JPS61232860A - Polysulfone hollow yarn for separating serum - Google Patents

Polysulfone hollow yarn for separating serum

Info

Publication number
JPS61232860A
JPS61232860A JP7371385A JP7371385A JPS61232860A JP S61232860 A JPS61232860 A JP S61232860A JP 7371385 A JP7371385 A JP 7371385A JP 7371385 A JP7371385 A JP 7371385A JP S61232860 A JPS61232860 A JP S61232860A
Authority
JP
Japan
Prior art keywords
hollow fiber
blood
diameter
plasma
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7371385A
Other languages
Japanese (ja)
Inventor
江口 民行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP7371385A priority Critical patent/JPS61232860A/en
Publication of JPS61232860A publication Critical patent/JPS61232860A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 【産業上の利用分野J 難治療性の疾患に対して、その患者の血液から血漿を膜
を使って分離し、健康な人の血漿と交換したり、分離し
た血漿から有害成分を吸着などの方法で除去したのち、
再びその患者に戻す、いわゆるプラズマ7エレーシスと
呼ばれる治療方法が近年注目されている。
[Detailed Description of the Invention] [Industrial Application Field J] For treatment of intractable diseases, plasma is separated from the patient's blood using a membrane and exchanged with plasma from a healthy person. After removing harmful components from the water using methods such as adsorption,
In recent years, a treatment method called plasma 7 elesis, in which the plasma is returned to the patient, has been attracting attention in recent years.

本発明は血漿分離用のポリスルホン中空糸に関する。さ
らに詳しくは、血漿成分中のフルブミン、総蛋白、Ig
Mおよび総コレステロールの透過率がそれぞれ90%以
上、90%以上、70%以上および70%以上のポリス
ルホン中空糸に関する。
The present invention relates to polysulfone hollow fibers for plasma separation. More specifically, fulbumin, total protein, and Ig in plasma components.
The present invention relates to polysulfone hollow fibers having permeability of M and total cholesterol of 90% or more, 90% or more, 70% or more, and 70% or more, respectively.

[従来の技術] 血漿分離用の膜は、血漿成分をよく通過させる必要があ
るためサブミクロン以上のオーダーの孔径が必要とされ
ている。比較的大きな孔を有するポリスルホン中空糸の
製造方法として以下の方法が知られている。
[Prior Art] Membranes for plasma separation need to have pore diameters on the order of submicron or larger because they must allow plasma components to pass through them well. The following method is known as a method for producing polysulfone hollow fibers having relatively large pores.

特開昭58−114702号公報には、内表面に平均巾
が500Å以下のスリット状微細隙を有し、外表面に平
均孔径1000〜5000人の微孔を有する中空糸の製
法が記載されている。この中空糸に対する牛血清γ−グ
ロブリンの透過率は5%未満である。また特開昭59−
58041号公報には、牛血清γ−グロブリンの透過率
が57.1%の中空糸の製法が記載されている。さらに
特開昭59−183761号公報には、内表面に長袖と
短軸が372〜4/1の比でかつ長軸の長さが0.05
〜1.0μlの紡錘状の孔を有し、外表面には0.05
μ1以上の径を有する円形状の孔を有し、断面には0.
1〜2μlの孔を有する中空糸の製法が記載されている
。この中空糸の血漿総蛋白質の透過率は30〜90%で
あることが明細書に記載されているが、他の成分につい
ては記載されていない。特開昭58−91822号公報
には、これらの中空糸と同程度と思われる孔径を有する
中空糸について記載されでいるが、シリカ粉末などの微
孔形成剤を用いているので、これらが血漿分離を行なう
際に中空糸から外れて血液に混入することが懸念される
ため、人体に係わる目的には使用できないと思われる。
JP-A-58-114702 describes a method for manufacturing a hollow fiber having slit-like micropores with an average width of 500 Å or less on the inner surface and micropores with an average pore diameter of 1,000 to 5,000 Å on the outer surface. There is. The permeability of bovine serum γ-globulin through this hollow fiber is less than 5%. Also, JP-A-59-
Publication No. 58041 describes a method for producing a hollow fiber having a permeability of bovine serum γ-globulin of 57.1%. Furthermore, JP-A-59-183761 discloses that the inner surface has long sleeves and a short axis in a ratio of 372 to 4/1, and the length of the long axis is 0.05.
It has spindle-shaped pores of ~1.0 μl and 0.05 μl on the outer surface.
It has a circular hole with a diameter of μ1 or more, and the cross section has a diameter of 0.
A method for producing hollow fibers with pores of 1-2 μl is described. The specification states that the permeability of this hollow fiber for plasma total protein is 30 to 90%, but does not describe other components. JP-A-58-91822 describes hollow fibers with pore diameters that are thought to be similar to those of these hollow fibers, but since a micropore-forming agent such as silica powder is used, these There is a concern that it may come off from the hollow fiber during separation and contaminate blood, so it seems that it cannot be used for purposes related to the human body.

該公報の明細書にもこのような用途については記載され
ていない。これらの中空糸に比べて格段に大きい孔径を
有する中空糸の製造方法が本発明者の出願である特開昭
59−189903号公報に記載されている。この製造
方法によって内表面、断面および外表面にミクロンオー
ダーの孔径を有する中空糸をうろことができる。しかし
ながらこの中空糸の血漿成分の透過性については、はと
んど記載されていない。
The specification of the publication does not mention such uses. A method for manufacturing hollow fibers having a much larger pore diameter than those of these hollow fibers is described in Japanese Patent Application Laid-open No. 189903/1989 filed by the present inventor. By this manufacturing method, hollow fibers having pore diameters on the micron order can be formed on the inner surface, cross section, and outer surface. However, little has been described about the permeability of this hollow fiber to plasma components.

[発明が解決しようとする問題点] 前記のよう1こ血漿成分がよく透過するポリスルホン中
空糸はまだ知られていない、ここで血漿成分がよく透過
するとは、後述する方法で中空糸を用いて牛血を濾過し
たとき、その濾過血漿中に代表的な血漿成分であるアル
ブミン、総蛋白質、IBMおよび総コレステロールが、
それぞれ90%以上、90%以上、70%以上および7
0%以上透過することを意味している。
[Problems to be Solved by the Invention] As mentioned above, polysulfone hollow fibers that allow plasma components to permeate well are not known yet. When bovine blood is filtered, typical plasma components such as albumin, total protein, IBM, and total cholesterol are found in the filtered plasma.
90% or more, 90% or more, 70% or more and 7 respectively
This means that 0% or more is transmitted.

血漿成分をよく透過させるためには容易に推測されるよ
うに、孔径を大きくすればよいと思われる。しかしなが
らいたずらに孔径を大きくすると血球成分が漏れたり、
血球成分に損傷を与えて溶血などを生じさせるおそれが
ある。従って、血球成分が漏れたり、溶血などを生じさ
せずに血漿成分をよく透過させるためには、膜の素材や
膜の全体的な構造と対応させながら適切な孔径になるよ
うに調整しなければならない。
As can be easily surmised, in order to allow plasma components to permeate well, the pore size may need to be increased. However, if the pore size is increased unnecessarily, blood cell components may leak,
There is a risk of damaging blood cell components and causing hemolysis. Therefore, in order to allow plasma components to permeate well without leaking blood cell components or causing hemolysis, the pore size must be adjusted to an appropriate size in accordance with the membrane material and overall structure of the membrane. No.

公知技術はこのような課題に対して解決策の示唆すらし
ていない。
Known techniques do not even suggest solutions to such problems.

本発明は血漿成分がよく透過し、血球成分が透過せず、
かつ血球成分に損傷を与えて、溶血などを生じさせたり
することのない血漿分離用ポリスルホン中空糸をうるた
めになされたものである。
According to the present invention, plasma components permeate well, blood cell components do not permeate,
This invention was made in order to obtain a polysulfone hollow fiber for plasma separation that does not damage blood cell components and cause hemolysis.

E問題点を解決するための手段] 血漿成分がよく透過し、血球成分が透過せず、かつ血球
成分に損傷を与えて溶血などを生じさせないポリスルホ
ン中空糸を選ぶためには、まず孔径な広い範囲で自由に
変える技術が必要であるが、前記の公知技術のうち、特
開昭58−114702号公報、特開昭59−5804
1号公報および特開昭59−183761号公報では血
漿成分がよく透過する中空糸かえられず、特開昭58−
91822号公報では安全性が懸念されるので、本発明
者の出願した特開昭59−189903号公報に記載し
た方法で種々の孔径の中空糸を作製し、えられた中空糸
を用いて実際に血漿の分n実験を多数回行なった結果、
本発明に到達した。
Measures to Solve Problem E] In order to select polysulfone hollow fibers that allow plasma components to pass through well, blood cell components to pass through, and that do not damage blood cell components and cause hemolysis, the first thing to do is to choose a polysulfone hollow fiber with a wide pore size. A technique that can be freely changed within a range is required, but among the above-mentioned known techniques, Japanese Patent Application Laid-Open No. 58-114702 and Japanese Patent Laid-Open No. 59-5804
No. 1 and JP-A-59-183761 do not change hollow fibers that allow plasma components to pass through well, and JP-A-58-183761
Since there are concerns about safety in JP-A-91822, hollow fibers with various pore diameters were prepared using the method described in JP-A-59-189903 filed by the present inventor, and the resulting hollow fibers were used to conduct actual experiments. As a result of conducting numerous experiments on plasma,
We have arrived at the present invention.

すなわち本発明は、血漿成分がよく透過し、血球成分が
透過せず、しかも血球成分に損傷を与えたり、溶血など
を生じさせないポリスルホン中空糸である内表面の最大
孔径が0.9〜8μm、外表面および断面の最大孔径が
いずれも0.5〜5μlで、内径が250〜500μl
である血漿分離用ポリスルホン中空糸に関する。
That is, the present invention is a polysulfone hollow fiber through which plasma components permeate well, blood cell components do not permeate, and does not damage the blood cell components or cause hemolysis, etc., and the maximum pore diameter of the inner surface is 0.9 to 8 μm. The maximum pore diameter on the outer surface and cross section are both 0.5 to 5 μl, and the inner diameter is 250 to 500 μl.
This invention relates to a polysulfone hollow fiber for plasma separation.

[実施例] 本発明に用いられるポリスルホン樹脂の代表例としては
、式(I): CH。
[Example] A typical example of the polysulfone resin used in the present invention is represented by formula (I): CH.

CH。CH.

または式(■): で示される繰返し単位を有するものがあげられる。これ
らのうちでは、式(I)で示される繰返し単位を有する
ポリスルホン樹脂が生体適合性が良いといわれており、
限外濾過膜の素材として古くから利用され、機械的強度
も優れていることが知られており、本発明に使用する素
材としてもとくに好ましい。
Alternatively, those having a repeating unit represented by the formula (■): can be mentioned. Among these, polysulfone resin having a repeating unit represented by formula (I) is said to have good biocompatibility.
It has been used as a material for ultrafiltration membranes for a long time and is known to have excellent mechanical strength, and is particularly preferred as a material for use in the present invention.

本明細書にいう最大孔径とは、待1jll@59−18
9903号公報でも述べたように中空糸の内表面、外表
面および断面の電子顕微鏡写真((株)日立製作新製の
X−650を用いて撮影)を用いて測定したものである
。特開昭59−489903号公報でも画定方法が簡単
に述べられているが、ここで具体的に詳しく説明する。
The maximum pore diameter referred to in this specification is 1jll@59-18
As described in the 9903 publication, the measurements were made using electron micrographs (taken using X-650, newly manufactured by Hitachi Seisakusho, Ltd.) of the inner surface, outer surface, and cross section of the hollow fiber. JP-A-59-489903 also briefly describes the method of delimitation, but it will be specifically explained in detail here.

第1図〜@3図はそれぞれ特開昭59−189903号
公報の方法で作った中空糸の外表面(1)、内表面(2
)および断面(3)上の代表的な孔(4)、(5)、(
6)とその孔(4)、(5)、(6)の中に入る直径が
最大の内接円を示している。(d、)、(d2)、(d
3)はそれぞれの内接円の直径である。第1図〜第3図
にそれぞれ示すように、この中空糸の外表面(1)の孔
(4)は楕円形で、内表面(2)の孔(5)は不定形で
、断面(3)の孔(6)は網目状の隔壁())でしきら
れた孔である。
Figures 1 to 3 show the outer surface (1) and inner surface (2) of hollow fibers made by the method disclosed in JP-A-59-189903, respectively.
) and representative holes (4), (5), (
6) and the inscribed circle with the largest diameter that fits into the holes (4), (5), and (6). (d,), (d2), (d
3) is the diameter of each inscribed circle. As shown in Figures 1 to 3, the holes (4) on the outer surface (1) of this hollow fiber are elliptical, the holes (5) on the inner surface (2) are irregular, and the cross section (3 The hole (6) in ) is a hole separated by a mesh-like partition wall ( ).

第1図の孔(4)が中空糸の任意の外表面(1)の走査
型電子顕微鏡写真の中の内接円の直径が最大である孔を
示すとすると、この中空糸の外表面(1)の最大孔径は
(dl)である。ただし、この電子顕微鏡写真の視野は
およそ10d+ X 10d+の範囲を写しているもの
とする。同様にして内表面および断面の最大孔径を測定
する。
Assuming that the hole (4) in Fig. 1 indicates the hole whose inscribed circle has the largest diameter in the scanning electron micrograph of the arbitrary outer surface (1) of the hollow fiber, then the outer surface of the hollow fiber ( The maximum pore diameter of 1) is (dl). However, it is assumed that the field of view of this electron micrograph covers a range of approximately 10d+ x 10d+. Measure the maximum pore diameter on the inner surface and cross section in the same way.

このようにして測定した最大孔径(dl)、(d2)、
(d3)をパラメーターとして実際に測定した血漿成分
の透過性を対応させるとこれらの間に極めて密接な相関
関係があることが本発明者により見出されている。すな
わち血漿成分がよく透過する中空糸の(d+)、(d2
)、(d3)は、それぞれO05μ!以上、0.9μl
以上、0,5μl以上でなければならないことが見出さ
れている。とくに内表面については孔の形が不定形で、
孔径分布が極めてブロードであるために、面積平均孔径
などの平均孔径は血漿成分の透過性と明瞭には対応しな
い。
The maximum pore diameter (dl), (d2), measured in this way,
The present inventor has found that there is an extremely close correlation between the permeability of plasma components actually measured using (d3) as a parameter. In other words, (d+) and (d2) of the hollow fiber through which plasma components permeate well.
), (d3) are each O05μ! Above, 0.9μl
As mentioned above, it has been found that the volume must be 0.5 μl or more. In particular, the shape of the pores on the inner surface is irregular;
Because the pore size distribution is extremely broad, the average pore size, such as the area average pore size, does not clearly correspond to the permeability of plasma components.

本発明の中空糸の内表面、外表面および断面には、最大
孔径がそれぞれ0.9〜8μ!、好ましくは3〜7μz
、 0.5〜5μ夏、好ましくは0.6〜2μz、 0
.5〜5μ11好ましくは0.6〜2μlの孔が存在し
ている。それぞれの最大孔径のいずれかが上記の下限未
満のばあいには、血漿成分、とくにIBMやコレステロ
ールのように分子量の大きい成分が充分透過しない。一
方、内表面の最大孔径が8μmをこえると、孔に血球成
分が詰ったり、溶血が生ずることがある。外表面および
断面の最大孔径のいずれかが5μlをこえると、血漿成
分の透過性の面では満足できるが、充分な強度を維持で
きなくなる。強度について厳密な限界はないが、取扱い
上中空糸一本当りの引張り強度が15.未満になると切
れ易(なるので、この強度が20g以上あることが好ま
しい。
The inner surface, outer surface, and cross section of the hollow fiber of the present invention each have a maximum pore diameter of 0.9 to 8 μ! , preferably 3-7μz
, 0.5-5μ summer, preferably 0.6-2μz, 0
.. There are pores of 5 to 5 μl, preferably 0.6 to 2 μl. If either of the maximum pore diameters is less than the above-mentioned lower limit, plasma components, especially components with large molecular weights such as IBM and cholesterol, will not sufficiently permeate. On the other hand, if the maximum pore diameter of the inner surface exceeds 8 μm, the pores may become clogged with blood cell components or hemolysis may occur. If the maximum pore diameter of either the outer surface or the cross section exceeds 5 μl, the permeability of plasma components will be satisfactory, but sufficient strength will not be maintained. Although there is no strict limit on strength, the tensile strength of one hollow fiber is 15. If it is less than this, it will be easy to break, so it is preferable that this strength is 20 g or more.

血漿成分の透過性がよく、しかも強度が充分であるため
には、外表面および断面の最大孔径は2μ履以下である
ことが好ましい。
In order to have good permeability to plasma components and sufficient strength, the maximum pore diameter on the outer surface and cross section is preferably 2 μm or less.

本発明の中空糸の内径は250〜500μm、好ましく
は270〜360μlである。中空糸の内径が250μ
1未満になると血栓が生じ易(なり、500μ友をこえ
るとモノニール内へ収納できる有効膜面積が小さくなり
、モジュール当りの濾過量が小さくなる。
The inner diameter of the hollow fiber of the present invention is 250 to 500 μm, preferably 270 to 360 μl. The inner diameter of the hollow fiber is 250μ
If it is less than 1, blood clots are likely to occur, and if it exceeds 500 μm, the effective membrane area that can be accommodated in the monolayer becomes smaller, resulting in a smaller filtration amount per module.

本発明の中空糸の肉厚や密度あるいは内表面、外表面、
断面上の空孔率などにはとくに限定はないが、透過性や
強度を適切に維持するためには肉厚および密度がそれぞ
れ40〜80μlおよ10.25−0.32g/cx”
、内表面、外表面および断面上の空孔率がそれぞれ10
〜70%、10〜70%および30〜80%であること
が好ましい。
The wall thickness, density, inner surface, outer surface of the hollow fiber of the present invention,
There is no particular limit to the porosity on the cross section, but in order to maintain appropriate permeability and strength, the wall thickness and density should be 40 to 80 μl and 10.25 to 0.32 g/cx, respectively.
, the porosity on the inner surface, outer surface and cross section is 10, respectively.
~70%, 10-70% and 30-80% are preferred.

本発明の中空糸は特開昭59−189903号公報の方
法で製造される。すなわちポリスルホン樹脂を含有する
溶液を環状のノズルから内部凝固液とともに押し出し、
直ちにまたはノズルから50cm以内、好ましくは20
cz以内の乾式距離を経たのち、全体を外部凝固液に接
触させる中空糸の成形方法において、前記溶液の組成を
温度を降下させていくと粘度上昇から粘度降下に移る転
移温度を有する組成とし、前記溶液を転移温度以上に保
持しながら環状ノズルから押し出し、内部凝固液、乾式
距離にある中空糸に接する気体および外部凝固液のうち
の1つ以上を前記の転移温度未満に保持することにより
本発明の中空糸が製造される。
The hollow fiber of the present invention is manufactured by the method disclosed in Japanese Patent Application Laid-open No. 59-189903. That is, a solution containing polysulfone resin is extruded from an annular nozzle together with an internal coagulating liquid,
Immediately or within 50 cm from the nozzle, preferably 20 cm
In a method for forming a hollow fiber in which the entire body is brought into contact with an external coagulating liquid after passing through a dry distance of less than cz, the composition of the solution has a composition having a transition temperature at which the viscosity increases and the viscosity decreases as the temperature is lowered, The solution is extruded through an annular nozzle while being maintained above the transition temperature, and one or more of an internal coagulating liquid, a gas in contact with the hollow fibers in the dry distance, and an external coagulating liquid are maintained below the transition temperature. A hollow fiber of the invention is manufactured.

つぎに本発明の中空糸を実施例にもとづき説明する。Next, the hollow fiber of the present invention will be explained based on Examples.

実施例1〜6および比較例1〜4 ポリスルホン(ユニオンカーバイト社製のP−3500
)13重量%、プロピレングリコール25.5重量%お
よびトメチル−2−ピロリドン61.5重量%からなる
転移温度70℃の溶液を用い、N−メチル−ピロリドン
70重量%水溶液を内部凝固液、水を外部凝固液として
用い、乾式距離15cm、ノズル環状部寸法0,411
φX0,6zi+φ、乾式雰囲気の温度を室温(20〜
25℃)とし、孔径や肉厚、内径などを調節するために
他の条件である溶液温度を83〜85℃、外部凝固液温
度を30〜50℃、内部凝固液温度を20〜40℃、溶
液押出量を2.9〜8、h1分、内部凝固液押出量を1
.9〜6.1g/分、紡糸速度を30〜50z/分の範
囲で変化させて中空糸を製造した。えられた中空糸を充
分に水洗したのち、含水率が1%未満になるまで風乾し
た。
Examples 1 to 6 and Comparative Examples 1 to 4 Polysulfone (P-3500 manufactured by Union Carbide)
) 13% by weight, propylene glycol 25.5% by weight, and tomethyl-2-pyrrolidone 61.5% by weight with a transition temperature of 70°C. Used as external coagulation liquid, dry distance 15 cm, nozzle annular size 0.411
φX0,6zi+φ, set the temperature of the dry atmosphere to room temperature (20~
25°C), and in order to adjust the pore diameter, wall thickness, inner diameter, etc., the other conditions are the solution temperature of 83 to 85°C, external coagulation liquid temperature of 30 to 50°C, internal coagulation liquid temperature of 20 to 40°C, Solution extrusion rate is 2.9 to 8, h1 minute, internal coagulation liquid extrusion rate is 1
.. Hollow fibers were produced by changing the spinning speed from 9 to 6.1 g/min and from 30 to 50 z/min. The obtained hollow fibers were thoroughly washed with water and then air-dried until the water content became less than 1%.

変化させた製造条件、えられた中空系の内表面、外表面
および断面の最大孔径、内径、肉厚を第1表にまとめて
示す。
Table 1 summarizes the changed manufacturing conditions, the maximum pore diameter, inner diameter, and wall thickness of the inner surface, outer surface, and cross section of the hollow system obtained.

このようにして製造した中空糸の血液の濾過は、とくに
断らないかぎり小型の濾過装置(ミニモジュール)を使
用して測定した。この装置は中空糸をケースにおさめ、
中空糸の内側に通ずる血液を流すための血液の出入口と
、中空糸の外側に透過した濾液の出口を有するものであ
り、各中空糸間を血液が濾液側に漏れないように中空糸
の両端がクレタンtM脂で充填されたものである。
The blood filtration of the hollow fibers thus produced was measured using a small filtration device (mini module) unless otherwise specified. This device houses a hollow fiber in a case,
It has a blood inlet/outlet for blood to flow inside the hollow fiber, and an outlet for the filtrate that has permeated to the outside of the hollow fiber. is filled with Cretan tM fat.

中空糸を収めるケースには内径9zx、外径13■、長
さ22cxのポリカーボネート製のパイプを用いた。フ
レタン樹脂の充填部分を除いた中空糸の有効長はおよそ
18czとなるようにした。中空糸の内径が360μ厘
以下のばあいには、中空糸の内面について有効面積がお
よそ450cz2になるようにした。中空糸の内径が5
00μ道のばあいには、中空糸を傷つけないように収納
できる限界はおよそ340cm”であった。
A polycarbonate pipe with an inner diameter of 9zx, an outer diameter of 13cm, and a length of 22cx was used as a case to house the hollow fibers. The effective length of the hollow fibers excluding the part filled with Frethane resin was set to be approximately 18 cz. When the inner diameter of the hollow fiber was 360 μm or less, the effective area of the inner surface of the hollow fiber was approximately 450 cz2. The inner diameter of the hollow fiber is 5
In the case of the 00μ path, the limit that the hollow fibers could be stored without damaging them was approximately 340 cm.

濾過性能が血液の性質に太き(左右されないように、■
採取後24時間以内である、■抗凝固剤としてクエン酸
ナトリウムの3.1%トリスバッファ溶液1重量部を牛
血9重量部に加える、■ヘマトクリットが40±2とな
るように生理食塩水で調節する、■577ni+の光の
吸光度が0.3以下であるという基準を満たす牛血を用
いた。
The filtration performance depends on the nature of the blood (so that it does not depend on the properties of the blood,
Within 24 hours after collection, ■ Add 1 part by weight of a 3.1% Tris buffer solution of sodium citrate as an anticoagulant to 9 parts by weight of bovine blood, ■ Add physiological saline so that the hematocrit is 40 ± 2. Bovine blood was used that met the standard of having an absorbance of 577ni+ light of 0.3 or less.

牛血の濾過および測定方法を以下に示す。The method for filtration and measurement of bovine blood is shown below.

前記のミニモジュール中の中空糸をあらかじめエタノー
ル水溶液で親水化したのち、このエタノール溶液を生理
食塩水と置換した。ついで中空糸の内側に牛血を送るこ
とができるようにローラーポンプを接続し、一定流量で
濾液を取り出すためにNR液出口にもローラーポンプを
接続した。牛血の流量に対する濾過量の割合は通常30
%が限界とされ、これ以上濾過すると血栓や溶血が生じ
るといわれているので、牛血流量および濾過量をそれぞ
れ5 xi1分およI/1.5zj!/分とした。牛血
お上りミニモジュールは37±2℃に保温した。血液お
上り濾液中の血漿成分の濃度を測定するために、濾過を
開始してから60分後に血液および濾液を採取した。
The hollow fibers in the mini-module were previously made hydrophilic with an aqueous ethanol solution, and then the ethanol solution was replaced with physiological saline. Next, a roller pump was connected so that bovine blood could be sent inside the hollow fiber, and a roller pump was also connected to the NR liquid outlet in order to take out the filtrate at a constant flow rate. The ratio of the amount of filtration to the flow rate of bovine blood is usually 30
% is said to be the limit, and it is said that if filtration exceeds this limit, blood clots and hemolysis will occur, so the blood flow rate and filtration rate of the cow should be 5 x 1 min and I/1.5 zj, respectively! / minute. The bovine blood mini-module was kept at 37±2°C. To measure the concentration of plasma components in the blood filtrate, blood and filtrate were collected 60 minutes after starting filtration.

血液および濾液中の血漿成分のうち、アルブミン、全蛋
白質、IgMおよびコレステロールを代表成分として分
析した。全コレステロールはC−テスト法(和光純薬(
株)の方法)で、その他の成分は高速液体クロマトグラ
フィー(東洋曹達(株)製のHl:C−8030を使用
)で定量分析した。各成分の透過率は次式により1<め
な6 えちれた結果を第1表に示す。
Among the plasma components in blood and filtrate, albumin, total protein, IgM, and cholesterol were analyzed as representative components. Total cholesterol was measured using the C-test method (Wako Pure Chemical Industries, Ltd.)
Other components were quantitatively analyzed by high performance liquid chromatography (Hl:C-8030 manufactured by Toyo Soda Co., Ltd.). The transmittance of each component was calculated using the following formula to be 1<6. The results are shown in Table 1.

なお実施N1〜6お上り比較例1〜4の牛血の透過試験
では急激な圧力の変化や溶血は生じなかった。また、濾
液中に血球成分はほとんど存在しなかった。さらに試験
終了後、ミニモノエールに生理食塩水を流したところ、
すみやかに牛血と置換され、中空糸内部で血栓が生じな
かったことが確認された。
In addition, in the bovine blood permeation tests of Examples 1 to 4 of Examples 1 to 6, no sudden pressure changes or hemolysis occurred. Furthermore, almost no blood cell components were present in the filtrate. Furthermore, after the test was completed, when physiological saline was poured into the Mini Mono Ale,
It was quickly replaced with bovine blood, and it was confirmed that no thrombus had formed inside the hollow fiber.

[以下余白] 比較例5 第2表に示す製造条件で内径が240μm、肉厚50μ
m、内表面、断面および外表面の最大孔径がそれぞれ1
.5μz、 1,5μlおよび0.6μ夏の細い中空糸
を作り、ミニモジュールを用いてウサギの血液の体外循
環試験を行なった。血液循環量および濾過量をそれぞれ
5 m17分および1 m17分に設定したところ、ミ
ニモジュール内での血液の圧力損失が40zzHgから
急速に増加し、30分後には60zzHgをこえ、溶血
も生じた。
[Margins below] Comparative Example 5 Under the manufacturing conditions shown in Table 2, the inner diameter was 240 μm and the wall thickness was 50 μm.
m, the maximum pore diameters of the inner surface, cross section and outer surface are each 1
.. Thin hollow fibers of 5 μz, 1.5 μl, and 0.6 μl were made, and a rabbit blood extracorporeal circulation test was performed using a mini module. When the blood circulation volume and filtration volume were set to 5 m17 min and 1 m17 min, respectively, the pressure loss of blood within the mini-module rapidly increased from 40 zzHg, exceeded 60 zzHg after 30 minutes, and hemolysis also occurred.

実施例7 第2表に示す製造条件で内径270μm、肉厚50μm
、内表面、断面および外表面の最大孔径がそれぞれ5μ
m、1.5μ!および0.9μlの中空糸を作り、作製
したミニモジュールを用いて比較例5と同様にしてウサ
ギの血液の体外循環試験を120分間行なった。ミニモ
ジュール内の血液の圧力損失は35〜40xzHgで安
定し、溶血も生じなかった。
Example 7 Under the manufacturing conditions shown in Table 2, the inner diameter was 270 μm and the wall thickness was 50 μm.
, the maximum pore diameters of the inner surface, cross section and outer surface are each 5μ
m, 1.5μ! Then, a 0.9 μl hollow fiber was prepared, and a rabbit blood extracorporeal circulation test was conducted for 120 minutes in the same manner as in Comparative Example 5 using the prepared mini module. The blood pressure drop within the mini-module was stable at 35-40xzHg, and no hemolysis occurred.

実施例8 第2表に示す製造条件で内径5004m、肉厚60μm
、内表面、断面および外表面の最大孔径がそれぞれ6μ
xs 1.5μmおよび0.9μlの中空糸を作った。
Example 8 Under the manufacturing conditions shown in Table 2, the inner diameter was 5004 m and the wall thickness was 60 μm.
, the maximum pore diameters of the inner surface, cross section and outer surface are each 6μ
xs 1.5 μm and 0.9 μl hollow fibers were made.

ただし、環状部分の寸法が0.6zzφX0,9i+i
+φのノズルを使用した。えちれた中空糸を用いて作っ
たミニモジュールの中空糸内面の有効面積は340ez
”であった。牛血を511/分流したときに、溶血を生
じさせない最大の濾過量は1117分であった。
However, if the size of the annular part is 0.6zzφX0,9i+i
A +φ nozzle was used. The effective area of the inner surface of the hollow fiber of the mini module made using the hollow fiber is 340ez
"When bovine blood was flowed 511 min/min, the maximum filtration rate without causing hemolysis was 1117 min.

E以下余白] 実施例9 実施例6と同じ中空糸を用いたミニモジュールに牛血を
5 m17分で流し、濾過量を1.81117分に設定
した。濾過液の圧力が徐々に低下し、30分後には、ミ
ニモジュールの入口血液圧力との差が200ziHgに
達したが、溶血は生じなかった。
Blank space below E] Example 9 5 ml of bovine blood was flowed in 17 minutes through a mini module using the same hollow fiber as in Example 6, and the filtration rate was set at 1.81117 minutes. The pressure of the filtrate gradually decreased, and after 30 minutes, the difference with the inlet blood pressure of the mini-module reached 200 ziHg, but no hemolysis occurred.

以上の実施例、比較例から、牛血の個体差によると思わ
れるデータのバラツキはあるものの、以下の結論がえら
れる。
From the above Examples and Comparative Examples, the following conclusions can be drawn, although there are some variations in the data that may be due to individual differences in bovine blood.

第1表に示した比較例1〜3および実施例1〜6の結果
は、血漿成分がよく透過する、すなわちアルブミン、総
蛋白質、IgMおよびコレステロールの透過率がそれぞ
れ90%以上、90%以上、70%以上および70%以
上であるためには、内面の最大孔径が0.9μ度以上必
要であることをしめしている。また、実施例1〜6およ
び比較例4の結果は、血漿成分がよく透過するためには
、外面の最大孔径が0.5μ1以上必要であることをし
めしている。
The results of Comparative Examples 1 to 3 and Examples 1 to 6 shown in Table 1 indicate that plasma components permeate well, that is, the permeability of albumin, total protein, IgM, and cholesterol is 90% or more, 90% or more, respectively. This indicates that the maximum pore diameter of the inner surface must be 0.9 μ degree or more in order to be 70% or more and 70% or more. Further, the results of Examples 1 to 6 and Comparative Example 4 indicate that the maximum pore diameter of the outer surface is required to be 0.5 μ1 or more in order for plasma components to permeate well.

比較例5と実施例7とを比較すると、血栓や溶血を生じ
させないためには、中空糸の内径は少な(とも250μ
m、好ましくは270μm以上必要であることがわかる
Comparing Comparative Example 5 and Example 7, it is found that in order to prevent thrombus and hemolysis, the inner diameter of the hollow fibers should be small (250 μm in both cases).
m, preferably 270 μm or more.

実施例9は、本発明の中空糸が血栓や溶血を比較的起こ
しにくいことを示している。
Example 9 shows that the hollow fiber of the present invention is relatively less prone to thrombosis and hemolysis.

[発明の効果] ポリスルホン樹脂は、従来から血液適合性が良いといわ
れていたが、血球成分を透過させず、血漿成分をよく通
し、しかも血栓や溶血を生じさせない血漿分離用の中空
糸はえられていなかったが、本発明の中空糸によってこ
れらの目的はすべて達成される。さらに、ポリスルホン
樹脂が本米持っている耐熱性や化学的な安定性がいかさ
れ、蒸気滅菌や7線照射による減菌も可能となる。
[Effect of the invention] Polysulfone resin has long been said to have good blood compatibility, but a hollow fiber fly for plasma separation that does not allow blood cell components to pass through, allows plasma components to pass through well, and does not cause blood clots or hemolysis. However, the hollow fibers of the present invention achieve all of these objectives. Furthermore, the heat resistance and chemical stability of polysulfone resin are utilized, making it possible to sterilize by steam sterilization or 7-ray irradiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ本発明の中空糸の外表面、内
表面および断面の孔形の該略とそれぞれの孔に内接する
直径が最大の円に関する説明図である。 (図面の主要符号) (1):外表面 (2):内表面 (3):断面 (d+):外表面の最大孔経 (d2):内表面の最大孔経 (d、):断面の最大孔経
FIGS. 1 to 3 are explanatory diagrams of the outline of the hole shapes on the outer surface, inner surface, and cross section of the hollow fiber of the present invention, and the circle with the largest diameter inscribed in each hole, respectively. (Main symbols in the drawing) (1): Outer surface (2): Inner surface (3): Cross section (d+): Maximum hole diameter on the outer surface (d2): Maximum hole diameter on the inner surface (d, ): Section of the maximum hole meridian

Claims (1)

【特許請求の範囲】 1 内表面の最大孔径が0.9〜8μm、外表面および
断面の最大孔径がいずれも0.5〜5μmで、内径が2
50〜500μmである血漿分離用ポリスルホン中空糸
。 2 ポリスルホンが式: ▲数式、化学式、表等があります▼ で表わされる繰返し単位を有する特許請求の範囲第1項
記載のポリスルホン中空糸。
[Claims] 1. The maximum pore diameter on the inner surface is 0.9 to 8 μm, the maximum pore diameter on the outer surface and cross section are both 0.5 to 5 μm, and the inner diameter is 2.
A polysulfone hollow fiber for plasma separation having a diameter of 50 to 500 μm. 2. The polysulfone hollow fiber according to claim 1, wherein the polysulfone has a repeating unit represented by the formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼.
JP7371385A 1985-04-08 1985-04-08 Polysulfone hollow yarn for separating serum Pending JPS61232860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7371385A JPS61232860A (en) 1985-04-08 1985-04-08 Polysulfone hollow yarn for separating serum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7371385A JPS61232860A (en) 1985-04-08 1985-04-08 Polysulfone hollow yarn for separating serum

Publications (1)

Publication Number Publication Date
JPS61232860A true JPS61232860A (en) 1986-10-17

Family

ID=13526135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7371385A Pending JPS61232860A (en) 1985-04-08 1985-04-08 Polysulfone hollow yarn for separating serum

Country Status (1)

Country Link
JP (1) JPS61232860A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034687A1 (en) * 1996-03-21 1997-09-25 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier
EP1359995A4 (en) * 2001-01-23 2004-04-07 Innovasep Technology Corp Asymmetric hollow fiber membranes
WO2005056081A1 (en) 2003-12-09 2005-06-23 Toyo Boseki Kabushiki Kaisha Polysulfone-based selectively permeative hollow fiber membrane bundle and method for manufacture thereof
JP2008110054A (en) * 2006-10-30 2008-05-15 Kuraray Medical Inc Hollow fiber membrane for blood purification and its manufacturing method
US7638052B2 (en) 2003-11-26 2009-12-29 Toyo Boseki Kabushiki Kaisha Polysulfone-based hollow-fiber membrane with selective permeability
US7837042B2 (en) 2004-08-10 2010-11-23 Nipro Corporation Polysulfone type selectively permeable hollow fiber membrane module and process for manufacturing the same
US7922007B2 (en) 2004-03-22 2011-04-12 Toyo Boseki Kabushiki Kaisha Separation membrane with selective permeability and process for producing the same
JP2012011221A (en) * 2011-09-12 2012-01-19 Asahi Kasei Kuraray Medical Co Ltd Hollow fiber membrane for blood purification and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189903A (en) * 1983-04-09 1984-10-27 Kanegafuchi Chem Ind Co Ltd Hollow yarn like filter and preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189903A (en) * 1983-04-09 1984-10-27 Kanegafuchi Chem Ind Co Ltd Hollow yarn like filter and preparation thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034687A1 (en) * 1996-03-21 1997-09-25 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier
US6042783A (en) * 1996-03-21 2000-03-28 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier
EP1359995A4 (en) * 2001-01-23 2004-04-07 Innovasep Technology Corp Asymmetric hollow fiber membranes
JP2004525755A (en) * 2001-01-23 2004-08-26 アマシャム・バイオサイエンス・メムブレイン・セパレイションズ・コーポレイション Asymmetric hollow fiber membrane
US7638052B2 (en) 2003-11-26 2009-12-29 Toyo Boseki Kabushiki Kaisha Polysulfone-based hollow-fiber membrane with selective permeability
WO2005056081A1 (en) 2003-12-09 2005-06-23 Toyo Boseki Kabushiki Kaisha Polysulfone-based selectively permeative hollow fiber membrane bundle and method for manufacture thereof
US7922007B2 (en) 2004-03-22 2011-04-12 Toyo Boseki Kabushiki Kaisha Separation membrane with selective permeability and process for producing the same
US7837042B2 (en) 2004-08-10 2010-11-23 Nipro Corporation Polysulfone type selectively permeable hollow fiber membrane module and process for manufacturing the same
JP2008110054A (en) * 2006-10-30 2008-05-15 Kuraray Medical Inc Hollow fiber membrane for blood purification and its manufacturing method
JP2012011221A (en) * 2011-09-12 2012-01-19 Asahi Kasei Kuraray Medical Co Ltd Hollow fiber membrane for blood purification and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5496637A (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
KR101295949B1 (en) Plasma separation membrane
US5187010A (en) Membrane having high affinity for low density lipoprotein-cholesterol from whole blood
US7563376B2 (en) Plasma purification membrane and plasma purification system
US5236644A (en) Process of making membrane for removal of low density lipoprotein-cholesterol from whole blood
US5418061A (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
EP0121911A2 (en) Hollow fiber filter medium and process for preparing the same
US4925534A (en) Hemodialysis method and membrane
WO1997034687A1 (en) Hollow yarn membrane used for blood purification and blood purifier
EP0716859B1 (en) Module for blood purification, blood purification membrane and its production
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JPS61232860A (en) Polysulfone hollow yarn for separating serum
CN110559866A (en) High-permeability compact hollow fiber membrane for blood oxygenation
JP3357262B2 (en) Hollow fiber membrane type body fluid purifying device and method of manufacturing the same
JPH0966225A (en) Production of hollow fiber membrane, hollow fiber membrane and dialyser
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JPS63105770A (en) Plasma component separating membrane
JP2855725B2 (en) Porous hollow fiber membrane for plasma separation
JPH09308684A (en) Selective separating membrane
JPH01192368A (en) Viral disease medical treatment system
JP2000334277A (en) Polysulfone-based hollow fiber membrane, its production of and fluid treating device using the same
JP2002035557A (en) Hollow fiber microporous membrane and membrane type oxygenator having the same incorporated therein
JP2004216328A (en) Permselective hollow fiber membrane and blood treatment instrument using the same