JPS61234782A - Method of immobilizing enzyme and/or mold - Google Patents

Method of immobilizing enzyme and/or mold

Info

Publication number
JPS61234782A
JPS61234782A JP7773385A JP7773385A JPS61234782A JP S61234782 A JPS61234782 A JP S61234782A JP 7773385 A JP7773385 A JP 7773385A JP 7773385 A JP7773385 A JP 7773385A JP S61234782 A JPS61234782 A JP S61234782A
Authority
JP
Japan
Prior art keywords
aqueous solution
enzyme
enzymes
glucose
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7773385A
Other languages
Japanese (ja)
Other versions
JPH0583236B2 (en
Inventor
Nobumasa Tanaka
信正 田中
Kazuo Sasaoka
笹岡 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIDEN KAGAKU KK
Nippon Starch Chemical Co Ltd
Original Assignee
NICHIDEN KAGAKU KK
Nippon Starch Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIDEN KAGAKU KK, Nippon Starch Chemical Co Ltd filed Critical NICHIDEN KAGAKU KK
Priority to JP7773385A priority Critical patent/JPS61234782A/en
Publication of JPS61234782A publication Critical patent/JPS61234782A/en
Publication of JPH0583236B2 publication Critical patent/JPH0583236B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To keep all kinds of enzymes under a mild condition, by holding the enzymes in a gelatinized material obtained by treating an aqueous solution of a specific polysaccharide with a polyvalent metallic ion. CONSTITUTION:An aqueous solution containing a polyvalent metallic ion is sprayed upon or immersed in an aqueous solution of a polysaccharide having a molar ratio of glucose: mannuronic acid of 1:0.4-0.7:4-17 and 10<3>-10<5> molecular weight by 3, 5-dinitrosalicylic acid method, acetylated in about 0-1.0 acetylation degree to give a gel. An enzyne and/or mold in the gel acts efficiently.

Description

【発明の詳細な説明】 (産業上の利用分野) 酵素および/または菌体を利用して、有用な反応を行わ
しめ、医薬1食品その他の生産を目的とする酵素工業は
近年、ますますその重要性を増し、発展を遂げつつある
。本発明は、酵素および/または菌体の固定化方法に関
するものである。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, the enzyme industry, which uses enzymes and/or microbial cells to perform useful reactions and produce pharmaceuticals, foods, and other products, has become increasingly popular. It is gaining importance and developing. The present invention relates to a method for immobilizing enzymes and/or bacterial cells.

(従来の技術) 従来の酵素利用は一般に反応液中に酵素を溶解するため
、酵素の利用効率は極めて低かった。この欠点を解決す
るため近年、酵素および/または菌体を固定化する方法
が種々提案されている。このような従来の方法を概括的
に示しても次の通り各種のものがある。(イ)担体結合
法、これは水不溶性の担体に酵素を結合させる方法であ
る。(ロ)架橋法、これは官能基を2個有する試薬を作
用させて酵素分子同士を架橋することにより不溶化させ
る方法である。(ハ)包括法、これはポリアクリルアミ
ドゲルのようなゲル中の酵素を包み込むか酵素を微孔性
フィルムで被覆し、マイクロカプセル化する方法である
。(例えば、千畑一部「ライフサイエンスをになう増補
最近の微生物工業」 (昭57.6.1)(株)化学工
業社、P68〜P91) (発明が解決しようとする問題点) 上記の種々の固定化方法には、下記するような欠点を有
することが多く、現在のところ、すべての酵素の固定化
に適用できる理想的な方法はない。
(Prior Art) Conventional enzyme utilization generally involves dissolving the enzyme in the reaction solution, resulting in extremely low enzyme utilization efficiency. In order to solve this drawback, various methods for immobilizing enzymes and/or bacterial cells have been proposed in recent years. Broadly speaking, there are various types of conventional methods as follows. (a) Carrier binding method: This is a method in which an enzyme is bound to a water-insoluble carrier. (b) Crosslinking method: This is a method of insolubilizing enzyme molecules by crosslinking them with each other using a reagent having two functional groups. (c) Encapsulation method: This is a method in which the enzyme is encapsulated in a gel such as polyacrylamide gel, or the enzyme is coated with a microporous film to form microcapsules. (For example, Chibata, ``Recent microbial industry augmenting life science'' (June 1, 1982, Kagaku Kogyosha Co., Ltd., pp. 68-91) (Problems to be solved by the invention) The above Various immobilization methods often have drawbacks as described below, and at present there is no ideal method that can be applied to the immobilization of all enzymes.

即ち、(イ)担体結合法においては、吸着や、イオン結
合では、担体への酵素の結合力が弱く、酵素反応時に酵
素が担体から脱離する。共有結合では、反応条件の設定
が難しく、反応時に酵素タンパクの活性点の破壊が生じ
易い。(ロ)架橋法においては、先に述べた共有結合の
場合と同様に、反応条件の設定が難しく、反応時に酵素
タンパクの活性点の破壊が生じ易い。(ハ)包括法にお
いては、ゲルを形成するポリマーの選択が難しく、ポリ
マーの種類によっては、安定で適当な強度を有するゲル
が得られず、また、酵素が酵素反応時にゲルから流出し
たり、酵素反応に関与できない状態でゲル中に封じ込め
られたりする。また、マイクロカプセル化の技術が複雑
で、微孔性フィルムの材質や孔径によっては、酵素が酵
素反応時に微孔性フィルムから流出したり、酵素反応に
関与できない状態で微孔性フィルム中に封じ込められた
りする。
That is, in (a) carrier binding method, the binding force of the enzyme to the carrier is weak due to adsorption or ionic bonding, and the enzyme is detached from the carrier during the enzymatic reaction. With covalent bonds, it is difficult to set reaction conditions, and the active site of the enzyme protein is likely to be destroyed during the reaction. (b) In the crosslinking method, as in the case of the covalent bond described above, it is difficult to set the reaction conditions, and the active site of the enzyme protein is likely to be destroyed during the reaction. (c) In the inclusion method, it is difficult to select the polymer that forms the gel, and depending on the type of polymer, it may not be possible to obtain a stable gel with appropriate strength, and the enzyme may flow out of the gel during the enzymatic reaction. It is sometimes sealed in a gel so that it cannot participate in enzymatic reactions. In addition, the microencapsulation technology is complex, and depending on the material and pore size of the microporous film, the enzyme may flow out of the microporous film during the enzyme reaction, or it may be confined within the microporous film without being able to participate in the enzyme reaction. Sometimes it happens.

(問題点を解決するための手段) 本発明者らは、上記問題点を解決すべく種々研究の結果
、グルコース、マンノースおよびマンニュロン酸で構成
され、そのモル比がグルコース:マンノース:マンニュ
ロン酸=l : 0.4〜0.7=4〜17でアセチル
化度的O〜1.0 でアセチル化されており、3,5−
ジニトロサリチル酸法による分子量が103〜105で
ある多糖類(以下、本発明の多糖類と称す)の水溶液を
多価金属イオンと接触させることにより得られるゲル化
物中に。
(Means for Solving the Problems) As a result of various studies to solve the above problems, the present inventors found that glucose, mannose, and mannuronic acid are composed of glucose, mannose, and mannuronic acid, and the molar ratio of glucose:mannose:mannuronic acid=l : 0.4-0.7=4-17, acetylated with degree of acetylation O-1.0, 3,5-
In a gelled product obtained by contacting an aqueous solution of a polysaccharide (hereinafter referred to as the polysaccharide of the present invention) with a molecular weight of 103 to 105 by the dinitrosalicylic acid method with a polyvalent metal ion.

酵素を保持させたときは、ゲル化物中の酵素が効率よく
酵素反応に関与するだけでなく、ゲル化物中への酵素の
保持も温和な条件で容易且つ確実になしうろことを見い
出し、本発明を完成するに至った0本発明の多糖類は、
例えば、特公昭58−39441号公報に示されている
ように1次のような方法によって製造することができる
It has been discovered that when the enzyme is retained, the enzyme in the gelled product not only efficiently participates in the enzymatic reaction, but also that the enzyme can be easily and reliably retained in the gelled product under mild conditions, and the present invention has been made. The polysaccharide of the present invention that has been completed is
For example, it can be manufactured by the following method as disclosed in Japanese Patent Publication No. 58-39441.

アゾトバクタ−・ビネランジ−(Azotobacte
rvinelandii) I F 012018 (
財団法人醗酵研究所(大阪市淀用区)より入手)を一般
に使用されている炭素源(例えば、グルコース、澱粉分
解物、ショ糖等)のほか、無機塩類(リン酸1カリ。
Azotobacter vinelangii (Azotobacter vinelangii)
rvinelandii) I F 012018 (
In addition to commonly used carbon sources (e.g., glucose, starch decomposition products, sucrose, etc.), inorganic salts (monopotassium phosphate, etc.)

リン酸2カリ、塩化ナトリウム、硫酸カルシウム。Dipotassium phosphate, sodium chloride, calcium sulfate.

硫酸マグネシウム、酢酸ナトリウム等)微量金属(モリ
ブデン酸ナトリウム、硫酸第1鉄等)を水道水に加えて
なる培地に接種し、常法により好気的条件下で窒素また
は窒素を含むガスを通気しながら、培養することによっ
て多糖類を蓄積する培養終了後、培養液中の菌体等の固
形分は、使用目的に不都合な場合には、遠心分離、ろ過
等の操作により培養液より除去し、蓄積された多糖類は
、硫酸等を培養液に添加し、酸性とし、沈澱させ、メタ
ノール、エタノール、イソプロピルアルコール等の水溶
性溶媒中でカセイソーダ等で中和し、乾燥させる。
Magnesium sulfate, sodium acetate, etc.) Trace metals (sodium molybdate, ferrous sulfate, etc.) are inoculated into a medium made by adding tap water, and nitrogen or nitrogen-containing gas is aerated under aerobic conditions using a conventional method. However, after the completion of culturing, which accumulates polysaccharides, if solid content such as bacterial cells in the culture solution is inconvenient for the purpose of use, it can be removed from the culture solution by operations such as centrifugation or filtration. The accumulated polysaccharides are made acidic by adding sulfuric acid or the like to the culture solution, precipitated, neutralized with caustic soda or the like in a water-soluble solvent such as methanol, ethanol, or isopropyl alcohol, and dried.

本発明の多糖類を、適当な固形分濃度の水溶液とし1次
いでこの水溶液に多価金属イオンを含む水溶液を噴霧す
るか、多価金属イオンを含む水溶液中に本発明の多糖類
の水溶液を浸漬することによってゲル化物を生成できる
。上記ゲル化物に酵素および/または菌体を保持させる
には、次の方法により、行なえる。本発明の多糖類の水
溶液と酵素の水溶液および/または菌体の水中分散液を
混合した混合液に、多価金属イオンを含む水溶液を噴霧
するか、多価金属イオンを含む水溶液中に上記混合液を
浸漬することによって酵素および/または菌体を保持す
るゲル化物を形成できる。上記混合液を多価金属イオン
を含む水溶液中に滴下することによってビーズ状のゲル
化物を形成できる。また、フィルム状、繊維状等の任意
形態に本発明の多糖類の水溶液をロール成型、押し出し
成型し、その後、ゲル化することにより、各種形状のゲ
ル化物を形成できる1本発明に使用できる多価金属イオ
ンとしては、カルシウムイオン、マグネシウムイオン、
アルミニウムイオン、鉄イオン等が挙げられる。多価金
属イオンを含む水溶液は。
The polysaccharide of the present invention is made into an aqueous solution with an appropriate solid content concentration, and then an aqueous solution containing polyvalent metal ions is sprayed onto this aqueous solution, or an aqueous solution of the polysaccharide of the present invention is immersed in an aqueous solution containing polyvalent metal ions. By doing so, a gelled product can be produced. Enzymes and/or microbial cells can be retained in the gel by the following method. An aqueous solution containing polyvalent metal ions is sprayed onto a mixture of an aqueous solution of the polysaccharide of the present invention, an aqueous enzyme solution, and/or a dispersion of bacterial cells in water, or the above mixture is mixed into an aqueous solution containing polyvalent metal ions. By immersing in a liquid, a gel that retains enzymes and/or bacterial cells can be formed. Bead-shaped gelled products can be formed by dropping the above-mentioned mixed solution into an aqueous solution containing polyvalent metal ions. In addition, gelled products of various shapes can be formed by roll-molding or extrusion-molding the aqueous solution of the polysaccharide of the present invention into any form such as a film or fiber, and then gelling it. Valid metal ions include calcium ions, magnesium ions,
Examples include aluminum ions and iron ions. Aqueous solutions containing polyvalent metal ions.

水溶性の多価金属塩、例えば塩化カルシウム、塩化マグ
ネシウム、塩化アルミニウム、塩化鉄、酢酸マグネシウ
ム等または水酸化カルシウム等のアルカリを水に溶解さ
せ得られる。また形成されたゲル化物は適当量のグリタ
ルアルデヒドまたはタンニンを加えることによって更に
硬化させることができる。また上記混合液にパルプ、綿
などのセルロース質繊維を混合することによってゲル化
物の強度を向上させることもできる。
It can be obtained by dissolving a water-soluble polyvalent metal salt such as calcium chloride, magnesium chloride, aluminum chloride, iron chloride, magnesium acetate, etc. or an alkali such as calcium hydroxide in water. The formed gel can also be further hardened by adding an appropriate amount of glitaraldehyde or tannin. Furthermore, the strength of the gelled product can be improved by mixing cellulose fibers such as pulp and cotton into the above-mentioned liquid mixture.

上記混合液中の本発明の多糖類の濃度は1〜20%が適
当であり、この濃度より低いとゲル化物の強度が弱くな
り、この濃度よりも高いと粘度が高くなり、取扱いが難
しくなる。
The appropriate concentration of the polysaccharide of the present invention in the above mixed solution is 1 to 20%; if the concentration is lower than this, the strength of the gelled product will be weak, and if the concentration is higher than this, the viscosity will be high, making it difficult to handle. .

多価金属イオンの水溶液の濃度は0.05M〜10Mが
適当であり、この濃度が低すぎると、ゲル化速度が小さ
くなりすぎ、この濃度よりも高いとゲル化が局所的に起
こる。
The appropriate concentration of the aqueous solution of polyvalent metal ions is 0.05M to 10M; if this concentration is too low, the gelation rate will be too low, and if the concentration is higher than this, gelation will occur locally.

本発明により種々の酵素および/または菌体を固定化す
ることができるが、本発明を適用するに好適な酵素の例
としては、つ°レアーゼ、アルコール脱水素酵素、乳酸
脱水素酵素、リンゴ酸脱水素酵素、チアーゼ酵母、グル
コースオキシダーゼ、グルコースオキシダーゼカタラー
ゼ、O−アミノ酸オキシダーゼ、ウレアーゼ、シアミソ
オキシダーゼ、カタラーゼ、D−アミノ酸オキシダーゼ
Various enzymes and/or microbial cells can be immobilized according to the present invention, and examples of suitable enzymes to which the present invention is applied include lactase, alcohol dehydrogenase, lactate dehydrogenase, malate Dehydrogenase, thiase yeast, glucose oxidase, glucose oxidase catalase, O-amino acid oxidase, urease, cyamiso oxidase, catalase, D-amino acid oxidase.

リポキシゲナーゼ、ウリカーゼ、リボヌクレアーゼ、ヘ
キソキナーゼ、リパーゼ、アルカリ性ホスファターゼ、
酸性ホスファターゼ、ヌクレオエダーゼ、デオキシリボ
ヌクレアーゼ、αアミラーゼ、βアミラーゼ、グルコア
ミラーゼ、グルコースイソメラーゼ、セルラーゼ、ヘミ
セルラーゼ、β−グルコシダーゼ、インベルターゼ、ア
ントミアナーゼ、ナリンジナーゼ、ヘキソキナーゼ、β
−グルクロニターゼ、ヒアルロニダーゼ、アルカリ性プ
ロテアーゼ、セミアルカリプロテアーゼ、酸性プロテア
ーゼ、サーモライシン、コラゲナーゼ、ペプシン−ペプ
シノーゲン、アミノペプチダーゼ、レニン、トリプシン
、トリプシン−トリプシノーゲン、キモトリプシノーゲ
ン、エラスターゼ、エンテロキナーゼ、アシラーゼ、ア
ルギナーゼ、L−グルタミン酸脱炭酸酵素、L−リジン
説炭酸酵素、パパイン、また本発明に用いられる好適な
菌体の例として上記各酵素の菌体、アエロバタターアエ
ロゲネス、バチルスズブチリス、エツジエリチアコリ、
ストレプトマイセス・フェオクロモゲネスなどの細菌菌
体等を挙げることができる。
Lipoxygenase, uricase, ribonuclease, hexokinase, lipase, alkaline phosphatase,
Acid phosphatase, nucleoedase, deoxyribonuclease, α-amylase, β-amylase, glucoamylase, glucose isomerase, cellulase, hemicellulase, β-glucosidase, invertase, anthomyanase, naringinase, hexokinase, β
- Glucuronidase, hyaluronidase, alkaline protease, semi-alkaline protease, acidic protease, thermolysin, collagenase, pepsin-pepsinogen, aminopeptidase, renin, trypsin, trypsin-trypsinogen, chymotrypsinogen, elastase, enterokinase, acylase, arginase, L-glutamic acid depletion. Examples of suitable bacterial cells used in the present invention include carbonic acid enzyme, L-lysine carbonic acid enzyme, papain, and bacterial cells of each of the enzymes mentioned above, Aerobata aerogenes, Bacillus subtilis, Aegeritis coli,
Examples include bacterial cells such as Streptomyces phaeochromogenes.

(作用) 本発明は以上のように構成されているので固定化の方法
が簡単で、かつあらゆる種類の酵素および/または菌体
の固定化に適用できる。固定化の反応がおだやかな条件
のため、酵素タンパクの活性点の破壊が生じず、かつ酵
素および/または菌体が酵素反応時に流出せず、固定化
の効率が高い。
(Function) Since the present invention is constructed as described above, the immobilization method is simple and can be applied to the immobilization of all kinds of enzymes and/or bacterial cells. Since the immobilization reaction is carried out under mild conditions, the active site of the enzyme protein is not destroyed, and the enzyme and/or bacterial cells do not flow out during the enzyme reaction, resulting in high immobilization efficiency.

ゲル化物の形状をビーズ状、フィルム状、繊維状等に容
易に形成できる。
The shape of the gelled product can be easily formed into beads, films, fibers, etc.

(実施例) 実施例1 0.067Nリン酸ナトリウム緩衝液(PH7゜2) 
20a+Qkこウレアーゼ(ファルマシア・ジャパン株
式会社製、ナタ豆製)400mgを溶解した液と本発明
の多糖類(グルコース:マンノース:マンニュロン酸=
1 : 0.5 :14、アセチル化度0゜8分子量3
X105)5%の水溶液40wQを混合する。この混合
液を0.1M塩化カルシウム水溶液に滴下し、ビーズ状
のゲルを得る。このゲル化物を0.1M塩化カルシウム
水溶液で洗浄し、ウレアーゼを包含固定化したゲル化物
50g(湿重量)が得られる。上記ゲル3gを3%尿素
を含む0.05M塩化カルシウム水溶液100raQに
入れ、スターシーで撹拌しながら20℃15分間保持し
たのち、その酵素活性を試験し、ウレアーゼ標品と比較
した。添加酵素の53%に相当する活性を有しており、
活性維持力の極めて高いことが認められた。
(Example) Example 1 0.067N sodium phosphate buffer (PH7°2)
A solution containing 400 mg of 20a+Qk urease (manufactured by Pharmacia Japan Co., Ltd., Natamame) and the polysaccharide of the present invention (glucose: mannose: mannuronic acid =
1:0.5:14, degree of acetylation 0°8 molecular weight 3
X105) Mix 40 wQ of 5% aqueous solution. This mixed solution is dropped into a 0.1M calcium chloride aqueous solution to obtain a bead-shaped gel. This gelled product is washed with a 0.1M calcium chloride aqueous solution to obtain 50 g (wet weight) of a gelled product containing and immobilizing urease. 3 g of the above gel was placed in 100 raQ of a 0.05 M calcium chloride aqueous solution containing 3% urea and held at 20° C. for 15 minutes while stirring with Starcy, and then its enzyme activity was tested and compared with a urease standard. It has an activity equivalent to 53% of the added enzyme,
It was recognized that the ability to maintain activity was extremely high.

実施例2 生理食塩水20m12  にグルコースイソメラーゼを
含有するストレプトマイセス・フェオクロモゲネス(S
traptomyces Phaeochromoge
nes)微工研菌寄第221号の菌体Log (乾燥重
量)を懸濁した液と本発明の多糖類(グルコース:マン
ノース:マンニュロン酸=1 : 0.3 :12 ア
セチル化度0.2、分子量5X105)15%水溶液2
0m12の混合液を底面が水平の成型器に厚さ3Iにな
るように流し込み、その後、これに2M塩化力ルシラム
水溶液を噴霧してゲル化させ2時間静置した後3III
11角に切り菌体を包含したゲル化物を得る。
Example 2 Streptomyces phaeochromogenes (S) containing glucose isomerase in 20 ml of physiological saline
traptomyces Phaeochromoge
nes) A suspension of bacterial cells Log (dry weight) of Microtechnical Research Institute No. 221 and the polysaccharide of the present invention (glucose: mannose: mannuronic acid = 1: 0.3: 12 degree of acetylation 0.2) , molecular weight 5X105) 15% aqueous solution 2
Pour 0m12 of the mixed solution into a molding machine with a horizontal bottom to a thickness of 3I, then spray 2M luciram chloride aqueous solution thereon to gel it, leave it to stand for 2 hours, and then mold it to a thickness of 3I.
Cut into 11 corners to obtain a gel containing the bacterial cells.

このゲル化物を0.1M塩化カルシウム水溶液で洗浄し
、ゲル化物35gを得た。上記ゲル化物3gを、10%
グルコース水溶液(PH7,5)100mQ に入れ、
スターターで撹拌しながら、60℃で60分間保持した
のちその酵素活性を試験し、菌体と比較した。添加菌体
の55%に相当する活性を有していた。
This gelled product was washed with a 0.1M calcium chloride aqueous solution to obtain 35 g of gelled product. 3g of the above gelled product, 10%
Place in 100 mQ of glucose aqueous solution (PH7.5),
After holding the mixture at 60°C for 60 minutes while stirring with a starter, its enzyme activity was tested and compared with that of the bacterial cells. It had an activity equivalent to 55% of the added bacterial cells.

(発明の効果) 本発明は以上のように構成されているので、簡単に酵素
および/または菌体を固定化できる。またあらゆる種類
の酵素および/または菌体の固定化に適用でき、固定化
される酵素および/または菌体の活性維持が非常に高い
。このため、酵素反応と酵素の分離操作を容易にし、酵
素反応の連続化を可能にでき、酵素の利用効率を高め、
酵素反応の経済コストを非常に低くすることができる。
(Effects of the Invention) Since the present invention is configured as described above, enzymes and/or bacterial cells can be easily immobilized. Furthermore, it can be applied to the immobilization of all kinds of enzymes and/or microbial cells, and the activity of the immobilized enzymes and/or microbial cells is extremely maintained. Therefore, the enzymatic reaction and the separation operation of the enzyme are facilitated, the continuous enzymatic reaction is possible, the efficiency of enzyme utilization is increased, and
The economic cost of enzymatic reactions can be made very low.

Claims (1)

【特許請求の範囲】[Claims] グルコース、マンノースおよびマンニュロン酸で構成さ
れ、そのモル比がグルコース:マンノース:マンニュロ
ン酸=1:0.4〜0.7:4〜17でアセチル化度約
0〜1.0でアセチル化されており、3,5−ジニトロ
サリチル酸法による分子量が10^3〜10^5の多糖
類の水溶液と酵素の水溶液および/または菌体の水中分
散液を混合した混合液を、多価金属イオンを含む水溶液
と接触させゲル化させることを特徴とする酵素および/
または菌体の固定化方法。
It is composed of glucose, mannose and mannuronic acid, and is acetylated with a molar ratio of glucose: mannose: mannuronic acid = 1:0.4-0.7:4-17 and a degree of acetylation of about 0-1.0. , 3,5-dinitrosalicylic acid method A mixture of an aqueous solution of a polysaccharide with a molecular weight of 10^3 to 10^5 and an aqueous enzyme solution and/or an aqueous dispersion of bacterial cells is converted into an aqueous solution containing polyvalent metal ions. Enzymes and/or enzymes characterized by causing gelation by contacting with
Or a method of immobilizing bacterial cells.
JP7773385A 1985-04-12 1985-04-12 Method of immobilizing enzyme and/or mold Granted JPS61234782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7773385A JPS61234782A (en) 1985-04-12 1985-04-12 Method of immobilizing enzyme and/or mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7773385A JPS61234782A (en) 1985-04-12 1985-04-12 Method of immobilizing enzyme and/or mold

Publications (2)

Publication Number Publication Date
JPS61234782A true JPS61234782A (en) 1986-10-20
JPH0583236B2 JPH0583236B2 (en) 1993-11-25

Family

ID=13642104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7773385A Granted JPS61234782A (en) 1985-04-12 1985-04-12 Method of immobilizing enzyme and/or mold

Country Status (1)

Country Link
JP (1) JPS61234782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227952A (en) * 1988-07-16 1990-01-30 Nichiden Kagaku Kk Production of gelatinous food
JPH0260998A (en) * 1988-08-26 1990-03-01 Nichiden Kagaku Kk Gel base for aromatic agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227952A (en) * 1988-07-16 1990-01-30 Nichiden Kagaku Kk Production of gelatinous food
JPH0260998A (en) * 1988-08-26 1990-03-01 Nichiden Kagaku Kk Gel base for aromatic agent

Also Published As

Publication number Publication date
JPH0583236B2 (en) 1993-11-25

Similar Documents

Publication Publication Date Title
US3666627A (en) Method of stabilizing enzymes
Prakash et al. Immobilization of a thermostable-amylase on agarose and agar matrices and its application in starch stain removal
JPH01503677A (en) Immobilization method
DE2728622A1 (en) IMMOBILIZED CATALYTICALLY ACTIVE SUBSTANCE AND METHOD FOR MANUFACTURING THE SAME
Mori et al. Enzymatic properties of microcapsules containing asparaginase
US4013514A (en) Preparing a reactor containing enzymes attached to dialdehyde cellulose
CA1289091C (en) Method for immobilization of enzyme and immobilized enzymes
US4258133A (en) Enzyme-support complexes
JP2683524B2 (en) Immobilization carrier
US4601981A (en) Enzymatically active protein-enzyme complex membranes
JPS61234782A (en) Method of immobilizing enzyme and/or mold
US4764467A (en) Preparation of an insoluble biocatalyst
Roy et al. Immobilization of β-glucosidase from Myceliophthora thermophila D-14
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
JPH0257919B2 (en)
Woodward et al. Properties of native and immobilised preparations of β‐D‐glucosidase from Aspergillus niger
JPH0517835B2 (en)
JPS6258708B2 (en)
JPS59109173A (en) Preparation of immobilized biocatalyst
JPS6239998B2 (en)
JPS63160586A (en) Production of immobilized enzyme
JPS596638B2 (en) immobilized enzyme
JPS63160585A (en) Production of immobilized enzyme
JPS59109174A (en) Preparation of immobilized biocatalyst
JPS6087787A (en) Production of immobilized enzyme