and when it was left still was measured and the ratio was calculated. As a comparative example, measured values using an electrode before patterning using a resist are shown. The results are shown in the table below.

Claims (1)

【特許請求の範囲】[Claims] (1)酸素還元触媒能のある材料の表面にレジストを塗
布し、次いで所定のパターンに露光現像し、パターンニ
ングすることを特徴とする酸素分圧測定用微少センサー
の製造法。
(1) A method for manufacturing a microsensor for measuring oxygen partial pressure, which comprises applying a resist to the surface of a material capable of catalyzing oxygen reduction, and then exposing and developing a predetermined pattern for patterning.
JP60078404A 1985-04-15 1985-04-15 Production of minute sensor for measuring oxygen partial pressure Pending JPS61238231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60078404A JPS61238231A (en) 1985-04-15 1985-04-15 Production of minute sensor for measuring oxygen partial pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60078404A JPS61238231A (en) 1985-04-15 1985-04-15 Production of minute sensor for measuring oxygen partial pressure

Publications (1)

Publication Number Publication Date
JPS61238231A true JPS61238231A (en) 1986-10-23

Family

ID=13661084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60078404A Pending JPS61238231A (en) 1985-04-15 1985-04-15 Production of minute sensor for measuring oxygen partial pressure

Country Status (1)

Country Link
JP (1) JPS61238231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234561A (en) * 2005-02-24 2006-09-07 Riken Keiki Co Ltd Diaphragm for working electrode of electrochemical gas sensor
JP2007014378A (en) * 2005-07-05 2007-01-25 National Institute Of Advanced Industrial & Technology Integrated needle type biosensor
JP2016161395A (en) * 2015-03-02 2016-09-05 ハネウェル・インターナショナル・インコーポレーテッド Lead-free galvanic oxygen sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234561A (en) * 2005-02-24 2006-09-07 Riken Keiki Co Ltd Diaphragm for working electrode of electrochemical gas sensor
JP4562131B2 (en) * 2005-02-24 2010-10-13 理研計器株式会社 Separator for working electrode of electrochemical gas sensor for detecting nitrogen dioxide (NO2), nitric oxide (NO), sulfur dioxide (SO2)
JP2007014378A (en) * 2005-07-05 2007-01-25 National Institute Of Advanced Industrial & Technology Integrated needle type biosensor
JP2016161395A (en) * 2015-03-02 2016-09-05 ハネウェル・インターナショナル・インコーポレーテッド Lead-free galvanic oxygen sensor

Similar Documents

Publication Publication Date Title
US5954685A (en) Electrochemical sensor with dual purpose electrode
Kadish et al. A new method for the continuous monitoring of blood glucose by measurement of dissolved oxygen
JP5116697B2 (en) Hydrogels for intravenous amperometric biosensors
US6801041B2 (en) Sensor having electrode for determining the rate of flow of a fluid
US9700246B2 (en) Method and device for detection of bioavailable drug concentration in a fluid sample
EP0127958A2 (en) Sensor electrode systems
JP2001511384A (en) Test equipment for analyte concentration in liquid
JPS62180263A (en) Oxygen sensor
JPS61238231A (en) Production of minute sensor for measuring oxygen partial pressure
Sargent et al. Design and validation of the transparent oxygen sensor array
CN111272849B (en) Working electrode of glucose sensor and preparation method thereof
Buck et al. Microfabrication technology of flexible membrane based sensors for in vivo applications
JPS62123349A (en) Microelectrode for electrochemical analysis
JPS6168030A (en) Minute sensor for measuring oxygen partial pressure
Hagihara et al. Cellulose acetate coatings for the polarographic oxygen electrode
CN213482121U (en) Noninvasive blood glucose sensor based on micro-fluidic chip and wearable equipment
WO2024030031A1 (en) Ketone sensor
Wang A Membrane Biosensor for the Detection of Lactate in Body Fluids
JPH06102230A (en) Small-sized oxygen electrode
JP3525588B2 (en) Glucose biosensor
Joseph et al. The development of a disposable skin surface oxygen transducer
KR100464141B1 (en) Biosensor
CN1742091A (en) Lactate biosensing strip
Park Development of Flexible and Stretchable Clark-type Oxygen Sensor
JPH02140656A (en) Enzyme electrode