JPS61235524A - Material for electrode for electric spark machining - Google Patents

Material for electrode for electric spark machining

Info

Publication number
JPS61235524A
JPS61235524A JP7352685A JP7352685A JPS61235524A JP S61235524 A JPS61235524 A JP S61235524A JP 7352685 A JP7352685 A JP 7352685A JP 7352685 A JP7352685 A JP 7352685A JP S61235524 A JPS61235524 A JP S61235524A
Authority
JP
Japan
Prior art keywords
copper
electrode
discharge machining
electrode material
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7352685A
Other languages
Japanese (ja)
Inventor
Takero Ishiguro
石黒 武朗
Takeo Murata
村田 威雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP7352685A priority Critical patent/JPS61235524A/en
Publication of JPS61235524A publication Critical patent/JPS61235524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled lightweight material consisting of Cu, O and N, Ti, Sb or Zn and having a high rate of electric spark machining and superior mechanical strength. CONSTITUTION:This material for an electrode for electric spark machining consists of Cu, O and at least one among N, Ti, Sb and Zn and has superior characteristics such as a high rate of electric spark machining. The material has a structure contg. Cu2O and/or CuO and at least one among TiN, TiO2, Sb2O3 and AnO in a Cu-O solid soln. as the matrix. The amount of at least one among TiN, TiO2, Sb2O3 and ZnO in the Cu-O solid soln. is required to be 0.01-20wt.%. The total amount of O in the Cu-O solid soln. and O present as Cu2O and/or CuO is 0.01-0.15%, preferably about 0.05-0.15%. The material can be manufactured by powder metallurgical processing, dispersion plating, melting or other method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は放電加工用電極材料に関し、詳しくは銅と酸素
と窒素、チタン、アンチモン、亜鉛から選ばれる少なく
とも1種よりなり、放電加工速度を大幅に向上せしめた
放電加工用電極材料に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an electrode material for electric discharge machining, and more specifically, it is made of copper, oxygen, at least one selected from nitrogen, titanium, antimony, and zinc, and is made of an electrode material for electric discharge machining that increases the speed of electric discharge machining. This article relates to significantly improved electrode materials for electrical discharge machining.

(従来の技術) 放電加工は加工液中で加工間隙を隔てて、加工用電極、
被加工材を配置しその間隙で火花放電を行わせて金型等
の加工を行なう方法である。この放電加工方法には大別
して二つの方法があり、その一つは特定形状の電極を用
いて、その形状を投影加工する型彫放電加工法であり、
他の方法はワイヤ電極を巻取りながら、糸鋸式に2次元
輪郭を加工するワイヤ放電加工法である。
(Conventional technology) In electrical discharge machining, a machining electrode,
This is a method of machining molds, etc. by arranging workpieces and causing spark discharge in the gaps between them. There are two main types of electrical discharge machining methods, one of which is the die-sinking electrical discharge machining method, which uses an electrode with a specific shape and projects the shape.
Another method is a wire electrical discharge machining method in which a two-dimensional contour is machined using a scroll saw while winding a wire electrode.

(発明が解決しようとする問題点) この型彫放電加工法やワイヤtli電加工法に用いられ
る特定形状電極またはワイヤ電極は放電加工特性、価格
、切削性、被加工物材の種類により適宜選択される。現
在使用されている電極材料としては、銅、グラフフィト
、タングステン、銅−タングステン、銀−タングステン
、黄銅および鋼等が挙げられ、鋼、アルミニウム、亜鉛
、黄銅等の被加工物材を放電加工する。これらの電極材
料は、切削性、電極消耗度、価格等の点でそれぞれ問題
があり、例えば一般的に用いられる銅は切削性が悪く、
また被加工物材が超硬合金の場合は電極消耗比率が30
〜100%にも及ぶ。また、銅−タングステン、銀−タ
ングステンは電極消耗度は低いものの極めて高価である
という問題がある。
(Problems to be Solved by the Invention) The specific shaped electrode or wire electrode used in this die-sinking electrical discharge machining method or wire tli electrical machining method is appropriately selected depending on the electrical discharge machining characteristics, price, machinability, and type of workpiece. be done. Currently used electrode materials include copper, graphite, tungsten, copper-tungsten, silver-tungsten, brass, and steel, and are used for electric discharge machining of workpieces such as steel, aluminum, zinc, and brass. . Each of these electrode materials has its own problems in terms of machinability, electrode wear rate, price, etc. For example, copper, which is commonly used, has poor machinability;
In addition, if the workpiece material is cemented carbide, the electrode wear rate is 30
Up to 100%. Further, although copper-tungsten and silver-tungsten have low electrode consumption, they are extremely expensive.

さらに、放電加工の問題点としては、機械加工の場合と
比較して加工速度が橘めて遅いことが挙げられ、このこ
とは生産性を著しく阻害する。このことから放電加工の
加工速度を向上すべく、種々の試みがなされている。例
えば、被加工物の予価加工、加工粉の排除、電気条件の
調整、加工液の比抵抗および圧力の調整等が挙げられる
。また、電極材料を選択し加工速度を大きくする試みも
なされており、特開昭56−51543号公報、特開昭
56−44732号公報には、銅とバリウム等の酸化物
または炭酸塩およびマグネシウム等の還元用金属からな
る電極が開示されている。この電極は仕事関数の小ざい
バリウム等を利用したもので、加工速度は電極として鋼
を用いた場合の1.2倍となっている。
Furthermore, a problem with electrical discharge machining is that the machining speed is much slower than that with mechanical machining, which significantly impedes productivity. For this reason, various attempts have been made to improve the machining speed of electrical discharge machining. Examples include preliminary processing of the workpiece, removal of processing powder, adjustment of electrical conditions, and adjustment of specific resistance and pressure of processing fluid. In addition, attempts have been made to increase the processing speed by selecting electrode materials, and Japanese Patent Application Laid-Open No. 56-51543 and Japanese Patent Application Laid-Open No. 56-44732 disclose the use of oxides such as copper and barium or carbonates and magnesium. Electrodes made of reducing metals such as This electrode uses barium, etc., which has a small work function, and the processing speed is 1.2 times that when steel is used as the electrode.

また、伯の電極材料として、銅粉に酸化チタン、酸化ジ
ルコニウム等を添加し、N穫消耗度を小さくした特開昭
51−2097号公報に記載の電極材料や酸素と銅から
なる組成で、微細な酸化銅を均一に分散させた組織を有
し、切削性を向上させ、かつ電極自体の加工を容易にな
らしめた特開昭58−223527号公報に記載の電極
材料が提案されているが、いずれも加工速度を大幅に向
上させるものではなかった。
In addition, as an electrode material, titanium oxide, zirconium oxide, etc. are added to copper powder, and the electrode material described in JP-A-51-2097, which reduces the degree of N loss and consumption, and the composition consisting of oxygen and copper, An electrode material described in JP-A-58-223527 has been proposed that has a structure in which fine copper oxide is uniformly dispersed, improves machinability, and facilitates the processing of the electrode itself. However, none of these methods significantly improved the processing speed.

このように、電極材料の立場から放電加工の加工速度等
を効率よく向上する方法についてはまだ改良の余地が残
されている。
As described above, there is still room for improvement in how to efficiently improve the machining speed, etc. of electrical discharge machining from the viewpoint of electrode materials.

本発明は、かかる問題点を解決すべくなされたものであ
って、放電加工の速度を大きくし、かつ軽量で機械的強
度に優れた放電加工用電極材料を提供することを目的と
する。
The present invention was made to solve these problems, and an object of the present invention is to provide an electrode material for electrical discharge machining that increases the speed of electrical discharge machining, is lightweight, and has excellent mechanical strength.

〈問題点を解決するための手段および作用)本発明者等
は上記目的に沿って検討の結果、銅と酸素と窒素、チタ
ン、アンチモン、亜鉛から選ばれる少なくとも 1種よ
りなる放電加工用電極材料が加工速度が著しく向上する
ことを見出し本発明に到達した。
(Means and effects for solving the problems) As a result of studies in accordance with the above objectives, the present inventors have developed an electrode material for electric discharge machining consisting of at least one selected from copper, oxygen, nitrogen, titanium, antimony, and zinc. found that the processing speed was significantly improved and arrived at the present invention.

ザなわら本発明は、銅と酸素と窒素、チタン、アンチモ
ン、亜鉛から選ばれる少なくとも1種よりなることを特
徴とする放電加工用電極材料にある。
The present invention is directed to an electrode material for electric discharge machining characterized by being made of copper, oxygen, and at least one member selected from nitrogen, titanium, antimony, and zinc.

上記成分を有する本発明の放電加工用電極材料は、その
組織が銅−酸素固溶体であり、該銅−酸素固溶体の地質
中に酸化第一銅および/または酸化第二銅と窒化チタン
、酸化チタン、三酸化二アンチモン、酸化亜鉛の少なく
とも1種が存在する。
The electrode material for electrical discharge machining of the present invention having the above components has a structure of a copper-oxygen solid solution, and the copper-oxygen solid solution contains cuprous oxide and/or cupric oxide, titanium nitride, and titanium oxide. , diantimony trioxide, and zinc oxide.

本発明において、銅−酸素固溶体中の窒化チタン、酸化
チタン、三酸化二アンチモン、酸化亜鉛の少なくとも1
種の合計含有量は0.01〜20重量%であることが必
要である。
In the present invention, at least one of titanium nitride, titanium oxide, diantimony trioxide, and zinc oxide in a copper-oxygen solid solution
The total content of seeds should be between 0.01 and 20% by weight.

これらのセラミックス粉末の合計含有量が20jIg量
%を越えると、気孔率を5%以下にするのが困難となり
、機械的性質が劣化し実用的でなく、また0、01重量
%未満では添加の効果が認められない。
If the total content of these ceramic powders exceeds 20jIg%, it will be difficult to reduce the porosity to 5% or less, and the mechanical properties will deteriorate, making it impractical. No effect observed.

また、本発明における前記銅−酸素固溶体中に固溶して
いる酸素、ならびに酸化第一銅および/または酸化第二
銅として存在する酸素の合計含有量は0.01〜0.1
5重量%、好ましくは0.05〜0.15重量%であり
、合計含有量が0.15重量%を越えると機械的強度が
劣り実用的でなく、また0、01重量%未満では効果が
著しくない。
Further, the total content of oxygen dissolved in the copper-oxygen solid solution and oxygen present as cuprous oxide and/or cupric oxide in the present invention is 0.01 to 0.1
5% by weight, preferably 0.05 to 0.15% by weight; if the total content exceeds 0.15% by weight, the mechanical strength will be poor and it will not be practical, and if it is less than 0.01% by weight, it will not be effective. Not significantly.

本発明の電極材料の製造方法としては、粉末冶金法、分
散めっき法、溶解法等が採用される。粉末冶金法は、主
に型彫放電加工用の特定形状電極の製造に利用され、表
面酸化した銅粉末に窒化チタン等の粉末をコールドプレ
スおよび焼結またはホットプレスして成型される。分散
めっき法は、主にワイヤー放電加工用のワイヤー電極の
製造に利用され、銅、真鍮、鋼線(ピアノ線)、銅−錫
合金の表面に硫酸銅、シアン化銅、ビロリン酸銅などの
めつき液を用いて、酸化第一銅、酸化第二銅と窒化チタ
ン、酸化チタン等を分散めっきして製造するものである
As a method for manufacturing the electrode material of the present invention, a powder metallurgy method, a dispersion plating method, a melting method, etc. are employed. The powder metallurgy method is mainly used to manufacture specific-shaped electrodes for die-sinking electrical discharge machining, and is formed by cold-pressing, sintering, or hot-pressing powder such as titanium nitride on surface-oxidized copper powder. The dispersion plating method is mainly used to manufacture wire electrodes for wire electrical discharge machining, and coats copper sulfate, copper cyanide, copper birophosphate, etc. on the surface of copper, brass, steel wire (piano wire), and copper-tin alloy. It is manufactured by dispersion plating of cuprous oxide, cupric oxide, titanium nitride, titanium oxide, etc. using a plating solution.

以下、本発明を実施例に基づき具体的に説明する。Hereinafter, the present invention will be specifically explained based on Examples.

1〜10および 較 1 先ず、第1表の組成の電極材料を粉末冶金法で調製した
。表面酸化した粒径50μmの銅粉と粒径1.5μmの
窒化チタン粉末等のセラミックス粉末とを窒素雰囲気中
で機械的に混合し、冷間で圧縮成形した後、100℃で
焼結したものを機械加工し、第1表に示す組成の型彫放
電加工用の電極材料を得た。
1 to 10 and Comparison 1 First, electrode materials having the compositions shown in Table 1 were prepared by a powder metallurgy method. Surface-oxidized copper powder with a particle size of 50 μm and ceramic powder such as titanium nitride powder with a particle size of 1.5 μm are mechanically mixed in a nitrogen atmosphere, cold compression molded, and then sintered at 100°C. was machined to obtain an electrode material for die-sinking electrical discharge machining having the composition shown in Table 1.

このようにして得られた電極材料(実施例1〜10)と
比較例1の電極材料を電極として用いて型彫111電加
工を行い、その際の加工速度を第1表に示し、またその
加工速度を比較例1を 100とした指数で表示した。
Using the electrode materials thus obtained (Examples 1 to 10) and the electrode material of Comparative Example 1 as electrodes, die-sinking 111 electric machining was performed, and the machining speeds at that time are shown in Table 1. The processing speed was expressed as an index with Comparative Example 1 set as 100.

なお、第1表の加工速度は、放電面積6#II×561
11””30−110分間の加工をした被加工物材の重
量変化をミリグラム数で表示した。また、被加工物材と
しては33−41、放電加工機はマキノGPC−20P
を用い、油を加工液とし、加工電圧60V、加工電流2
.6〜2.9A1加工速度0.02h /akin、、
面程度10μlRmaxで行った。
In addition, the machining speed in Table 1 is the discharge area 6#II x 561
The weight change of the workpiece processed for 30-110 minutes was expressed in milligrams. In addition, the workpiece is 33-41, and the electric discharge machine is Makino GPC-20P.
using oil as the machining fluid, machining voltage 60V, machining current 2
.. 6~2.9A1 processing speed 0.02h/akin,,
The test was carried out at a volume of about 10 μlRmax.

第1表から明らかなように、銅と酸素と窒化チタン等の
セラミックス材料を含有する実施例1〜10の電極材料
は、比較例1の電極材料と比較して、加工速度が1.5
〜2.3倍程度の値を示す。
As is clear from Table 1, the electrode materials of Examples 1 to 10 containing copper, oxygen, and ceramic materials such as titanium nitride have a processing speed of 1.5% compared to the electrode material of Comparative Example 1.
It shows a value of ~2.3 times.

(発明の効果) 以上説明したごとく、銅と酸素と窒素、チタン、アンチ
モン、亜鉛から選ばれる少なくとも1種よりなる本発明
の放電加工用電極材料は、従来の電極材料である銅を用
いたものと比較して、加工速度が約1.5倍以上と著し
く大ぎくなり、作業能率の向上に寄与し、コストダウン
に役立つ。また、銅を電極材料としたものに比較して、
比重が小さく軽量で機械的強度が大きいことから、電極
の案内装置で、サーボ機構によって上下に移動する加工
ヘッドに与える影響が小さくなり、加工精度を高めるの
に役立つという利点も有する。従って、本発明の電極材
料は放電加工における特定形状電極またはワイヤ電極と
して好適に利用される。
(Effects of the Invention) As explained above, the electrode material for electric discharge machining of the present invention, which is made of copper, oxygen, and at least one selected from nitrogen, titanium, antimony, and zinc, is an electrode material for electric discharge machining that uses copper, which is a conventional electrode material. The machining speed is approximately 1.5 times or more, which is significantly higher than that of the conventional method, contributing to improved work efficiency and cost reduction. In addition, compared to those using copper as the electrode material,
Since it has a low specific gravity, is lightweight, and has high mechanical strength, it has the advantage that it has less influence on the processing head, which is moved up and down by the servo mechanism in the electrode guide device, and is useful for improving processing accuracy. Therefore, the electrode material of the present invention is suitably used as a specific shaped electrode or wire electrode in electrical discharge machining.

Claims (1)

【特許請求の範囲】 1、銅と酸素と窒素、チタン、アンチモン、亜鉛から選
ばれる少なくとも1種よりなることを特徴とする放電加
工用電極材料。 2、前記放電加工用電極材料の組織が銅−酸素固溶体で
あり、該銅−酸素固溶体の地質中に酸化第一銅および/
または酸化第二銅と窒化チタン、酸化チタン、三酸化二
アンチモン、酸化亜鉛の少なくとも1種が存在する前記
特許請求の範囲第1項記載の放電加工用電極材料。 3、前記銅−酸素固溶体中の窒化チタン、酸化チタン、
三酸化二アンチモン、酸化亜鉛の少なくとも1種の合計
含有量が0.01〜20重量%である前記特許請求の範
囲第2項記載の放電加工用電極材料。 4、前記銅−酸素固溶体中に固溶している酸素、ならび
に酸化第一銅および/または酸化第二銅として存在する
酸素の合計含有量が0.01〜0.15重量%である前
記特許請求の範囲第2項記載の放電加工用電極材料。
[Claims] 1. An electrode material for electrical discharge machining, characterized by comprising copper, oxygen, and at least one member selected from nitrogen, titanium, antimony, and zinc. 2. The structure of the electrode material for electric discharge machining is a copper-oxygen solid solution, and the copper-oxygen solid solution contains cuprous oxide and/or
The electrode material for electrical discharge machining according to claim 1, wherein cupric oxide and at least one of titanium nitride, titanium oxide, diantimony trioxide, and zinc oxide are present. 3. Titanium nitride and titanium oxide in the copper-oxygen solid solution,
The electrode material for electric discharge machining according to claim 2, wherein the total content of at least one of diantimony trioxide and zinc oxide is 0.01 to 20% by weight. 4. The above patent wherein the total content of oxygen dissolved in the copper-oxygen solid solution and oxygen present as cuprous oxide and/or cupric oxide is 0.01 to 0.15% by weight. An electrode material for electric discharge machining according to claim 2.
JP7352685A 1985-04-09 1985-04-09 Material for electrode for electric spark machining Pending JPS61235524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352685A JPS61235524A (en) 1985-04-09 1985-04-09 Material for electrode for electric spark machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352685A JPS61235524A (en) 1985-04-09 1985-04-09 Material for electrode for electric spark machining

Publications (1)

Publication Number Publication Date
JPS61235524A true JPS61235524A (en) 1986-10-20

Family

ID=13520767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352685A Pending JPS61235524A (en) 1985-04-09 1985-04-09 Material for electrode for electric spark machining

Country Status (1)

Country Link
JP (1) JPS61235524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658183A1 (en) * 1990-02-13 1991-08-16 Honda Motor Co Ltd COPPER MOLDED CERAMIC ARTICLE AND PROCESS FOR PRODUCING THE SAME
US5443615A (en) * 1991-02-08 1995-08-22 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658183A1 (en) * 1990-02-13 1991-08-16 Honda Motor Co Ltd COPPER MOLDED CERAMIC ARTICLE AND PROCESS FOR PRODUCING THE SAME
US5374391A (en) * 1990-02-13 1994-12-20 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles and production method thereof
US5590388A (en) * 1990-02-13 1996-12-31 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles and production method thereof
US5443615A (en) * 1991-02-08 1995-08-22 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles

Similar Documents

Publication Publication Date Title
CN101246758B (en) Sliding electric contact material for low current
CN101217226B (en) A weak current slide contact material
GB1571162A (en) Electrical contact material
JPS5924170B2 (en) Alloy for wire electrodes for electrical discharge machining
JPH0672276B2 (en) Method of manufacturing contact material for low voltage switchgear
JPS61235524A (en) Material for electrode for electric spark machining
JP2810162B2 (en) Sintered contact materials for power low-voltage switchgear
JPS6048578B2 (en) electrical contact materials
JPH0635632B2 (en) Electrode material for wire cut electrical discharge machining
JPS619541A (en) Sintered contact material for electric power low voltage open-close instrument
JP2004315841A (en) Metallic material
CN1019882C (en) Copper alloy for compound electric contact
JPS62158838A (en) Silver-oxide type contact point material
JPS63195242A (en) Electrode material for electric discharge machining
JPS634619B2 (en)
JPS61188025A (en) Electrode wire for electric discharge machining
JPS60159141A (en) Material for electrode for electric spark machining
JPS6120616B2 (en)
JPS6039738B2 (en) Electrode materials for electrical discharge machining
JPS6021302A (en) Production of electrical contact point material
JPS6342340A (en) Electric contact material and its production
JPH08127837A (en) Copper-tungsten alloy
JPH03281070A (en) Copper-based welding electrode material and electric contact material and manufacture thereof
JPS58161741A (en) Electrical contact material
JPS58161738A (en) Electrical contact material