JPS61233356A - Air fuel ratio measuring method - Google Patents

Air fuel ratio measuring method

Info

Publication number
JPS61233356A
JPS61233356A JP60074909A JP7490985A JPS61233356A JP S61233356 A JPS61233356 A JP S61233356A JP 60074909 A JP60074909 A JP 60074909A JP 7490985 A JP7490985 A JP 7490985A JP S61233356 A JPS61233356 A JP S61233356A
Authority
JP
Japan
Prior art keywords
oxygen
solid electrolyte
time
electrode
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60074909A
Other languages
Japanese (ja)
Inventor
Minoru Osuga
稔 大須賀
Nobushige Ooyama
宣茂 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60074909A priority Critical patent/JPS61233356A/en
Priority to DE8686102252T priority patent/DE3676834D1/en
Priority to EP86102252A priority patent/EP0193123B1/en
Priority to CA000502762A priority patent/CA1241374A/en
Priority to US06/833,032 priority patent/US4716760A/en
Priority to KR1019860001370A priority patent/KR860006701A/en
Priority to CN86101890.7A priority patent/CN1005640B/en
Publication of JPS61233356A publication Critical patent/JPS61233356A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To detect the wide excess air ratio by extracting the oxygen from the inside of the diffused resistor reversely and measuring the oxygen concentration by the change of the quantity of electricity following the shifting of the oxygen at this time after the oxygen is sent to the inside of the diffused resistor by solid electrolyte. CONSTITUTION:A solid electrolyte 3 is formed in a bag shape, electrodes 4a and 4b are respectively provided at both inner and outer surfaces of the solid electrolyte 3, and the electrode 4a is exposed to the exhaust air and the electrode 4b is exposed to the air. At a part of the electrode side, a porous diffused resistor 5 is provided. At the sensor composed of by the solid electrolyte 3, the electric current, in which the electrode 4b can be a negative electrode, is caused to flow at the solid electrolyte 3 at a certain period, and the oxygen is poured from the air to the diffused resistor 5. Next, the electric current is caused to flow so that the polarity can be inverted and the electrode 4a can be the negative electrode, the oxygen in the diffused resistor 5 is extracted, and the excess air ratio is measured by the change of the voltage between electrodes 4a and 4b at both edges of the solid electrolyte 3 at that time.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は空燃比センサに係り、特に、内燃機関の空燃比
が検出するに好適な空燃比測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an air-fuel ratio sensor, and particularly to an air-fuel ratio measuring method suitable for detecting the air-fuel ratio of an internal combustion engine.

〔発明の背景〕[Background of the invention]

現在までの空燃比センサは、U S P 369102
3やU S P4158166に開示されているように
、固体電解質に拡散抵抗体を設け、拡散抵抗体内の酸素
を引きぬき濃度が零になるときの電流値(いわゆる限界
電流値)を測定するものである。この方法では、被測定
ガス中に酸素がある領域つまり、空気過剰率λが1.0
以上の領域でのみλの測定が可能となり、λが1.0よ
り小さいλく1.0領域ではλは測定できない。
The air-fuel ratio sensor to date is US P 369102.
As disclosed in 3 and USP 4,158,166, a diffusion resistor is provided in a solid electrolyte, and the current value (so-called critical current value) is measured when oxygen is extracted from the diffusion resistor and the concentration becomes zero. be. In this method, the region where oxygen exists in the gas to be measured, that is, the excess air ratio λ is 1.0.
It is possible to measure λ only in the above range, and λ cannot be measured in the 1.0 range where λ is less than 1.0.

また、λが1.0より小さい領域λく1.Oを測定する
場合も、特開昭55−166039に示されているよう
に、固体電解質印加する電圧をλ=1.0を境として極
性を反転しなければならず、λ=1.0 を検出する新
たな手段が必要となり、複雑となる。
In addition, in the region λ where λ is less than 1.0, 1. When measuring O, as shown in JP-A-55-166039, the polarity of the voltage applied to the solid electrolyte must be reversed with λ=1.0 as the boundary; New means of detection will be required and complex.

また、第12図に示す如きS A E paper 8
10433に示されている方法は、一方の固体電解質に
流す電流工、を極性を反転しながら印加し、容積1内の
酸素を出し入れして、容積1内の酸素濃度を変化させ濃
度変化による起電力変化をもう一方の固体電解質により
電圧V、を検出し、第12図(b)に示す如くv、がV
A&になったら、固体電解質に流す電流工、を反転する
。この反転の周期τが酸素濃度に比例する。また、第1
2図(c)に示す如きU S P 3907657に示
されている方法は、容積2内に拡散してきた酸素を電流
工、により引きぬき、容積2内の酸素濃度が零になるま
での時間τを固体電解質上の別電極間の起電力(V、)
の変化により測定する。このτが第14図(d)に示す
如く酸素濃度Pgに比例する0以上の二つの方法は、一
定容積1.2内の酸素の絶対量を測定するもので圧力、
温度の影響や容積の経時変化の影響を受けやすい、また
、この一定容積は単孔により形成されているため、孔の
目づまり等の影響を大きく受ける。さらに、センサ全体
が燃焼排気ガス中にさらされているため、λが1.0 
より小さい領域λく0.1 のλは測定できない。
In addition, S A E paper 8 as shown in FIG.
The method shown in No. 10433 is to apply electric current to one solid electrolyte while reversing its polarity, to draw oxygen in and out of volume 1, to change the oxygen concentration in volume 1, and to detect the effect of the change in concentration. The change in power is detected by the voltage V using the other solid electrolyte, and as shown in FIG. 12(b), v becomes V.
When it becomes A&, reverse the current flowing through the solid electrolyte. The period τ of this reversal is proportional to the oxygen concentration. Also, the first
The method shown in U.S. Pat. No. 3,907,657, as shown in Figure 2 (c), uses an electric current to pull out the oxygen that has diffused into volume 2, and calculates the time τ until the oxygen concentration in volume 2 becomes zero. is the electromotive force (V,) between different electrodes on the solid electrolyte
It is measured by the change in The two methods in which this τ is proportional to the oxygen concentration Pg as shown in FIG.
It is susceptible to the effects of temperature and changes in volume over time, and since this fixed volume is formed by a single hole, it is greatly affected by clogging of the holes, etc. Furthermore, since the entire sensor is exposed to combustion exhaust gas, λ is 1.0
λ in a smaller area λ<0.1 cannot be measured.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、温度変化の影響を受けることなく巾広
い空気過剰率を検出できる空燃比測定方法を提供するこ
とにある。
An object of the present invention is to provide an air-fuel ratio measuring method that can detect a wide range of excess air ratios without being affected by temperature changes.

〔発明の概要〕[Summary of the invention]

本発明は、固体電解質により拡散抵抗体内に酸素を送り
込んだ後、逆に拡散抵抗体内より酸素を引きぬき、この
ときの酸素の移動に伴う電気量の変化により酸素濃度を
測定し、温度変化の影響を受けることなく巾広い空気過
剰率を検出しようというものである。
In the present invention, after oxygen is sent into the diffusion resistor using a solid electrolyte, the oxygen is pulled out from the diffusion resistor, and the oxygen concentration is measured based on the change in the amount of electricity accompanying the movement of oxygen at this time, and the temperature change is measured. The idea is to detect a wide range of excess air ratios without being affected.

【発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図には本発明の一実施例が示されている。FIG. 1 shows an embodiment of the invention.

第1図(a)は構成図であり、固体電解質3は袋状に形
成されており、この固体電解質3の内外両面には電極4
a、4bがそれぞれ設けられている。
FIG. 1(a) is a configuration diagram, in which the solid electrolyte 3 is formed into a bag shape, and electrodes 4 are provided on both the inner and outer surfaces of the solid electrolyte 3.
a and 4b are provided, respectively.

電極4aは排気に、電極4bは大気に接している。The electrode 4a is in contact with the exhaust gas, and the electrode 4b is in contact with the atmosphere.

また電極4の側の一部には、多孔質よりなる拡散抵抗体
5が設けられている。第1図(b)には第1図(a)の
Aの部分の拡大図が示されている。この固体電解質3に
よって構成される本センサでは。
Further, a porous diffusion resistor 5 is provided in a part of the electrode 4 side. FIG. 1(b) shows an enlarged view of the portion A in FIG. 1(a). This sensor is composed of this solid electrolyte 3.

ある期間固体電解質3に電極4bが負極となるような電
流工、を流し、第1図(b)中の点線で示すように酸素
を大気中より拡散抵抗体5に流し込む(この動体をバイ
アス動作と称する)6次に、極性を反転して電極4aが
負極となるように電流工、を流し、第1図(b)中の実
線で示すように拡散抵抗体5内の酸素を引きぬき、(セ
ンシング動作)その時の固体電解質3の両端の電極4a
A current is passed through the solid electrolyte 3 for a certain period of time so that the electrode 4b becomes the negative electrode, and oxygen is forced into the diffusion resistor 5 from the atmosphere as shown by the dotted line in FIG. Next, an electric current is applied so that the polarity is reversed so that the electrode 4a becomes the negative electrode, and the oxygen in the diffusion resistor 5 is drawn out as shown by the solid line in FIG. 1(b). (Sensing operation) Electrodes 4a at both ends of the solid electrolyte 3 at that time
.

4b間の電圧Vの変化によりλを測定するものである。λ is measured based on the change in voltage V between 4b and 4b.

第2図には、固体電解質3内を流れる電流値による酸素
の移動と、拡散抵抗体5内の酸素濃度の変化が示されて
いる。
FIG. 2 shows the movement of oxygen depending on the value of the current flowing through the solid electrolyte 3 and the change in the oxygen concentration within the diffusion resistor 5.

第2図(a)はバイアス動作時の説明図である。FIG. 2(a) is an explanatory diagram during bias operation.

バイアス動作とは、λく1.Oを測定出来るようにする
ために、拡散抵抗体5内の電極4a近傍の酸素濃度を排
気中の酸素濃度Pgよりも大きくするための動作である
。初めに拡散抵抗体5内の酸素濃度がPe一定だとする
。ここで固体電解質3に電流工、を矢印の方向に流す。
Bias operation means λ×1. This is an operation for making the oxygen concentration near the electrode 4a in the diffused resistor 5 higher than the oxygen concentration Pg in the exhaust gas in order to be able to measure O. First, it is assumed that the oxygen concentration within the diffused resistor 5 is constant Pe. Here, electric current is flowed through the solid electrolyte 3 in the direction of the arrow.

すると酸素は、拡散抵抗体S内に序々に送り込まれ、酸
素濃度分布は実線のように変化し増えていく、そして、
やがて、時間t、たつと点線で示したような一定の濃度
分布に収束していく、この時の固体電解質3の両端電極
4a、4bの電圧Vは、第2図(a)の下に示したよう
に、変化して行く酸素濃度に応じて次式により変化する
Then, oxygen is gradually sent into the diffusion resistor S, and the oxygen concentration distribution changes and increases as shown by the solid line.
Eventually, after time t, the concentration distribution converges to a constant concentration distribution as shown by the dotted line.The voltage V across the electrodes 4a and 4b at both ends of the solid electrolyte 3 at this time is shown at the bottom of FIG. 2(a). As shown above, it changes according to the following equation according to the changing oxygen concentration.

ここで、 γ:固体電解質3の内部抵抗Pa:大気中の
酸素濃度 Pm:電極4a近傍の酸素濃度 F:ファラデ一定数 T:時間 R:ガス定数 つまり、右辺第1項のγ工、は一定なので、第2項が酸
素濃度変化による電圧Vの変化分となる。
Here, γ: Internal resistance of the solid electrolyte 3 Pa: Oxygen concentration in the atmosphere Pm: Oxygen concentration near the electrode 4a F: Faraday constant T: Time R: Gas constant In other words, the γ factor in the first term on the right side is constant. Therefore, the second term is the change in voltage V due to the change in oxygen concentration.

また、拡散抵抗体5内の酸素濃度分布の変化は、次の拡
散方程式により求めたものである。
Further, the change in the oxygen concentration distribution within the diffusion resistor 5 is determined by the following diffusion equation.

ap    a”p −=D□              ・・・(2)a
t      ax ここで、D=拡散係数 t:時間 X:距離P:酸素濃
度 C:定数 以上のバイアス動作をある一定時間tb行ない電極4a
近傍の酸素濃度をPgより高くする。
ap a”p −=D□ ・・・(2)a
t ax where D=diffusion coefficient t: time X: distance P: oxygen concentration C: bias operation above a constant is performed for a certain period of time tb and
Make the oxygen concentration in the vicinity higher than Pg.

次に第2図(b)(c)にセンシング動作の原理を示す
、第2図(b)はλ〉1.0での動作である。
Next, FIGS. 2(b) and 2(c) show the principle of sensing operation, and FIG. 2(b) shows the operation when λ>1.0.

初め拡散抵抗体5内の酸素濃度分布は、バイアス動作終
了時の分布(第2図(b)に示される実線の直線分布)
となっている、その電流1.を図の矢印の方向に印加す
ると、拡散抵抗体5内の酸素は序々に引きぬかれて行き
、第2図(b)に示される実線の曲線分布のように減少
していく0時間が経過していくと、電極49近傍の酸素
濃度が零となる。この状態では、固体電解質3の内外両
面の酸素分圧差が大きくなるため、(1)式右辺第2項
の起電力が大きくなる。固体電解質3の端子電圧Vは、
第2図(b)の下に示したように、初めは電極4a近傍
に酸素があるために、起電力は発生せず一定の値となる
。その後、酸素が零となると、起電力が加算されてくる
((1)式)、この起電力による増加分Eを常に一定に
なる時点で、測定をやめ1時間1Lを測定すれば、t5
はλに比例した値となる。つまり、電極4a近傍の酸素
が零となるまでの時間は、電流工、を一定にしておけば
、λに比例した値となる。
Initially, the oxygen concentration distribution in the diffused resistor 5 is the distribution at the end of the bias operation (the solid line linear distribution shown in FIG. 2(b)).
The current is 1. When is applied in the direction of the arrow in the figure, the oxygen in the diffused resistor 5 is gradually drawn out and decreases as shown in the solid curve distribution shown in Figure 2(b) as time 0 elapses. As the temperature increases, the oxygen concentration near the electrode 49 becomes zero. In this state, the difference in oxygen partial pressure between the inside and outside of the solid electrolyte 3 becomes large, so the electromotive force in the second term on the right side of equation (1) becomes large. The terminal voltage V of the solid electrolyte 3 is
As shown in the lower part of FIG. 2(b), since there is oxygen near the electrode 4a at first, no electromotive force is generated and the value remains constant. After that, when the oxygen becomes zero, the electromotive force is added (Equation (1)).When the increase E due to this electromotive force becomes constant, stop measuring and measure 1L for 1 hour, t5
is a value proportional to λ. In other words, the time it takes for the oxygen near the electrode 4a to become zero takes a value proportional to λ if the current is kept constant.

次に第2図(C)にλ〈10でのセンシング動作を示し
た。λく1.Oでは、バイアスされた酸素量は排気中の
COに消費されるため拡散抵抗体5内において酸素濃度
が零となる点(M点)が存在するようになる。このため
センシング動作開始時は、第2図(c)の拡散抵抗体5
内に示した実線の直線のようになり、λ〉1.0の場合
より少ない酸素量となる。この状態で電流1.を印加す
ると、図中の曲線のように減少して行き、電極4aでの
酸素濃度は零となる。この時に両電極4a、4b間のV
を見ていれば、前述のように起電力が加算されてくる。
Next, FIG. 2(C) shows the sensing operation at λ<10. λku1. At O, the biased amount of oxygen is consumed by CO in the exhaust gas, so there is a point (point M) in the diffused resistor 5 where the oxygen concentration becomes zero. Therefore, at the start of sensing operation, the diffused resistor 5 in FIG. 2(c)
The result is as shown by the solid line shown in the figure, and the amount of oxygen is smaller than when λ>1.0. In this state, the current is 1. When applied, the oxygen concentration decreases as shown by the curve in the figure, and the oxygen concentration at the electrode 4a becomes zero. At this time, V between both electrodes 4a and 4b
If you look at , the electromotive force will be added as mentioned above.

この加算された起電力がある一定値Eになった時に測定
をやめれば、その時の時間1、はλに比例した値となる
。このようにλく1.0でも、大気より拡散抵抗体5内
に酸素を流し込み、この流し込まれた酸素と排気中のc
oが反応した残りの酸素量を測定すれば、λ〈1.0で
の空気過剰率λを測定することができる。
If the measurement is stopped when the added electromotive force reaches a certain constant value E, the time 1 at that time becomes a value proportional to λ. In this way, even if λ is 1.0, oxygen is flowed into the diffusion resistor 5 from the atmosphere, and this flowed oxygen and c in the exhaust gas are
By measuring the amount of oxygen remaining after o has reacted, the excess air ratio λ at λ<1.0 can be measured.

このように、センシング動作初期に、電極4a近傍に酸
素がある場合は、(1)式の右辺第2項は非常に小さく
、第1項が支配的となる。その後。
In this way, when oxygen is present near the electrode 4a at the beginning of the sensing operation, the second term on the right side of equation (1) is very small, and the first term becomes dominant. after that.

電極4a近傍の酸素が零となると、右辺第2項が急激に
大きな値となるため、端子電圧Vに現われてくる。この
起電力の急激に変化するまでの時間を測定すれば、空気
過剰率λを検出できることになる。
When the oxygen near the electrode 4a becomes zero, the second term on the right side suddenly becomes a large value, which appears in the terminal voltage V. By measuring the time until this electromotive force suddenly changes, the excess air ratio λ can be detected.

第3図には電流1.、I、と電圧Vのタイムチャートが
示されている。
Figure 3 shows the current 1. , I, and a time chart of voltage V are shown.

図に示す如くバイアス動作時の定電施工、はある一定の
時間t、たけ流す0次にセンシング動作へ移り、定電施
工、を流す、この時、端子電圧Vがセンシング動作初期
の値よりEarだけ高くなったら電流を反転し、センシ
ング動作を終了する。
As shown in the figure, the constant current operation during bias operation is carried out for a certain period of time t, then the 0-order sensing operation is started, and the constant current operation is applied.At this time, the terminal voltage V is Ear from the initial value of the sensing operation. When the current becomes high, the current is reversed and the sensing operation is terminated.

このセンシング動作時の時間t1を測定すれば良い、こ
のt、は空気過剰率λに比例する。
It is sufficient to measure the time t1 during this sensing operation, and this t is proportional to the excess air ratio λ.

第4図にはセンシング動作初期の端子電圧Vの増加分E
、、の決定法が示されているIIEa&は起電力なので
、固体電解質のλ=1.0で電圧をステップ的に変化さ
せる場合の電圧変化時に現われる。
Figure 4 shows the increase E in the terminal voltage V at the initial stage of sensing operation.
Since IIEa &, for which a method for determining , is shown, is an electromotive force, it appears when the voltage is changed in a stepwise manner with λ=1.0 of the solid electrolyte.

第4図はその時の電圧変化を示したもので、λ;1.0
 を境として、O〜1vの間でステップ的に変化する。
Figure 4 shows the voltage change at that time, λ; 1.0
The voltage changes stepwise between 0 and 1v.

この変化には温度特性力があり、T1とT2は温度であ
り−T i < T 2である。このように起電力変化
が温度により変化するので、E□としてまちがった値を
選ぶと、センサの出力が温度の影響を受ける。E、&と
じては、温度(T1゜T3)により変化しない(両者が
交わる点)点の値、つまり第4図中に示したE、Lを選
ぶ、この値は通常0.2V〜0.5vの間に存在する。
This change has a temperature characteristic force, where T1 and T2 are temperatures and -T i < T2. As described above, since the electromotive force changes depending on the temperature, if a wrong value is selected for E□, the output of the sensor will be affected by the temperature. For E, &, choose the value at the point (the point where they intersect) that does not change with temperature (T1°T3), that is, E, L shown in Figure 4. This value is usually 0.2V to 0. Exists between 5v.

この温度影響のないElを選ぶことにより、温度に全く
影響されない出力値も、が得られる。
By selecting El that is not affected by temperature, an output value that is not affected by temperature at all can be obtained.

さらに、出力の温度影響について述べる。第5図の平ら
になっている所が限界電流値である。この特性も温度(
T、 、 ’r、 )  により変化する0通常のリー
ンセンサは、vlを固体電解質に印加してもその時の電
流値を見るものであり、T、からT2へ変った場合に出
力も工、Iから工、′と変化してしまう、このため電圧
をV、へと変化させて温度影響を回避しなければならず
、制御が複雑となる。これに対し、本実施例によるセン
サでは、第6図に示したように、工、′をセンサに印加
していて起電力の発生するまでの時間t、を測定してい
るから、温度がT2からT3へ変化したとしても、端子
電圧の絶対値がv8からv8に変化するだけで、起電力
E、&が発生し加算されるまでの時間t、は温度により
変化しない、つまりT1の場合v1よりE、Lだけ高く
なるまでの時はtlであり、T2の場合v2 よりE、
&だけ高くなるまでの時間もt、と同じであり、t、は
温度影響を受けない値となる。
Furthermore, we will discuss the effect of temperature on output. The flat area in Figure 5 is the limiting current value. This characteristic also changes with temperature (
0, which changes with T, , 'r, ) A normal lean sensor monitors the current value even when vl is applied to the solid electrolyte, and when changing from T to T2, the output changes as well. Therefore, the voltage must be changed to V to avoid temperature effects, making control complicated. On the other hand, with the sensor according to this embodiment, as shown in FIG. Even if the voltage changes from V8 to T3, the absolute value of the terminal voltage only changes from v8 to v8, and the time t from when the electromotive force E, & is generated and added does not change depending on the temperature. In other words, in the case of T1, v1 The time until it becomes higher by E, L is tl, and in the case of T2, v2 is higher than E,
The time it takes for the temperature to rise by & is also the same as t, and t is a value that is not affected by temperature.

以上より、このt、を測定する方法と、温度影響のない
E、Lを選ぶことにより、全く温度影響のない出力値(
t、)を得ることが出きる。
From the above, by selecting a method for measuring t and selecting E and L that are not affected by temperature, the output value (
t, ) can be obtained.

第7図にはE、Lの測定法が示されている0回路構成上
E□を測定し始める点は、センシング動作開始より非常
に短かい時間t、′経過したときの端子電圧V、とする
。つまりV、をホールドしておき、端子電圧がvIIよ
りE、、、大きくなった時点で測定をやめる。この時の
t、を出力値に変換する。
Figure 7 shows the method for measuring E and L.Due to the circuit configuration, the point at which E do. In other words, V is held and the measurement is stopped when the terminal voltage becomes E larger than vII. t at this time is converted into an output value.

第8図には、以上の動作を実現するための駆動回路が示
されている。mにおいて、定電淳源6により定電施工、
をセンサ8に供給する。この場合、±1=工、とするた
め定電流源は1つで良い、この定電流源よりの端子とア
ース端子をスイッチ7により切り換えることによりセン
サ8に流れる電流の方向を逆転させる。今センシング時
の工、が流れているとすると、センサ8の端子電圧がホ
ールド回路9に入力されV、をホールドする。なお、t
、′は遅延回路13により計測する。このV。
FIG. 8 shows a drive circuit for realizing the above operation. At m, constant electric power construction is carried out by constant electric power Jungen 6,
is supplied to the sensor 8. In this case, since ±1=min, only one constant current source is required. By switching the terminal from this constant current source and the ground terminal with the switch 7, the direction of the current flowing through the sensor 8 is reversed. Assuming that current is flowing during sensing, the terminal voltage of the sensor 8 is input to the hold circuit 9 and V is held. In addition, t
, ' are measured by the delay circuit 13. This V.

にE、&を加算回路10により加算しておく、そして、
端子電圧VがV、+E、Lより高くなったときにコンパ
レーター11によりトリガ信号を出力し、カウンター1
2によりtb間ON信号を出し、スイッチ7を切り換え
て工、を工、と逆向きに流す。
E, & are added to by the adder circuit 10, and
When the terminal voltage V becomes higher than V, +E, and L, the comparator 11 outputs a trigger signal and the counter 1
2, outputs an ON signal during tb, switches switch 7, and reverses the flow from t to t.

t5間経過するとカウンター12の作用によりON信号
はOFFとなるため、工、が再びセンサ8に流れる。遅
延回路Bは、カウンター12−がt。
After time t5 has elapsed, the ON signal is turned OFF due to the action of the counter 12, so that the signal flows to the sensor 8 again. In the delay circuit B, the counter 12- is t.

間のON信号をOFFした時点、つまりセンサ8に工、
が流れた時点からylだけ遅らせてトリガ信号を発生し
ホールド回路9に与える。ホールド回路9では、このト
リガ信号が入ったら、センサ8の端子電圧(vl)をホ
ールドする。また、カウンター12よりのON信号、O
FF信号の周期を出力回路14により直流の出力に変換
する。
When the ON signal in between is turned off, that is, when sensor 8 is
A trigger signal is generated with a delay of yl from the point in time when the trigger signal flows and is applied to the hold circuit 9. In the hold circuit 9, when this trigger signal is input, the terminal voltage (vl) of the sensor 8 is held. Also, the ON signal from the counter 12, the O
The period of the FF signal is converted into a DC output by the output circuit 14.

第9図は、第8図のB点で測定した実際の波形である。FIG. 9 shows an actual waveform measured at point B in FIG.

これはセンシング動作時の波形に相当し。This corresponds to the waveform during sensing operation.

t、が出力値へ変換される。第10図には、λと出力値
の関係が示されている。E、&をE1□。
t, is converted to an output value. FIG. 10 shows the relationship between λ and output value. E, &E1□.

E1□、 E、L、と変えた場合の出力特性である。こ
の場合E ab−> E act > E acsであ
る。このようなEl、、の中で第4図に示したように、
温度影響のないEII&を選んだ特性が温度影響を全く
受けない出力値となる。
This is the output characteristic when E1□, E, and L are changed. In this case, E ab->E act > E acs. In such El, , as shown in Figure 4,
The characteristic for which EII&, which is not affected by temperature, is selected results in an output value that is not affected by temperature at all.

第11図には、応用例が示されており4酸素のバイアス
量が常に一定になるように考慮したものである。バイア
ス動作時の端子電圧が第11図(a)の点線で示したよ
うに、一定値v1に安定するのが遅かったとすると、こ
の時はバイアスされた酸素量が少ないことになり、出力
値に影響を及ぼす、これを回避するために、一定値V、
になってからの時間t、を同じによるように第11図(
b)に示す如くバイアス時間をtk′と長くしてやる。
An application example is shown in FIG. 11, in which consideration is given so that the bias amount of 4 oxygen is always constant. If the terminal voltage during bias operation is slow to stabilize to a constant value v1 as shown by the dotted line in Figure 11(a), then the amount of biased oxygen will be small, and the output value will change. In order to avoid this, a constant value V,
Figure 11 (
As shown in b), the bias time is increased to tk'.

このようにすれば、常に同じ酸素量がバイアスされるこ
とになる。この七−の計測は例えば。
In this way, the same amount of oxygen will always be biased. For example, measure this 7-.

端子電圧Vの時間変化dV/dtがある値より小さくな
った時点を始点として計測を始める。
Measurement starts at the point in time when the time change dV/dt of the terminal voltage V becomes smaller than a certain value.

したがって、本実施例によれば、リッチからり−ンまで
の空気過剰率を温度補償なしで測定することができる。
Therefore, according to this embodiment, the excess air ratio from rich to lean can be measured without temperature compensation.

(発明の効果〕 以上説明したように、本発明によれば、温度変化の影響
を受けることなく巾広い空気過剰率を検出することがで
きる。
(Effects of the Invention) As described above, according to the present invention, a wide range of excess air ratios can be detected without being affected by temperature changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すセンサの構成図、第2図
〜第6図は本発明の原理図、第7図、第8図は実施例に
係る回路の動作と構成図、第9図。 第10図は本実施例による測定結果を示す図、第11図
は応用例を示す図、第12図は従来例を示す図である。 3・・・固体電解質、5・・・拡散抵抗体、8・・・セ
ンサ、11・・・コンパレータ、14・・・出力回路。
FIG. 1 is a configuration diagram of a sensor showing an embodiment of the present invention, FIGS. 2 to 6 are principle diagrams of the present invention, FIGS. 7 and 8 are operation and configuration diagrams of a circuit according to the embodiment, and FIGS. Figure 9. FIG. 10 is a diagram showing measurement results according to this embodiment, FIG. 11 is a diagram showing an applied example, and FIG. 12 is a diagram showing a conventional example. 3... Solid electrolyte, 5... Diffused resistor, 8... Sensor, 11... Comparator, 14... Output circuit.

Claims (2)

【特許請求の範囲】[Claims] 1.燃焼排気の空気過剰率を測定するための、酸素の拡
散を律する拡散抵抗体を設けた固体電解質よりなるもの
において、一定電流を所定時間上記固体電解質と印加し
酸素を拡散抵抗体に流し込み、その後逆極性の一定電流
を所定時間前記固体電解質に印加し拡散抵抗体内の酸素
を引きぬき、この引きぬくときの電気量より空気過剰率
を検出する空燃比測定方法。
1. In a solid electrolyte equipped with a diffusion resistor that regulates the diffusion of oxygen for measuring the air excess ratio of combustion exhaust, a constant current is applied to the solid electrolyte for a predetermined period of time to cause oxygen to flow into the diffusion resistor, and then An air-fuel ratio measurement method in which a constant current of opposite polarity is applied to the solid electrolyte for a predetermined period of time to draw out oxygen in the diffusion resistor, and an excess air ratio is detected from the amount of electricity generated during this drawing.
2.特許請求の範囲1項の記載の発明において、上記空
気過剰率の検出は拡散抵抗体酸素を引きぬき始めてから
、固体電解質両面の酸素分圧差による起電力が発生する
までの時間を測定することによつて行うことを特徴とす
る空燃比測定方法。
2. In the invention as set forth in claim 1, the excess air ratio is detected by measuring the time from when oxygen starts to be drawn out from the diffusion resistor until an electromotive force is generated due to the oxygen partial pressure difference between both sides of the solid electrolyte. An air-fuel ratio measuring method characterized in that the air-fuel ratio is measured by
JP60074909A 1985-02-28 1985-04-09 Air fuel ratio measuring method Pending JPS61233356A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60074909A JPS61233356A (en) 1985-04-09 1985-04-09 Air fuel ratio measuring method
DE8686102252T DE3676834D1 (en) 1985-02-28 1986-02-21 SYSTEM FOR DETERMINING THE AIR FUEL RATIO.
EP86102252A EP0193123B1 (en) 1985-02-28 1986-02-21 Air-fuel ratio detection system
CA000502762A CA1241374A (en) 1985-02-28 1986-02-26 Air-fuel ratio detection system
US06/833,032 US4716760A (en) 1985-02-28 1986-02-26 Air-fuel ratio detection system
KR1019860001370A KR860006701A (en) 1985-02-28 1986-02-27 Air-fuel ratio detector
CN86101890.7A CN1005640B (en) 1985-02-28 1986-02-27 Air-fuel ratio detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60074909A JPS61233356A (en) 1985-04-09 1985-04-09 Air fuel ratio measuring method

Publications (1)

Publication Number Publication Date
JPS61233356A true JPS61233356A (en) 1986-10-17

Family

ID=13560982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60074909A Pending JPS61233356A (en) 1985-02-28 1985-04-09 Air fuel ratio measuring method

Country Status (1)

Country Link
JP (1) JPS61233356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413961A (en) * 1990-05-07 1992-01-17 Toyota Motor Corp Air/fuel ratio detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413961A (en) * 1990-05-07 1992-01-17 Toyota Motor Corp Air/fuel ratio detector

Similar Documents

Publication Publication Date Title
JPS62218858A (en) Oxygen concentration detector
US20040089545A1 (en) High-resolution gas concentration measuring apparatus
JPH0697220B2 (en) Air-fuel ratio detector
KR950014742B1 (en) Air-fuel ratio detection system for engine exhaust gas
JPH07501152A (en) Polarographic sensor
JPS60171447A (en) Air/fuel ratio detection apparatus
JP2509905B2 (en) Air-fuel ratio sensor
JPS61280560A (en) Method for measuring concentration of oxygen
JPS61233356A (en) Air fuel ratio measuring method
US4698209A (en) Device for sensing an oxygen concentration in gaseous body with a source of pump current for an oxygen pump element
JPH0450762A (en) Deterioration detecting method for oxygen sensor of internal combustion engine
JP2929038B2 (en) Air-fuel ratio sensor drive circuit
JP3110848B2 (en) Air-fuel ratio detector
JP2664319B2 (en) Air-fuel ratio sensor
JP2678748B2 (en) Engine air-fuel ratio detector
JPH0128905B2 (en)
JPH0680425B2 (en) Air-fuel ratio detector
JPH0758275B2 (en) Oxygen sensor
JPS6276447A (en) Oxygen concentration detector
JPS59211737A (en) Air-fuel ratio control device
JPS5847248A (en) Detection of air/fuel ratio
JPS61100651A (en) Apparatus for measuring concentration of oxygen
JPH0750070B2 (en) Oxygen concentration detector
KR880003182A (en) Air-fuel ratio measurement system
JPH0426429B2 (en)