JPS61234508A - Soft magnetic thin film - Google Patents

Soft magnetic thin film

Info

Publication number
JPS61234508A
JPS61234508A JP7733785A JP7733785A JPS61234508A JP S61234508 A JPS61234508 A JP S61234508A JP 7733785 A JP7733785 A JP 7733785A JP 7733785 A JP7733785 A JP 7733785A JP S61234508 A JPS61234508 A JP S61234508A
Authority
JP
Japan
Prior art keywords
thin film
composition
soft magnetic
alloy
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7733785A
Other languages
Japanese (ja)
Other versions
JPH0789523B2 (en
Inventor
Kazuhiko Hayashi
和彦 林
Masatoshi Hayakawa
正俊 早川
Yoshitaka Ochiai
落合 祥隆
Hideki Matsuda
秀樹 松田
Osamu Ishikawa
理 石川
Hiroshi Iwasaki
洋 岩崎
Koichi Aso
阿蘇 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60077337A priority Critical patent/JPH0789523B2/en
Publication of JPS61234508A publication Critical patent/JPS61234508A/en
Publication of JPH0789523B2 publication Critical patent/JPH0789523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the thin film whose composition is expressed by FeaAlbGec and which has the soft magnetic characteristic of the same degree as Sendust alloy and the remarkably high saturated magnetic flux density by specifying a range of the above composition. CONSTITUTION:The composition is expressed by FeaAlbGec (wherein a.b. and c show the composition rate by atm%) and a range of this composition is range of formula. For example, Fe, Al and Ge are weighed so as to meet the predetermined composition rate and these are fused and cast by use of a high-frequency induction heating furnace. After that, by mechanical process, these are made into the alloy target for sputtering of 4 inches diameter and 4mm thickness. Sputtering is done by using this alloy target and a high-frequency magnetron sputtering device so that a thin film on a crystallized glass substrate is obtained. Furthermore, this thin film is annealed to be cooled gradually and a soft magnetic thin film is obtained. This can meet the enhancement of the coersive force of a magnetic recording medium sufficiently and it becomes possible to contrive the high quality and high recording density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕  ゛ 本発明は、良好な軟磁気特性を示し磁気ヘッド材料等に
好適な軟磁性薄膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a soft magnetic thin film that exhibits good soft magnetic properties and is suitable for magnetic head materials and the like.

〔発明の概要〕[Summary of the invention]

本発明は、Fe、Aj!、Geを主成分とする新規な組
成を有する軟磁性薄膜を提供し、特に飽和磁束密度Bs
が極めて大きな軟磁性薄膜を提供するものである。
The present invention provides Fe, Aj! , provides a soft magnetic thin film having a novel composition mainly composed of Ge, and particularly has a saturation magnetic flux density Bs
This provides an extremely large soft magnetic thin film.

〔従来の技術〕[Conventional technology]

例えばオーディオテープレコーダやVTR(ビデオテー
プレコーダ)等の磁気記録再生装置においては、記録信
号の高密度化や高品質化等が進められており、この高記
録密度化に対応して、磁気記録媒体として磁性粉にFe
、Co、Ni等の金属あるいは合金からなる粉末を用い
た、いわゆるメタルテープや、強磁性金属材料を真空薄
膜形成技術によりベースフィルム上に直接被着した、い
わゆる蒸着テープ等が開発され、各分野で実用化されて
いる。
For example, in magnetic recording and reproducing devices such as audio tape recorders and VTRs (video tape recorders), the density and quality of recording signals are increasing, and in response to this increase in recording density, magnetic recording media Fe in magnetic powder as
, so-called metal tapes using powders made of metals or alloys such as Co, Ni, etc., and so-called vapor deposition tapes in which ferromagnetic metal materials are directly deposited on a base film using vacuum thin film forming technology, have been developed, and are now widely used in various fields. It has been put into practical use.

ところで、このような高保磁力を有する磁気記録媒体の
特性を発揮せしめるためには、磁気ヘッドのコア材料の
特性として、高い飽和磁束密度を有するとともに、同一
の磁気ヘッドで再生を行なおうとする場合においては、
高透磁率を併せて有することが要求される。例えば、従
来磁気ヘッドのコア材料として多用されているフェライ
ト材では飽和磁束密度が低く、また、パーマロイでは耐
摩耗性に問題がある。
By the way, in order to make use of the characteristics of a magnetic recording medium having such a high coercive force, the core material of the magnetic head must have a high saturation magnetic flux density, and when performing reproduction with the same magnetic head. In,
It is also required to have high magnetic permeability. For example, ferrite materials, which are commonly used as core materials for conventional magnetic heads, have a low saturation magnetic flux density, and permalloy has problems with wear resistance.

従来、かかる諸要求を満たすコア材料として、Fe−A
l−3i系合金からなるセンダスト合金が好適であると
考えられ、すでに実用に供されていることは周知の通り
である。
Conventionally, Fe-A has been used as a core material that satisfies these requirements.
It is well known that Sendust alloys made of l-3i alloys are considered suitable and have already been put to practical use.

しかしながら、このセンダスト合金のように軟磁気特性
に優れた材料においては、磁歪λSと結晶磁気異方性K
が共に零付近であることが望ましく、磁気ヘッドに使用
可能な材料組成はこれら両者の値を考慮して決められる
。したがって、飽和磁束密度もこの組成に対応して一義
的に決まり、センダスト合金の場合、10〜llkガウ
スが限界である。
However, in materials with excellent soft magnetic properties such as this Sendust alloy, magnetostriction λS and magnetocrystalline anisotropy K
It is desirable that both of these values be around zero, and the material composition that can be used in the magnetic head is determined by taking these two values into consideration. Therefore, the saturation magnetic flux density is also uniquely determined according to this composition, and in the case of Sendust alloy, the limit is 10 to 11 gauss.

あるいは、上記センダスト合金にかわり、高周波数領域
での透磁率の低下が少なく高い飽和磁束密度を有する非
晶質磁性合金材料(いわゆるアモルファス磁性合金材料
)も開発されているが、この非晶質磁性合金材料でも飽
和磁束密度は12にガウス程度であり、また、熱的に不
安定で結晶化の可能性が大きいので500℃以上の温度
を長時間加えることはできず、例えばガラス融着のよう
に各種熱処理が必要な磁気ヘッドに使用するには工程上
制限が生ずる。
Alternatively, instead of the Sendust alloy mentioned above, an amorphous magnetic alloy material (so-called amorphous magnetic alloy material) has been developed that has a high saturation magnetic flux density with little decrease in magnetic permeability in the high frequency range. Even alloy materials have a saturation magnetic flux density of about 12 Gauss, and are thermally unstable and have a high possibility of crystallization, so it is not possible to apply temperatures over 500°C for long periods of time, such as in glass fusing. There are process limitations when using it for magnetic heads that require various heat treatments.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような状況から、高品質化、高記録密度化を図るた
めの磁気記録媒体の高保磁力化の試みも、従来のコア材
料を用いる限りにおいて、飽和磁束密度の限界から自ず
と制約を受けているのが現状である。
Under these circumstances, attempts to increase the coercive force of magnetic recording media in order to achieve higher quality and higher recording density are naturally constrained by the limit of saturation magnetic flux density as long as conventional core materials are used. is the current situation.

そこで本発明は、上述の従来の実情に鑑みて提案された
ものであって、センダスト合金と同程度の軟磁気特性(
透磁率や抗磁力等)を有し、飛躍的に高い飽和磁束密度
を有する軟磁性薄膜を提供することを目的とする。
Therefore, the present invention was proposed in view of the above-mentioned conventional situation, and has soft magnetic properties comparable to those of Sendust alloy (
The purpose of the present invention is to provide a soft magnetic thin film that has a significantly high saturation magnetic flux density (magnetic permeability, coercive force, etc.) and a dramatically high saturation magnetic flux density.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、かかる目的を達成せんものと長期に亘り
鋭意研究の結果、l”e、A1.G(3を主成分とする
新規組成物がセンダスト合金をはるかに凌ぐ飽和磁束密
度を示すことを見出し本発明を完成するに至ったもので
あって、F e mA l bG e c(ただしa、
b、cはそれぞれ組成比を原子%として表す。)なる組
成式で示され、その組成範囲が 68≦a≦84 1≦b≦31 1≦c≦31 a+b+c=100 であることを特徴とするものである。
As a result of long-term intensive research to achieve this objective, the present inventors have discovered that a new composition containing l"e, A1. The present invention was completed by discovering that F e mA l bG e c (however, a,
b and c each represent the composition ratio as atomic %. ), and its composition range is 68≦a≦84 1≦b≦31 1≦c≦31 a+b+c=100.

さらに、上記組成のうち、Alの一部をGaで置換して
もよく、あるいはGeの一部をStで置換してもよい。
Furthermore, in the above composition, a portion of Al may be replaced with Ga, or a portion of Ge may be replaced with St.

本発明の軟磁性薄膜は、Fe、Al、Geを主成分とす
るものであって、センダスト合金よりも飽和磁束密度B
sははるかに高く、また、Fe−8i系合金である電磁
鋼板と同等の飽和磁束密度Bsを有し、かつ電磁鋼板よ
りも軟磁気特性や耐蝕性に優れるものである。
The soft magnetic thin film of the present invention is mainly composed of Fe, Al, and Ge, and has a saturation magnetic flux density B higher than that of Sendust alloy.
s is much higher, and has a saturation magnetic flux density Bs equivalent to that of the magnetic steel sheet, which is an Fe-8i alloy, and has superior soft magnetic properties and corrosion resistance than the magnetic steel sheet.

本発明の軟磁性薄膜においては、各成分元素の組成比を
所定の範囲内に設定することが好ましく、この範囲を外
れると磁蚕が大きくなり、磁気特性が劣化する。
In the soft magnetic thin film of the present invention, it is preferable to set the composition ratio of each component element within a predetermined range; if it deviates from this range, the magnetic silkworms will become large and the magnetic properties will deteriorate.

上記軟磁性薄膜の製造方法としては種々の方法が考えら
れるが、なかでも真空薄膜形成技術によるのが良い。
Various methods can be considered for manufacturing the above-mentioned soft magnetic thin film, but among them, vacuum thin film forming technology is preferred.

この真空薄膜形成技術の手法としては、スパッタリング
やイオンブレーティング、真空蒸着法。
The techniques for forming this vacuum thin film include sputtering, ion blasting, and vacuum evaporation.

クラスター・イオンビーム法等が挙げられる。Examples include cluster ion beam method.

また、上記各成分元素の組成を調節する方法としては、 (1)  Fe、A7!、Geを所定の割合となるよう
に秤量し、これらをあらかじめ例えば高周波溶解炉等で
溶解して合金インゴットを形成しておき、この合金イン
ゴットを蒸発源として使用する方法、 (2)各成分の単独元素の蒸発源を用意し、これら蒸発
源の数で組成を制御する方法、 (3)各成分の単独元素の蒸発源を用意し、これら蒸発
源に加える出力(印加電圧)を制御して蒸発スピードを
コントロールし組成を制御する方法、 (4)合金を蒸発源として蒸着しながら他の元素を打ち
込む方法、 等が挙げられる。
In addition, as a method of adjusting the composition of each of the above component elements, (1) Fe, A7! (2) A method in which Ge is weighed in a predetermined proportion, melted in advance in a high-frequency melting furnace, etc. to form an alloy ingot, and this alloy ingot is used as an evaporation source. A method in which evaporation sources for a single element are prepared and the composition is controlled by the number of evaporation sources; (3) evaporation sources for a single element for each component are prepared and the output (applied voltage) applied to these evaporation sources is controlled; Examples include a method of controlling the evaporation speed and composition, and (4) a method of implanting other elements while depositing an alloy as an evaporation source.

なお、上述の真空薄膜形成技術等により膜付けされた軟
磁性薄膜は、そのままの状態では保磁力は若干高い値を
示し良好な軟磁気特性が得られないので、熱処理を施し
て膜の歪を除去し、軟磁気特性を改善することが好まし
い。
Note that the soft magnetic thin film formed by the above-mentioned vacuum thin film forming technology has a slightly high coercive force in its original state and good soft magnetic properties cannot be obtained, so heat treatment is performed to reduce the distortion of the film. It is preferable to remove it to improve the soft magnetic properties.

〔作用〕[Effect]

このように、軟磁性薄膜の構成元素としてFe。 In this way, Fe is used as a constituent element of the soft magnetic thin film.

AA、Geを選び、これらの組成比を所定の範囲内に設
定することにより、飽和磁束密度Bsはセンダスト合金
等に比べて大幅に大きなものとなり、抗磁力、透磁率等
の軟磁気特性や耐蝕性も確保される。
By selecting AA and Ge and setting their composition ratio within a predetermined range, the saturation magnetic flux density Bs becomes significantly larger than that of Sendust alloy, etc., and soft magnetic properties such as coercive force and magnetic permeability, and corrosion resistance are improved. Sex is also ensured.

〔実施例〕〔Example〕

以下、本発明の具体的な実施例について説明するが、本
発明がこの実施例に限定されるものではない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these examples.

先ず、Fe、ACGeをそれぞれ所定の組成比となるよ
うに秤量し、高周波誘導加熱炉を用いて溶解・鋳造後、
さらに機械加工を行って直径4インチ、厚み411のス
パッタリング用合金ターゲットを得た。
First, Fe and ACGe are weighed to have a predetermined composition ratio, and after melting and casting using a high frequency induction heating furnace,
Further machining was performed to obtain an alloy target for sputtering with a diameter of 4 inches and a thickness of 411 mm.

次に、この合金ターゲットを用いて、高周波マグネトロ
ンスパッタ装置により、アルゴン分圧5X 10−3T
orr、投入電力300Wの条件でスパッタリングを行
い、結晶化ガラス基板(保谷ガラス社製、商品名HOY
A  PEG3130C)上に膜厚約1μmの薄膜を得
た。
Next, using this alloy target, an argon partial pressure of 5X 10-3T was applied using a high-frequency magnetron sputtering device.
Sputtering was performed under the conditions of input power of 300 W, and a crystallized glass substrate (manufactured by Hoya Glass Co., Ltd., product name: HOY) was sputtered.
A thin film with a thickness of about 1 μm was obtained on A PEG3130C).

さらに、この薄膜を、I X 10−’Torr以下の
真空下で550℃、1時間焼鈍し徐冷して軟磁性薄膜を
得た。
Further, this thin film was annealed at 550° C. for 1 hour under a vacuum of I x 10 −' Torr or less and slowly cooled to obtain a soft magnetic thin film.

上述の方法に従い、合金ターゲットの組成比を第1図中
にそれぞれO印で示すような値に設定し、サンプルエな
いしサンプル15を作製した。なお、サンプル作製用合
金ターゲットの組成比と得られる軟磁性薄膜の組成比と
の間には若干のずれがあるが、スパッタリング時の組成
ずれにより、得られる各サンプルの組成比は第1図中斜
線で示す本発明の組成範囲内となる。
According to the method described above, samples A to 15 were prepared by setting the composition ratios of the alloy targets to the values indicated by the O marks in FIG. 1, respectively. Note that there is a slight difference between the composition ratio of the alloy target for sample preparation and the composition ratio of the obtained soft magnetic thin film, but due to the composition difference during sputtering, the composition ratio of each sample obtained is as shown in Figure 1. It falls within the composition range of the present invention indicated by diagonal lines.

得られた各サンプルについて、飽和磁束密度BS、飽和
磁化σ9.抗磁力Hc、透磁率μ(IMHzおよび10
0MHzにおける値)、磁歪および耐蝕性について調べ
た。
For each sample obtained, the saturation magnetic flux density BS, saturation magnetization σ9. Coercive force Hc, magnetic permeability μ (IMHz and 10
Value at 0 MHz), magnetostriction and corrosion resistance were investigated.

ここで、飽和磁束密度Bsは試料振動磁束計(VSM)
、抗磁力HcはB−Hループトレーサ、透磁率μは8の
字コイル型透磁率針で測定した。
Here, the saturation magnetic flux density Bs is measured using a vibrating sample magnetometer (VSM).
The coercive force Hc was measured with a B-H loop tracer, and the magnetic permeability μ was measured with a figure-8 coil type permeability needle.

また、各サンプルの膜厚は、試料表面にアルミニウムを
薄く蒸着し、多重干渉膜厚計によって膜と基板との段差
を測定することにより求めた。さらに、各サンプルの組
成分析は、E P M A (Electron Pr
obe Micro−Analysis)法によった。
The film thickness of each sample was determined by depositing a thin layer of aluminum on the surface of the sample and measuring the difference in level between the film and the substrate using a multi-interference film thickness meter. Furthermore, the compositional analysis of each sample was performed using EPM A (Electron Pr
The results were obtained using the obe Micro-Analysis method.

各サンプルの耐蝕性は、室温で水道水に約−週間浸した
後の膜面の表面の観察に依った。この耐蝕性の評価は、
下記のような表面状態から判定した。
Corrosion resistance of each sample was determined by surface observation of the membrane surface after being immersed in tap water at room temperature for approximately one week. This corrosion resistance evaluation is
Judgment was made based on the following surface conditions.

A:膜面に変化がなく、鏡面を保ったままの状態。A: There is no change in the film surface and it remains mirror-like.

B:膜面に薄く錆が発生した状態。B: A state in which a thin layer of rust has formed on the film surface.

C;膜面に濃く錆が発生した状態。C: A state in which thick rust has occurred on the film surface.

D:膜自体が消失する程度に錆が発生した状態。D: A state in which rust has occurred to the extent that the film itself disappears.

結果を次表に示す。なお、比較のために、上述の方法と
同様に成膜したFe−3t合金(電磁鋼板)およびFe
−3t−AI!合金(センダスト)についても、それぞ
れ比較サンプル1および比較サンプル2として、各値を
測定した。
The results are shown in the table below. For comparison, Fe-3t alloy (electromagnetic steel sheet) and Fe
-3t-AI! Regarding the alloy (Sendust), each value was measured as Comparative Sample 1 and Comparative Sample 2, respectively.

(以下余白) この表より、本発明に係る各サンプルにあっては、セン
ダスト合金よりも若干軟磁気特性に劣るものの、飽和磁
束密度Bsははるかに高いことがわかる。また、これら
各サンプルの飽和磁束密度BSは、Fe−5i合金(電
磁鋼板)と同等で、かつ軟磁気特性や耐蝕性はFe−3
t合金よりも優れていることがわかる。
(The following is a blank space) From this table, it can be seen that each sample according to the present invention has a slightly inferior soft magnetic property than the Sendust alloy, but the saturation magnetic flux density Bs is much higher. In addition, the saturation magnetic flux density BS of each of these samples is equivalent to that of Fe-5i alloy (electromagnetic steel sheet), and the soft magnetic properties and corrosion resistance are
It can be seen that this is superior to the t-alloy.

また、上記各サンプルの磁歪について、張力あるいは圧
縮力を加えた時の異方性磁界の値から見積もったところ
、いずれも磁歪はlXl0−’以下の値であった。
Furthermore, the magnetostriction of each of the samples was estimated from the anisotropic magnetic field value when tension or compression was applied, and the magnetostriction was less than lXl0-' in all cases.

ところで、本実施例においては、軟磁性薄膜をスパッタ
リングにより被着した後、温度550℃の条件で熱処理
を施しているが、これは次のような理由による。
Incidentally, in this example, after the soft magnetic thin film is deposited by sputtering, heat treatment is performed at a temperature of 550°C for the following reason.

例えば、サンプル5 (F eso、5A1t、sGe
+z、o)について、スパッタリングにより被着したま
まの状態で抗磁力Hcを測定したところ、約25エルス
テツドとかなり高い値を示した。
For example, sample 5 (F eso, 5A1t, sGe
+z, o), when the coercive force Hc was measured as it was deposited by sputtering, it showed a fairly high value of about 25 oersteds.

そこで、本発明者等はさらに実験を重ね、このスパッタ
リングにより被着した薄膜に対して熱処理を加え、この
熱処理温度ふ得られる軟磁性薄膜の抗磁力Hcの関係に
ついて調べた。結果を第2図に示す。
Therefore, the inventors conducted further experiments, heat-treated the thin film deposited by sputtering, and investigated the relationship between the heat treatment temperature and the coercive force Hc of the soft magnetic thin film. The results are shown in Figure 2.

この第2図より、スパッタリングにより被着した薄膜に
対して熱処理を施すことにより得られる軟磁性薄膜の抗
磁力Hcが大幅に低減し、特に熱処理温度が550〜6
00℃の時に極小値を示すことがわかった。
From FIG. 2, the coercive force Hc of the soft magnetic thin film obtained by heat-treating the thin film deposited by sputtering is significantly reduced, especially when the heat treatment temperature is 550 to 6
It was found that the minimum value was observed at 00°C.

このような知見に基づき、サンプル5について、熱処理
前と温度550℃、1時間の条件での焼鈍・徐冷後の磁
化曲線を求めた。第3図は熱処理前の磁化曲線であり、
第4図は熱処理後の磁化曲線である。これら第3図およ
び第4図から、温度550℃での熱処理により、得られ
る軟磁性薄膜の磁気特性(特に抗磁力)が著しく改善さ
れたことがわかる。
Based on these findings, the magnetization curves of Sample 5 were determined before heat treatment and after annealing and slow cooling at a temperature of 550° C. for 1 hour. Figure 3 shows the magnetization curve before heat treatment.
FIG. 4 shows the magnetization curve after heat treatment. From these FIGS. 3 and 4, it can be seen that the magnetic properties (especially coercive force) of the obtained soft magnetic thin film were significantly improved by heat treatment at a temperature of 550°C.

〔発明の効果〕〔Effect of the invention〕

上述の説明からも明らかなように、軟磁性薄膜の成分元
素としてFe、Al、Geを選び、これらの組成比を所
定の値に設定することにより、センダスト合金やアモル
ファス磁性合金等をはるかに凌ぐ飽和磁束密度Bsを達
成することができるとともに、軟磁気特性や耐蝕性を確
保することができる。
As is clear from the above explanation, by selecting Fe, Al, and Ge as the constituent elements of the soft magnetic thin film and setting their composition ratios to predetermined values, the soft magnetic thin film can be far superior to sendust alloys, amorphous magnetic alloys, etc. The saturation magnetic flux density Bs can be achieved, and soft magnetic properties and corrosion resistance can be ensured.

したがって、この軟磁性薄膜を例えば磁気ヘッドのコア
材料として用いることにより、磁気記録媒体の高保磁力
化に充分対処することができ、高品質化や高記録密度化
を図ることが可能となる。
Therefore, by using this soft magnetic thin film as a core material of a magnetic head, for example, it is possible to sufficiently cope with the increase in coercive force of a magnetic recording medium, and it becomes possible to achieve higher quality and higher recording density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用いた合金ターゲットの組成
および本発明の軟磁性薄膜の組成範囲を示す3元特性図
である。 第2図はスパッタリングにより被着した軟磁性薄膜の抗
磁力Hcと熱処理温度の関係を示す特性図であり、第3
図はこの軟磁性薄膜の熱処理前の磁化曲線を示す特性図
、第4図は550℃、1時間の熱処理後の磁化曲線を示
す特性図である。 第1図
FIG. 1 is a ternary characteristic diagram showing the composition of the alloy target used in the examples of the present invention and the composition range of the soft magnetic thin film of the present invention. Figure 2 is a characteristic diagram showing the relationship between the coercive force Hc of the soft magnetic thin film deposited by sputtering and the heat treatment temperature;
The figure is a characteristic diagram showing the magnetization curve of this soft magnetic thin film before heat treatment, and FIG. 4 is the characteristic diagram showing the magnetization curve after heat treatment at 550° C. for 1 hour. Figure 1

Claims (1)

【特許請求の範囲】 Fe_aAl_bGe_c(ただしa、b、cはそれぞ
れ組成比を原子%として表す。)なる組成式で示され、
その組成範囲が 68≦a≦84 1≦b≦31 1≦c≦31 a+b+c=100 であることを特徴とする軟磁性薄膜。
[Claims] It is represented by the composition formula Fe_aAl_bGe_c (where a, b, and c each represent the composition ratio as atomic %),
A soft magnetic thin film characterized in that its composition range is 68≦a≦84 1≦b≦31 1≦c≦31 a+b+c=100.
JP60077337A 1985-04-11 1985-04-11 Soft magnetic thin film for magnetic head Expired - Fee Related JPH0789523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077337A JPH0789523B2 (en) 1985-04-11 1985-04-11 Soft magnetic thin film for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077337A JPH0789523B2 (en) 1985-04-11 1985-04-11 Soft magnetic thin film for magnetic head

Publications (2)

Publication Number Publication Date
JPS61234508A true JPS61234508A (en) 1986-10-18
JPH0789523B2 JPH0789523B2 (en) 1995-09-27

Family

ID=13631104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077337A Expired - Fee Related JPH0789523B2 (en) 1985-04-11 1985-04-11 Soft magnetic thin film for magnetic head

Country Status (1)

Country Link
JP (1) JPH0789523B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049583A1 (en) * 2019-09-11 2021-03-18 日本電産株式会社 Soft magnetic alloy and magnetic core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827941A (en) * 1981-08-11 1983-02-18 Hitachi Ltd Manufacture of amorphous thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827941A (en) * 1981-08-11 1983-02-18 Hitachi Ltd Manufacture of amorphous thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049583A1 (en) * 2019-09-11 2021-03-18 日本電産株式会社 Soft magnetic alloy and magnetic core

Also Published As

Publication number Publication date
JPH0789523B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JPS63119209A (en) Soft magnetic thin-film
US4748000A (en) Soft magnetic thin film
US5244627A (en) Ferromagnetic thin film and method for its manufacture
JPS61234510A (en) Soft magnetic thin film
JPS61234508A (en) Soft magnetic thin film
JPS61234509A (en) Soft magnetic thin film
JPS61234507A (en) Soft magnetic thin film
JPS6039157A (en) Manufacture of amorphous magnetic alloy
JPH03265104A (en) Soft magnetic alloy film
JPS6278804A (en) Soft magnetic thin film
JP2508462B2 (en) Soft magnetic thin film
JPS6278805A (en) Soft magnetic thin film
JPS6252907A (en) Magnetically soft thin film
JPS62104107A (en) Soft magnetic thin film
JPS62104111A (en) Soft magnetic thin film
JP2522284B2 (en) Soft magnetic thin film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JPH0789527B2 (en) Crystalline soft magnetic thin film
JP3087265B2 (en) Magnetic alloy
JPH0758647B2 (en) Crystalline soft magnetic thin film
JPS62104110A (en) Soft magnetic thin film
JPS59162250A (en) Magnetic alloy
JPH07111926B2 (en) Soft magnetic thin film
JPH01146312A (en) Soft magnetic thin film
JPH04120233A (en) Nickel-iron material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees