JPS61234171A - Image sensor output correcting circuit - Google Patents

Image sensor output correcting circuit

Info

Publication number
JPS61234171A
JPS61234171A JP60074767A JP7476785A JPS61234171A JP S61234171 A JPS61234171 A JP S61234171A JP 60074767 A JP60074767 A JP 60074767A JP 7476785 A JP7476785 A JP 7476785A JP S61234171 A JPS61234171 A JP S61234171A
Authority
JP
Japan
Prior art keywords
image sensor
signal
voltage value
dark voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60074767A
Other languages
Japanese (ja)
Other versions
JPH065882B2 (en
Inventor
Eiji Nishikawa
西川 英二
Takashi Ozawa
隆 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60074767A priority Critical patent/JPH065882B2/en
Priority to US06/849,675 priority patent/US4723174A/en
Publication of JPS61234171A publication Critical patent/JPS61234171A/en
Publication of JPH065882B2 publication Critical patent/JPH065882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Character Input (AREA)
  • Image Input (AREA)
  • Picture Signal Circuits (AREA)

Abstract

PURPOSE:To obtain a correct a multi-gradation output even when a dark voltage of an image sensor is large by subtracting a corrected dark voltage value from an output signal of an amplified image sensor. CONSTITUTION:Even in case of the density of a reading picture being a fixed value, when a dark voltage X1 of an image sensor is increased, a signal X2 of the read picture is also large. However, at this time, a correcting signal Y2 in proportion to the increase of the dark voltage X1 is outputted from a ROM 4 correcting the signal, subtracted from the signal X1 and irrespective of the dark voltage X1, a signal X3 only depending on the density of the reading picture is taken out from a subtracter 5. The signal X3 only depending on the density of the reading picture is insufficient for an absolute level since the dark voltage component is removed. The absolute value of the signal X3 is amplified by a proportional calculation based on a clear voltage value Y3 on injecting a normal light. Thereby, the signal X3 including no dark voltage component of the image sensor is converted into a signal Z of a gradation based on a brightness of the normal light and outputted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複写機やファクシミリ装置などに用いるイメ
ージセンサ出力補正回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image sensor output correction circuit used in copying machines, facsimile machines, and the like.

[従来の技術] 周知のように、複写機やファクシミリ装置等の画像読取
り手段として用いられているイメージセンサは、原稿の
照明光源の光量のばらつきや周囲温度の変化等によって
その出力電圧が変動する。
[Prior Art] As is well known, the output voltage of an image sensor used as an image reading means for copying machines, facsimile machines, etc. fluctuates due to variations in the light intensity of the illumination light source of the document, changes in ambient temperature, etc. .

特に、原稿の主走査方向に複数個のセンサを配列した一
次元イメージセンサでは、照明光源の主走査方向におけ
る光量のばらつきや、画素毎のセンサの感度の差によっ
てその出力電圧が均一なものとはならない。
In particular, in a one-dimensional image sensor in which multiple sensors are arranged in the main scanning direction of the document, the output voltage may not be uniform due to variations in the amount of light in the main scanning direction of the illumination light source and differences in sensor sensitivity for each pixel. Must not be.

そこで従来、このようなイメージセンサの出力電圧の変
動や不均一性を補正するために、イメージセンサ出力信
号をAD変換の後、基準電圧との差に応じて濃度領域で
の圧縮および伸長を行うようにしたものがある。
Conventionally, in order to correct such fluctuations and non-uniformity in the output voltage of the image sensor, the image sensor output signal is subjected to AD conversion and then compressed and expanded in the density region according to the difference from the reference voltage. There is something like this.

[発明が解決しようとする問題点コ ところが、上記した従来の技術では、密着型アモルファ
スシリコン・イメージセンサなどのように、暗電圧の変
動幅が比較的大きく、出力電圧の変動幅が大きくなるイ
メージセンサを用いた場合には、暗電圧の影響によって
濃度領域での圧縮や伸長に誤差が現われ、多階調の出力
が正確に得られないという問題点があった。
[Problems to be Solved by the Invention] However, with the above-mentioned conventional technology, the range of variation in dark voltage is relatively large and the range of variation in output voltage is large, such as in contact-type amorphous silicon image sensors. When a sensor is used, there is a problem in that errors appear in compression and expansion in the density region due to the influence of dark voltage, making it impossible to accurately obtain multi-gradation output.

本発明はこのような問題点を解決するためになされたも
ので、その目的はイメージセンサの暗電圧も大きい場合
であっても、正確な多階調出力が得られるようにしたイ
メージセンサ出力信号補正回路を提供することにある。
The present invention was made to solve these problems, and its purpose is to provide an image sensor output signal that allows accurate multi-gradation output to be obtained even when the dark voltage of the image sensor is large. The object of the present invention is to provide a correction circuit.

[問題点を解決するための手段] 本発明は上記の問題点を解決するために、イメージセン
サの出力信号を増幅する増幅手段と、この増幅手段の利
得を変え、増幅されたイメージセンサ出力信号を所定レ
ベル範囲に制御する自動利得制御手段と、上記イメージ
センサの入射光遮断時の暗電圧値を記憶したメモリ手段
と、このメモリ手段に記憶された暗電圧値を上記増幅手
段の利得に応じて補正して出力する補正手段と、上記イ
メージセンサの出力信号から上記補正手段によって補正
された暗電圧値を減算して出力する演算手段とを設けた
ものでおる。
[Means for Solving the Problems] In order to solve the above problems, the present invention includes an amplification means for amplifying the output signal of an image sensor, and a gain of the amplification means is changed to generate the amplified image sensor output signal. automatic gain control means for controlling the image sensor to a predetermined level range; memory means for storing a dark voltage value when the incident light of the image sensor is cut off; and a calculation means that subtracts the dark voltage value corrected by the correction means from the output signal of the image sensor and outputs the result.

[作用] 記憶手段にはイメージセンサの暗電圧値が画像の読取り
開始前おるいは一定周期毎に計測されて記憶される。
[Operation] The dark voltage value of the image sensor is measured and stored in the storage means before the start of image reading or at regular intervals.

一方、画像の読取り開始に伴ってイメージセンサから出
力された信号は自動利得制御によってその信号レベルが
常に所定レベル範囲になるように増幅される。この増幅
後の信号は演算手段に入力され、ここで暗電圧値の成分
が減算される。これによって、暗電圧成分を含まない多
階調の出力信号が得られる。
On the other hand, the signal output from the image sensor upon the start of image reading is amplified by automatic gain control so that the signal level always falls within a predetermined level range. This amplified signal is input to the calculation means, where the dark voltage value component is subtracted. As a result, a multi-gradation output signal containing no dark voltage component can be obtained.

[実施例] 以下、図示する実施例に基づき本発明の詳細な説明する
[Example] Hereinafter, the present invention will be described in detail based on the illustrated example.

第1図は本発明の一実施例を示すブロック図である。同
図において、1はイメージセンサ(図示せず)の出力信
号Vsを所定数ビット(例えばnビット)のディジタル
信号X2に変換するAD変換器(ADC)、2はADC
lの変換値が最大変換値を超え、そのオバーフロー出力
がt+Fly+になったならばADClのAD変換動作
の基準電位を上げ、逆にIPIになったならば基準電位
を下げることにより、ADClの変換出力値が常に一定
値の範囲になるようにADClの変換利得を制御する自
動利得制御回路(AGC回路)、3はイメージセンサに
対する入射光遮断時の暗電圧値X1を記憶する第1メモ
リ(RAM)であり、暗電圧1直×1は原稿画像の読取
り開始直前あるいは一定周期毎に出力信号の補正対象で
おるイメージセンサを用いて計測され、ADClによっ
てディジタル信号に変換の後、この第1メモリ3に記憶
される。但し、暗電圧値X1を記憶させる時にはAGC
回路2は作動せず、イメージセンサの現在の暗電圧その
ものをAD変換した値×1が第1メモリ3に記憶される
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, 1 is an AD converter (ADC) that converts the output signal Vs of an image sensor (not shown) into a digital signal X2 of a predetermined number of bits (for example, n bits), and 2 is an ADC.
If the conversion value of l exceeds the maximum conversion value and the overflow output becomes t+Fly+, the reference potential for AD conversion operation of ADCl is raised, and conversely, if it becomes IPI, the reference potential is lowered to perform conversion of ADCl. 3 is an automatic gain control circuit (AGC circuit) that controls the conversion gain of ADCl so that the output value is always within a constant value range; 3 is a first memory (RAM) that stores the dark voltage value X1 when the incident light to the image sensor is cut off; ), the dark voltage 1 x 1 is measured using an image sensor whose output signal is to be corrected just before the start of reading the original image or at regular intervals, and after being converted into a digital signal by ADCl, it is stored in this first memory. 3 is stored. However, when storing the dark voltage value X1, the AGC
The circuit 2 does not operate, and the value x 1 obtained by AD converting the current dark voltage of the image sensor itself is stored in the first memory 3.

4は第1メモリ3に記憶された暗電圧値×1をAGC回
路2から出力されるADClの変換利得を表わす信号Y
1によって補正して出力するための信号補正用ROMで
あり、信号×1を下位アドレス、信号Y1を上位アドレ
スとするメモリアドレスには Y2 =X 1・Yl  ・・・ (1)で示される信
号×1の補正値Y2が記憶されている。
4 is a signal Y representing the conversion gain of ADCl outputted from the AGC circuit 2 by converting the dark voltage value x 1 stored in the first memory 3.
This is a signal correction ROM for correcting and outputting signals according to Y2 = A correction value Y2 of ×1 is stored.

5は画像読取り開始に伴ってADClから出力される信
号X2と信号補正用ROM4から出力される信号Y2と
の差の信号 X3 =X2−Y2  ・・・(2) を求める減算器、6はイメージセンサに対する基準光(
白色光なと)入財時の明電圧値Y3を記憶する第2メモ
リ(RAM)であり、明電圧値Y3は暗電圧値×1と同
様に原稿画像の読取り開始直前あるいは一定周期毎に出
力信号の補正対象であるイメージセンサによって計測さ
れ、ADClによってディジタル信号に変換の後、この
第2メモリ6に記憶される。但し、この明電圧値Y3の
記憶の際にもAGC回路2は作動せず、イメージセンサ
の現在の明電圧そのものをAD変換した値Y3が記憶さ
れる。
5 is a subtracter that calculates the difference signal X3 = X2 - Y2 (2) between the signal X2 output from ADCl and the signal Y2 output from signal correction ROM 4 at the start of image reading, and 6 is an image Reference light for the sensor (
This is a second memory (RAM) that stores the bright voltage value Y3 at the time of input (white light), and the bright voltage value Y3 is output just before the start of reading the original image or at regular intervals like the dark voltage value x 1. The signal is measured by the image sensor to be corrected, converted into a digital signal by the ADCl, and then stored in the second memory 6. However, even when this bright voltage value Y3 is stored, the AGC circuit 2 does not operate, and the value Y3 obtained by AD converting the current bright voltage of the image sensor itself is stored.

7は減算器5の出力信号X3を第2メモリ6に、記憶さ
れた明電圧値Y3に基づいて補正して出力する信号補正
用ROMであり、信号x3を下位アドレス、信号Y3を
上位アドレスとするメモリアドレスには Z= (X3 /Y3 )X2   ・・・(3)で示
される信号×3の補正値Zが記憶されている。
7 is a signal correction ROM that corrects and outputs the output signal X3 of the subtracter 5 to the second memory 6 based on the stored bright voltage value Y3, and designates the signal x3 as a lower address and the signal Y3 as an upper address. A correction value Z of the signal x3 expressed as Z=(X3/Y3)X2 (3) is stored at the memory address.

なお、第(3)式においてnはADClの出力信号ビッ
ト数を表わしている。
Note that in equation (3), n represents the number of bits of the ADCl output signal.

以上の構成において、原稿画像の読取り開始に伴ってイ
メージセンサから出力される信号ysはADCIにおい
てnビット構成のディジタル信号×2に変換される。こ
の時、信号x2の値は常に一定値の範囲に収まるように
ADCIの変換利得がAGC回路2によって制御される
。ADCIの変換利得を制御する理由は、変換精度を高
めるためである。
In the above configuration, the signal ys output from the image sensor upon the start of reading the original image is converted into an n-bit digital signal×2 in the ADCI. At this time, the conversion gain of ADCI is controlled by the AGC circuit 2 so that the value of the signal x2 always falls within a constant value range. The reason for controlling the conversion gain of ADCI is to improve conversion accuracy.

一方、原稿画像の読取りが開始されると、信号補正用R
OM4からはイメージセンサの暗電圧値×1をADCl
の変換利得を表わず信号Y1によって補正した信号Y2
  (=X1  ・Yl )が出力される。
On the other hand, when the reading of the original image is started, the signal correction R
From OM4, the dark voltage value of the image sensor x 1 is ADCl
The signal Y2 corrected by the signal Y1 does not represent the conversion gain of
(=X1 ·Yl) is output.

すなわち、暗電圧値x1を利得Y1の変換器を通したの
と等価な信号Y2が信号補正用ROM4から出力される
That is, a signal Y2 equivalent to passing the dark voltage value x1 through a converter with a gain Y1 is output from the signal correction ROM 4.

これら2つの信号X2 、Y2は減算器5に入力され、
信号×2から信号Y2が減算される。すなわち、信号X
2の中に含まれる暗電圧成分Y2が減算される。これに
よって、減算器5からは暗電圧成分を含まない画信号の
みの信号×3が出力される。
These two signals X2 and Y2 are input to the subtracter 5,
Signal Y2 is subtracted from signal x2. That is, the signal
The dark voltage component Y2 included in 2 is subtracted. As a result, the subtracter 5 outputs a signal x3 consisting only of the image signal and not including the dark voltage component.

次に、この暗電圧成分を含まない信号×3は信号補正用
ROM7に入力される。この時、ROM7には第2メモ
リ6に予め記憶された明電圧値Y3も入力される。
Next, the signal x3 that does not include the dark voltage component is input to the signal correction ROM 7. At this time, the bright voltage value Y3 previously stored in the second memory 6 is also input to the ROM 7.

これにより、ROM7からは Z= (X3/Y3 )X2n で示される信号Zが出力される。As a result, from ROM7 Z= (X3/Y3)X2n A signal Z shown by is output.

すなわち、読取り画像の濃度が一定値であったとしても
イメージセンサの暗電圧X1が増加すると、読取った画
像の信号×2も第2図のグラフに示すように大きくなる
。しかしこの時、暗電圧X1の増加に比例した補正用の
信号Y2が信号補正用ROM4から出力され、信号X1
から減算される。これによって、第2図のグラフに破線
で示すように、暗電圧X1に関係なく読取り画像の濃度
のみに依存した信号X3が減算器5から取出される。
That is, even if the density of the read image is constant, as the dark voltage X1 of the image sensor increases, the signal x2 of the read image also increases as shown in the graph of FIG. However, at this time, a correction signal Y2 proportional to the increase in dark voltage X1 is output from the signal correction ROM 4, and the signal
is subtracted from. As a result, as shown by the broken line in the graph of FIG. 2, a signal X3 that depends only on the density of the read image is extracted from the subtracter 5, regardless of the dark voltage X1.

この読取り画像の濃度のみに依存した信号X3は、暗電
圧成分×1が除去されたことにより、絶対レベルが不足
するものとなる6そこで、この信号×3は基準光入射時
の明電圧値Y3を基準とした比例演算によってその絶対
値が第3図のグラフに示すように増幅される。これによ
って、イメージセンサの暗電圧成分を含まない信号X3
が基準光の明るさを基準とした階調の信号Zに変換され
て出力される。
The signal X3, which depends only on the density of the read image, has an insufficient absolute level because the dark voltage component x1 has been removed. The absolute value is amplified as shown in the graph of FIG. 3 by proportional calculation based on . As a result, the signal X3 that does not include the dark voltage component of the image sensor
is converted into a gradation signal Z based on the brightness of the reference light and output.

この場合、第1メモリ3および第2メモリ6に記憶され
る暗電圧値x1および明電圧値Y3は、照明光源の光量
の変動成分など光学系の変動成分をその中に既に含んで
いる。このため、暗電圧の変動のみでなく光学系の変動
成分によるイメージセンサ出力信号の変動をも同時に補
正していることになる。
In this case, the dark voltage value x1 and bright voltage value Y3 stored in the first memory 3 and the second memory 6 already include fluctuation components of the optical system such as fluctuation components of the light amount of the illumination light source. Therefore, not only the variation in the dark voltage but also the variation in the image sensor output signal due to the variation component of the optical system is corrected at the same time.

なあ、この実施例はイメージセンサの出力信号をディジ
タル信号処理によって補正しているが、アナログ信号処
理の構成としてもよい。アナログ信号処理とする場合に
は、AD変換器1は可変利得型の増幅器で構成し、また
第1メモリ3および第2メモリ6はアナログメモリで構
成し、ざらに信号補正用ROM4.7はアナログ演算回
路で構成すればよい。
In this embodiment, the output signal of the image sensor is corrected by digital signal processing, but an analog signal processing configuration may also be used. In the case of analog signal processing, the AD converter 1 is configured with a variable gain amplifier, the first memory 3 and the second memory 6 are configured with analog memories, and the signal correction ROM 4.7 is configured with analog memories. It may be configured with an arithmetic circuit.

また、上記実施例では説明を簡単にするために、イメー
ジセンサは単一画素の光電変換作用を行うものと仮定し
ているが、−次元イメージセンサのように原稿の主走査
方向に複数個のセンサを配列したものを用いる場合には
、暗電圧値X1および明電圧値Y3は各画素のセンサ単
位でそれぞれ独立して記憶され、第1図の全体の回路が
各画素毎に時分割で使用されるものでおる。
In addition, in the above embodiment, in order to simplify the explanation, it is assumed that the image sensor performs a photoelectric conversion function of a single pixel, but like a -dimensional image sensor, multiple pixels are When using an array of sensors, the dark voltage value X1 and bright voltage value Y3 are stored independently for each pixel sensor, and the entire circuit shown in Figure 1 is used for each pixel in a time-division manner. It is something that will be done.

[発明の効果] 以上説明したことから明らかなように本発明においては
、画像の読取り開始前にイメージセンサの暗電圧を予め
計測しておき、読取り開始後のイメージセンサ出力信号
の中から暗電圧成分を差し引いて出力するようにしたた
め、暗電圧成分の変動が大きい場合であっても常に安定
した多階調の出力信号を確実に取出すことができる。
[Effects of the Invention] As is clear from the above explanation, in the present invention, the dark voltage of the image sensor is measured in advance before the start of image reading, and the dark voltage is measured from the image sensor output signal after the start of reading. Since the dark voltage component is subtracted and output, a stable multi-gradation output signal can always be reliably extracted even when the dark voltage component fluctuates greatly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は暗電
圧とイメージセンサ出力信号との関係を示すグラフ、第
3図は暗電圧成分を除いた信号と最終的な出力信号との
関係を示すグラフである。 1・・・AD変換器、2・・・自動利得制御回路、3・
・・第1メモリ、4,7・・・信号補正用ROM、5・
・・減算器、6・・・第2メモリ。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is a graph showing the relationship between dark voltage and image sensor output signal, and Fig. 3 is a signal excluding the dark voltage component and the final output signal. It is a graph showing the relationship between 1... AD converter, 2... automatic gain control circuit, 3...
... 1st memory, 4, 7... ROM for signal correction, 5.
...Subtractor, 6...Second memory.

Claims (4)

【特許請求の範囲】[Claims] (1)イメージセンサの出力信号を増幅する増幅手段と
、この増幅手段の利得を変え、増幅されたイメージセン
サ出力信号を所定レベル範囲に制御する自動利得制御手
段と、上記イメージセンサの入射光遮断時の暗電圧記憶
したメモリ手段と、このメモリ手段に記憶された暗電圧
値を上記増幅手段の利得に応じて補正して出力する補正
手段と、上記イメージセンサの出力信号から上記補正手
段によつて補正された暗電圧値を減算して出力する演算
手段とを備えて成るイメージセンサ出力補正回路。
(1) Amplifying means for amplifying the output signal of the image sensor, automatic gain control means for changing the gain of the amplifying means and controlling the amplified image sensor output signal within a predetermined level range, and blocking light incident on the image sensor. a memory means for storing the dark voltage value at the time; a correction means for correcting and outputting the dark voltage value stored in the memory means according to the gain of the amplification means; an image sensor output correction circuit comprising: arithmetic means for subtracting and outputting a dark voltage value corrected by the image sensor;
(2)前記増幅手段はイメージセンサ出力信号を所定数
ビットのディジタル信号に変換するAD変換器で構成し
、前記自動利得制御手段は上記AD変換器の変換出力値
が一定値の範囲になるように該AD変換器の基準電位を
制御する回路で構成したことを特徴とする特許請求の範
囲第(1)項記載のイメージセンサ出力補正回路。
(2) The amplification means is configured with an AD converter that converts the image sensor output signal into a digital signal of a predetermined number of bits, and the automatic gain control means is configured to keep the converted output value of the AD converter within a constant value range. The image sensor output correction circuit according to claim 1, wherein the image sensor output correction circuit comprises a circuit that controls a reference potential of the AD converter.
(3)イメージセンサの出力信号を増幅する増幅手段と
、この増幅手段の利得を変え、増幅されたイメージセン
サ出力信号を所定レベル範囲に制御する自動利得制御手
段と、上記イメージセンサの入射光遮断時の暗電圧値を
記憶した第1のメモリ手段と、この第1のメモリ手段に
記憶された暗電圧値を上記増幅手段の利得に応じて補正
して出力する第1の補正手段と、上記イメージセンサの
出力信号から上記第1の補正手段によつて補正された暗
電圧値を減算して出力する演算手段と、イメージセンサ
に対する基準光入射時の明電圧値を記憶した第2のメモ
リ手段と、上記演算手段の出力を上記第2メモリ手段に
記憶された明電圧値に基づき補正して出力する第2の補
正手段とを備えて成るイメージセンサ出力補正回路。
(3) amplification means for amplifying the output signal of the image sensor; automatic gain control means for changing the gain of the amplification means and controlling the amplified image sensor output signal within a predetermined level range; and blocking of incident light to the image sensor. a first memory means that stores a dark voltage value at the time; a first correction means that corrects and outputs the dark voltage value stored in the first memory means according to the gain of the amplification means; calculation means for subtracting and outputting the dark voltage value corrected by the first correction means from the output signal of the image sensor; and a second memory means for storing the bright voltage value when the reference light is incident on the image sensor. and second correction means for correcting and outputting the output of the calculation means based on the bright voltage value stored in the second memory means.
(4)前記増幅手段はイメージセンサ出力信号を所定数
ビットのディジタル信号に変換するAD変換器で構成し
、前記自動利得制御手段は上記AD変換器の変換出力値
が一定値の範囲になるように該AD変換器の基準電位を
制御する回路で構成し、前記第2の補正手段は前記演算
手段の出力を前記明電圧値で割り算して出力する割り算
回路で構成したことを特徴とする特許請求の範囲第(3
)項記載のイメージセンサ出力補正回路。
(4) The amplification means is configured with an AD converter that converts the image sensor output signal into a digital signal of a predetermined number of bits, and the automatic gain control means is configured to keep the converted output value of the AD converter within a constant value range. The patent is characterized in that the second correction means is constituted by a division circuit that divides the output of the calculation means by the bright voltage value and outputs the result. Claim No. 3
Image sensor output correction circuit described in ).
JP60074767A 1985-04-09 1985-04-09 Image sensor output correction circuit Expired - Fee Related JPH065882B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60074767A JPH065882B2 (en) 1985-04-09 1985-04-09 Image sensor output correction circuit
US06/849,675 US4723174A (en) 1985-04-09 1986-04-09 Picture image processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60074767A JPH065882B2 (en) 1985-04-09 1985-04-09 Image sensor output correction circuit

Publications (2)

Publication Number Publication Date
JPS61234171A true JPS61234171A (en) 1986-10-18
JPH065882B2 JPH065882B2 (en) 1994-01-19

Family

ID=13556759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60074767A Expired - Fee Related JPH065882B2 (en) 1985-04-09 1985-04-09 Image sensor output correction circuit

Country Status (1)

Country Link
JP (1) JPH065882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152370U (en) * 1987-03-26 1988-10-06
JP2003085543A (en) * 2001-09-07 2003-03-20 Neucore Technol Inc Method and device for correcting image data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432013A (en) * 1977-08-15 1979-03-09 Nec Corp Picture element correction system for image sensor
JPS5748870A (en) * 1980-09-05 1982-03-20 Mitsubishi Electric Corp Original reader
JPS58182958A (en) * 1982-04-21 1983-10-26 Toshiba Corp Information reader
JPS6010978A (en) * 1983-06-30 1985-01-21 Toshiba Corp Amplifier circuit for solid-state image pickup element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432013A (en) * 1977-08-15 1979-03-09 Nec Corp Picture element correction system for image sensor
JPS5748870A (en) * 1980-09-05 1982-03-20 Mitsubishi Electric Corp Original reader
JPS58182958A (en) * 1982-04-21 1983-10-26 Toshiba Corp Information reader
JPS6010978A (en) * 1983-06-30 1985-01-21 Toshiba Corp Amplifier circuit for solid-state image pickup element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152370U (en) * 1987-03-26 1988-10-06
JPH055731Y2 (en) * 1987-03-26 1993-02-15
JP2003085543A (en) * 2001-09-07 2003-03-20 Neucore Technol Inc Method and device for correcting image data

Also Published As

Publication number Publication date
JPH065882B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JPS6153868A (en) Calibration in picture scan signal processing
US5181118A (en) Method of correcting image signal
KR20010079946A (en) Method and device for the exposure-dependent noise correction in image sensors which can be addressed in lines and columns
KR960016438A (en) Color shark race scanner with high resolution monochrome mode
US4723174A (en) Picture image processor
JPH04365264A (en) Original reader
US5331420A (en) Pixel signal non-uniformity correcting device
JPS60172886A (en) Reader employing plural photodetecting elements
JPS6114702B2 (en)
JPH0369271A (en) Image reader
JPS61234171A (en) Image sensor output correcting circuit
JP2677208B2 (en) Image sensor output level correction device
JPS58223964A (en) Shading compensating circuit
JPH03291057A (en) Picture reader
JP3184684B2 (en) Image reading device
JPS6273869A (en) Picture reader
KR0174550B1 (en) Shading compensating circuit using cis
JPH0310463A (en) Picture reader
JPH03270569A (en) Picture signal correction method
JPS62163469A (en) Image processor
JPH0379166A (en) Shading correction circuit
JPS6235772A (en) Image reader
JPH04371073A (en) Image reader
JPH06225143A (en) Picture reader
JPH02116265A (en) Output correcting circuit for information read circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees