JPS61235745A - Humidity sensor - Google Patents

Humidity sensor

Info

Publication number
JPS61235745A
JPS61235745A JP7800785A JP7800785A JPS61235745A JP S61235745 A JPS61235745 A JP S61235745A JP 7800785 A JP7800785 A JP 7800785A JP 7800785 A JP7800785 A JP 7800785A JP S61235745 A JPS61235745 A JP S61235745A
Authority
JP
Japan
Prior art keywords
humidity sensor
humidity
sensor
capacitance
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7800785A
Other languages
Japanese (ja)
Inventor
Keizo Yamamoto
山本 圭三
Akira Shimizu
晃 清水
Kyoji Tanabe
田辺 恭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7800785A priority Critical patent/JPS61235745A/en
Publication of JPS61235745A publication Critical patent/JPS61235745A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • G01N27/225Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity by using hygroscopic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To measure humidity with high precision by using a humidity sensor capable of communicating with outside air as one of two uniform element and sealing the other element as a reference humidity sensor, and detecting the differential output between both sensors. CONSTITUTION:Elements 1 and 2 having the same characteristics are provided on the same substrate adjacently as the humidity sensor A and reference humidity sensor B. The sensor A is provided with a cap 3 having a window and sealed completely to maintain specific humidity. Electrodes 9-12 are connected to the respective elements 1 and 2. Then, the capacity difference between the humidity sensor A and reference humidity sensor B is detected. Thus, the capacity difference is detected to cancel a capacity value corresponding to a cavity part, so relative humidity is detected accurately from variation in capacity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、2つの素子を利用した湿度センサーに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a humidity sensor using two elements.

〈発明の概要〉 特性が均一な2つの素子を用い、1つは通常の湿度検出
センサーとして空気の流通が可能となるようにするとと
もに、もう1つは一定湿度槽内で完全密封した構造の素
子として構成し、両者の差動出力をとる。
<Summary of the Invention> Two elements with uniform characteristics are used, one is a normal humidity detection sensor that allows air to circulate, and the other is a completely sealed structure in a constant humidity chamber. It is configured as an element and takes differential output between the two.

〈発明の背景〉 高分子有機物質で、例えば感湿材料として酸酸酪酸セル
ロースを、架橋材料としてイソシアネート基(−N=C
=O)・を有する物質を混合して感湿膜を形成し、電極
でサンドイッチ構造にした容量変化型湿度センサーがあ
る。
<Background of the Invention> High-molecular organic substances, such as cellulose acid butyrate as a moisture-sensitive material and isocyanate groups (-N=C
There is a capacitive humidity sensor in which a moisture-sensitive film is formed by mixing a substance having =O) and has a sandwich structure with electrodes.

本センサーの基本特性を第6図に示す。図から分るよう
に、相対湿度(横軸)と静電容量(縦111)との関係
は、ある1ゲタ″をはいた容量値を持ちその分を差し引
いたとき、静電容量が相対容量に比例する関係にある。
Figure 6 shows the basic characteristics of this sensor. As can be seen from the figure, the relationship between relative humidity (horizontal axis) and capacitance (vertical 111) is that when the capacitance value is multiplied by a certain 1 geta and that amount is subtracted, the capacitance becomes the relative capacitance. There is a relationship proportional to .

本センサーの基本構造は第7図に示される。製法の一例
として、ここではSi基板などの絶縁基板1上に、下部
電極2.感湿膜3.上部電極4を順次形成し、平行平板
構造のコンデンサとして構成している。下部電極2はA
u又はTi等、上部電極3はAu等であり、感湿膜3は
前述した高分子有機物質からなるものである。
The basic structure of this sensor is shown in FIG. As an example of the manufacturing method, a lower electrode 2. is formed on an insulating substrate 1 such as a Si substrate. Moisture sensitive membrane 3. Upper electrodes 4 are sequentially formed to form a capacitor having a parallel plate structure. The lower electrode 2 is A
The upper electrode 3 is made of Au or the like, and the moisture sensitive film 3 is made of the above-mentioned polymeric organic substance.

本センサーは第6図で示したように、相対湿度の変化に
対して容量変化が微少であり、かつ1ゲタ“分の容量値
を持っているので、相対湿度に比例した出力を得るため
には、172分“の容量値を差し引いた特性をもつこと
が必要である。
As shown in Figure 6, this sensor has a very small change in capacitance with respect to changes in relative humidity, and has a capacitance value of one gain, so in order to obtain an output proportional to relative humidity, is required to have a characteristic obtained by subtracting the capacitance value of 172 minutes.

本発明は、上記のような背景に鑑み、2つの素子を利用
して有用な湿度センサーを提供することを目的とする。
In view of the above background, an object of the present invention is to provide a useful humidity sensor using two elements.

く問題点を解決するための手段〉 例えば、同一基板上の相隣り合うチップなど、特性が均
一な2つの素子を用い、1つは通常の湿度センサーとし
て空気の流通が可能なパッケージに封入し、もう一つは
一定湿度槽内で完全密封した構造の素子として構成し、
両者の差動出力をとるO く作 用〉 上記構造により、′ゲタ1分の容量値がキャンセルされ
、相対湿度に対応する正確な容量変化が得られる0また
、温度変化等による出力特性の変化も除去される。
For example, two devices with uniform characteristics, such as adjacent chips on the same substrate, are used, and one is sealed in a package that allows air to circulate as a normal humidity sensor. , the other is configured as a completely sealed element in a constant humidity chamber,
The above structure cancels out the capacitance value of the two, and provides accurate capacitance changes corresponding to relative humidity.In addition, changes in output characteristics due to temperature changes, etc. can be obtained. is also removed.

〈実施例〉 前述の容量変化型湿度センサーは、半導体素子の製法と
同様、大面積基板上に数百、数千の素子(チップ)を同
時に形成して作製する。この場合、C=ξ・− で、上式に示されるようだ容量値のバラツキは、スピン
・コートで作製される感湿膜形成時の製法バラツキによ
り決定される。しかし、同一基板上のバラツキは非常に
少なく無視される。
<Example> The capacitive humidity sensor described above is manufactured by simultaneously forming hundreds or thousands of elements (chips) on a large-area substrate, similar to the manufacturing method of semiconductor elements. In this case, C=ξ·-, and the variation in the capacitance value as shown in the above equation is determined by the variation in the manufacturing method when forming the moisture-sensitive film by spin coating. However, variations on the same substrate are very small and can be ignored.

本例において、例えば上記のように作製される同一基板
上の相隣り合う2つの素子をペアとして使用する。
In this example, two adjacent elements on the same substrate, produced as described above, are used as a pair.

第1図に本例における湿度センサーのパッケージ構造を
示す。図示のチップ1,2は同一基板上の相隣り合うも
のであり、特性はほぼ等しく、容量値のバラツキはほと
んど無視され得る。このうちの1つのチップ1が、窓を
明けたキャップ3(ただし、塵埃等の影響を除去するた
め窓部分にメツシュ4を貼り付けている)によりパッケ
ージされ、窓を通してパッケージ内に流入した空気等の
相対湿度を検出する。もう1つのチップ2は窓のないキ
ャップ5により完全密封してパッケージされる。そして
、後者のパッケージの際においては、N2ガス置換した
O%RH槽或いはある一定湿度に制御された槽内で処理
され、パッケージ内は特定の湿度に保持される0チップ
1,2の構造は第7図で説明したとおりである。
FIG. 1 shows the package structure of the humidity sensor in this example. The illustrated chips 1 and 2 are adjacent to each other on the same substrate, have substantially the same characteristics, and variations in capacitance values can be almost ignored. One of the chips 1 is packaged with a cap 3 with a window open (however, a mesh 4 is pasted on the window to remove the influence of dust, etc.), and air, etc. that flows into the package through the window Detects relative humidity. The other chip 2 is packaged completely hermetically with a windowless cap 5. In the case of the latter package, the structure of chips 1 and 2 is processed in an O%RH tank with N2 gas replacement or a tank controlled at a certain humidity, and the inside of the package is kept at a specific humidity. This is as explained in FIG.

ステム6.7はチップ1,2をそれぞれダイボンドし、
キャップ3.5とともにパッケージを構成するものであ
り、これらはプラスチック等からなる1つのケース8に
組み込まれる。ステム6゜7の端子9,11はチップ1
.2の下部電極、同端子10.12はチップ1.2の上
部電極にそれぞれ対応して導出されたリード端子である
Stem 6.7 is die-bonded to chips 1 and 2, respectively.
Together with the cap 3.5, it constitutes a package, and these are assembled into one case 8 made of plastic or the like. Terminals 9 and 11 of stem 6°7 are chip 1
.. The lower electrodes of chip 1.2 and terminals 10.12 are lead terminals drawn out corresponding to the upper electrodes of chip 1.2, respectively.

上記のようなデバイスにおいて、感湿センサーAとして
構成された素子(図面左側)と、基準湿度センサーBと
して構成された素子(図面右側)のそれぞれの容量値の
差を検出することで、相対湿度に直接関係する容量変化
が得られる。
In the above device, relative humidity can be determined by detecting the difference in capacitance between the element configured as humidity sensor A (on the left side of the drawing) and the element configured as reference humidity sensor B (on the right side of the drawing). A capacitance change directly related to is obtained.

第2図に具体的な検出回路例を示す。第2図は0%RH
基準湿度センサーを用い、相対湿度に比例した線形出力
電圧が得られる方式である。
FIG. 2 shows a specific example of the detection circuit. Figure 2 is 0%RH
This method uses a reference humidity sensor to obtain a linear output voltage proportional to relative humidity.

感湿膜が高分子有機物質である容量変化型湿度センサー
は、DC成分が印加されると分極罠よりセンサーとして
の信頼性が損われるため、DC成分が印加されないよう
にする必要がある。この手段として、第2図の回路方式
では容量変化型の感湿センサーA、基準湿度センサーB
のそれぞれに並列に抵抗Rを接続して、センサーの容量
分を検出するために与える周波数fとの関係において、
下記のような条件を満足するようにしている。
When a DC component is applied to a capacitive humidity sensor whose moisture-sensitive film is made of a polymeric organic material, reliability as a sensor is impaired due to polarization traps, so it is necessary to prevent the DC component from being applied. As this means, in the circuit system shown in Fig. 2, a capacitive humidity sensor A, a reference humidity sensor B,
In relation to the frequency f given to detect the capacitance of the sensor by connecting a resistor R in parallel to each of them,
The following conditions are satisfied.

f (例えば10 KHz) : R>1/2πf c
 (= 0.8MΩ)DC(100Hz以下’)   
:R<<1/2πfc (480MΩ)方式の0はセン
サーの容量CをC=20 p Fとしたときで、R=1
0MΩとすると上記条件を充分に満足する。
f (e.g. 10 KHz): R>1/2πf c
(= 0.8MΩ) DC (100Hz or less')
:R<<1/2πfc (480MΩ) method 0 is when the capacitance C of the sensor is C=20 pF, and R=1
When it is set to 0 MΩ, the above conditions are fully satisfied.

この結果、容量変化型センサーとRのインピーダンスは
、DC帯域ではRにより決定され、センサーの容量検出
周波数ではCにより決定される。
As a result, the impedance of the variable capacitance sensor and R is determined by R in the DC band and determined by C at the capacitance detection frequency of the sensor.

この条件の元に、高インピーダンス入力のFET(電界
効果型トランジスタ)TrA+TrBを差動構成にして
、各ゲートにセンサーA、Bと抵抗Rの並列体を接続す
る。また、上記並列体の他端は、FET TrA、Tr
B K最適バイアスを与える抵抗R1,R2がプリーダ
に接続されるとともに、センサーの検出検出周波数成分
(上記f)をバイパスコンデンサCtを介して発振源O
8Cから印加している。
Under this condition, high-impedance input FETs (field effect transistors) TrA+TrB are made into a differential configuration, and a parallel body of sensors A and B and a resistor R is connected to each gate. Further, the other end of the parallel body is FET TrA, Tr
B K Resistors R1 and R2 that provide optimum bias are connected to the reader, and the sensor detection frequency component (f above) is connected to the oscillation source O via the bypass capacitor Ct.
It is applied from 8C.

このようにして、差動構成の各FETTrA。In this way, each FETTrA in a differential configuration.

TrBの出力には、感湿センサーA及び基準湿度センサ
ーBの容量値(1ゲタ“分を含む)に比例するAC出力
が得られる。そして、各FET TrA。
As the output of TrB, an AC output proportional to the capacitance value (including 1 geta) of humidity sensor A and reference humidity sensor B is obtained.And each FET TrA.

TrBの出力はバイパスコンデンサC2、Cs ヲ介し
てピークホールド検出オペアンプOPに接続され、その
差を検出するとともにAC電圧をDC電圧に変換する。
The output of TrB is connected to a peak hold detection operational amplifier OP via bypass capacitors C2 and Cs, which detects the difference and converts the AC voltage into a DC voltage.

上記は、実質的に感湿センサーAと基準湿度センサー(
0%RH)Bとの容量値差を検出することと等価であり
、オペアンプOPから相対湿度に比例する出力電圧Vo
utが得られる。
The above is essentially a humidity sensor A and a reference humidity sensor (
This is equivalent to detecting the capacitance value difference between the operational amplifier OP and the output voltage Vo proportional to the relative humidity.
ut is obtained.

第3図にその出力例を示す。横軸が相対湿度(%RH)
 、縦軸が出力電圧Vout (V)である。
Figure 3 shows an example of the output. The horizontal axis is relative humidity (%RH)
, the vertical axis is the output voltage Vout (V).

以上は、相対湿度に線形的に比例する出力が得られる方
式であるが、基準湿度センサーBとして一定湿度槽(例
えば40%RH槽)内で完全密封したものを用い、他方
の感湿センサーAとの容量値との差を検出して出力する
ことにより、基準湿度より犬であるか小であるかのスイ
ッチング等を行なうようにしてもよい。
The above is a method that can obtain an output linearly proportional to relative humidity, but the reference humidity sensor B is completely sealed in a constant humidity tank (for example, a 40% RH tank), and the other humidity sensor A is By detecting and outputting the difference between the capacitance value and the reference humidity, switching may be performed to determine whether the humidity is higher than or lower than the reference humidity.

第4図にその検出回路例を示す。FET TrA。FIG. 4 shows an example of the detection circuit. FET TrA.

TrBを差動構成にして、それぞれの容量値に比例する
AC出力を得るところでは第2図と同様であるが、後段
に、オペアンプOP1.OP2とD形フリップフロップ
Fを備えている。
It is the same as in FIG. 2 in that the TrB is configured differentially to obtain an AC output proportional to each capacitance value, but an operational amplifier OP1. It is equipped with OP2 and a D-type flip-flop F.

基準湿度をa%RHとしたときのタイミングチャートを
第5図に示す。オペアンプOPIは各F ′ET  T
rA、TrBの差出力を検出して、■のような波形信号
を出力する。オペアンプOP2は基準湿度センサーB側
のAC出力のみを入力して増幅し、抵抗RIG及びコン
デンサC4により所定時間遅延させる。遅延出力は■に
示されるような信号波形であり、■の信号波形と同一に
ならないようにしている。このような信号波形をD型フ
リップフロップFに入力することにより、その位相差を
検出して、a%RHを基準に感湿センサーAの湿度が上
であればHレベルを、下であればLレベルを出力する。
FIG. 5 shows a timing chart when the reference humidity is a%RH. The operational amplifier OPI is for each F'ET T
The differential output between rA and TrB is detected and a waveform signal like ■ is output. The operational amplifier OP2 inputs and amplifies only the AC output from the reference humidity sensor B side, and delays it for a predetermined time by the resistor RIG and capacitor C4. The delayed output has a signal waveform as shown in (2), and is made not to be the same as the signal waveform (2). By inputting such a signal waveform to the D-type flip-flop F, the phase difference is detected, and if the humidity of the humidity sensor A is above a%RH, the humidity is set to H level, and if it is below, it is set to H level. Outputs L level.

〈発明の効果〉 上述したように本発明によれば、均一な特性の2つの素
子を含み、相対湿度に対応する正確な容量変化を検出し
、また温度変化等による出力特性の変化を除去する有益
な湿度センサーが提供できる0
<Effects of the Invention> As described above, according to the present invention, the device includes two elements with uniform characteristics, accurately detects capacitance changes corresponding to relative humidity, and eliminates changes in output characteristics due to temperature changes, etc. A useful humidity sensor can provide 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すパッケージ構造図、第
2図は検出方式例を示す回路図、第3図は第2図の出力
特性図、第4図は他の検出方式例を示す回路図、第5図
は第4図の動作を説明するタイミングチャート、第6図
はセンサーの基本特性図、第7図はセンサーの基本構造
図である。 A・・・感湿センサー、B・・・基準湿度センサー。 TrA、Trll”FET 、 OP 、 OP 1 
、 OP 2 ・・・オペアンプ。 代理人 弁理士 福 士 愛 彦(他2名)第゛・1図 第2IIl 第4図 ■
Fig. 1 is a package structure diagram showing one embodiment of the present invention, Fig. 2 is a circuit diagram showing an example of a detection method, Fig. 3 is an output characteristic diagram of Fig. 2, and Fig. 4 is an example of another detection method. 5 is a timing chart explaining the operation of FIG. 4, FIG. 6 is a basic characteristic diagram of the sensor, and FIG. 7 is a basic structural diagram of the sensor. A... Humidity sensor, B... Reference humidity sensor. TrA, Trll”FET, OP, OP1
, OP 2 ... operational amplifier. Agent Patent attorney Aihiko Fukushi (and 2 others) Figure 1 Figure 2 II Figure 4 ■

Claims (1)

【特許請求の範囲】[Claims] 1.特性の均一な2つの素子を含み、外囲気に流通可能
な感温センサー部と、一定湿度槽内で完全密封した基準
湿度センサー部とを並設し、前記両センサー部の差動出
力をとる手段を設けてなることを特徴とする湿度センサ
ー。
1. A temperature-sensitive sensor section that includes two elements with uniform characteristics and that can be circulated to the outside environment, and a reference humidity sensor section that is completely sealed in a constant humidity chamber are installed side by side, and differential outputs of the two sensor sections are obtained. A humidity sensor comprising a means.
JP7800785A 1985-04-11 1985-04-11 Humidity sensor Pending JPS61235745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7800785A JPS61235745A (en) 1985-04-11 1985-04-11 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7800785A JPS61235745A (en) 1985-04-11 1985-04-11 Humidity sensor

Publications (1)

Publication Number Publication Date
JPS61235745A true JPS61235745A (en) 1986-10-21

Family

ID=13649727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7800785A Pending JPS61235745A (en) 1985-04-11 1985-04-11 Humidity sensor

Country Status (1)

Country Link
JP (1) JPS61235745A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831325A (en) * 1987-04-01 1989-05-16 General Signal Corporation Capacitance measuring circuit
WO2000028311A1 (en) * 1998-11-06 2000-05-18 E+E Elektronik Ges.Mbh System for measuring humidity
JP2007248065A (en) * 2006-03-13 2007-09-27 Denso Corp Capacity type humidity sensor
WO2019103116A1 (en) * 2017-11-27 2019-05-31 アルプスアルパイン株式会社 Humidity detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831325A (en) * 1987-04-01 1989-05-16 General Signal Corporation Capacitance measuring circuit
WO2000028311A1 (en) * 1998-11-06 2000-05-18 E+E Elektronik Ges.Mbh System for measuring humidity
US6483324B1 (en) 1998-11-06 2002-11-19 E & E Elektronik Ges. M.B.H. System for measuring humidity
JP2007248065A (en) * 2006-03-13 2007-09-27 Denso Corp Capacity type humidity sensor
WO2019103116A1 (en) * 2017-11-27 2019-05-31 アルプスアルパイン株式会社 Humidity detection device

Similar Documents

Publication Publication Date Title
Bergveld The operation of an ISFET as an electronic device
EP0285070B1 (en) Capacitance measuring circuit
US4423371A (en) Methods and apparatus for microdielectrometry
US7456731B2 (en) Capacitive-type physical quantity sensor
KR930011421B1 (en) Circuit and process for measuring a valve affecting the capacitance-voltage characteristic of a capacitive component
Boltshauser et al. High sensitivity CMOS humidity sensors with on-chip absolute capacitance measurement system
JPH0159525B2 (en)
JPS6215816B2 (en)
JPS61235745A (en) Humidity sensor
US4885528A (en) Apparatus which uses a simulated inductor in the measurement of an electrical parameter of a device under test
US5602467A (en) Circuit for measuring ion concentrations in solutions
Vellekoop et al. Evaluation of liquid properties using a silicon Lamb wave sensor
US4901197A (en) Sensor for capacitively measuring pressure in a gas
US4267504A (en) Device for measuring a quantity which influences a field-effect transistor
Schasfoort et al. Influence of an immunological precipitate on DC and AC behaviour of an ISFET
US3861800A (en) Particle counter independent of flow rate
US3852666A (en) Method and apparatus for compensation of the temperature-dependency of the conductivity of a fluid with suspended particles
US3944859A (en) Bridge-balance detection circuit
Junning et al. Development of a novel micro-FIA-ISFET integrated sensor
Westcott et al. Humidity sensitive MIS structure
SU748219A1 (en) Gas analyser
JP2578679Y2 (en) Moisture meter standard sample
RU2024885C1 (en) Device for measuring conductance
KR100441663B1 (en) Micro pH sensor with temperature sensor for measuring pH with the micro pH sensor
JPH04181150A (en) Lipid film type odor sensor