JPS61231768A - Mis type field effect transistor - Google Patents

Mis type field effect transistor

Info

Publication number
JPS61231768A
JPS61231768A JP60073902A JP7390285A JPS61231768A JP S61231768 A JPS61231768 A JP S61231768A JP 60073902 A JP60073902 A JP 60073902A JP 7390285 A JP7390285 A JP 7390285A JP S61231768 A JPS61231768 A JP S61231768A
Authority
JP
Japan
Prior art keywords
drain
type
oxide film
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60073902A
Other languages
Japanese (ja)
Inventor
Kazuo Kunimasa
国政 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60073902A priority Critical patent/JPS61231768A/en
Publication of JPS61231768A publication Critical patent/JPS61231768A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To improve current-voltage characteristics, eliminate instability of a threshold voltage VT and improve a dielectric strength between a drain and a substrate by a method wherein an opposite conductive type region contacts an opposite conductive type layer and is separated from a same conductive type region which has a higher impurity concentration than a semiconductor substrate. CONSTITUTION:A thick gate oxide film 3 is formed on a P-type silicon substrate 1 by a LOCOS method. An N-type low concentration layer 8 is formed directly under the thick gate oxide film 3 by an ion implantation method so as to contact an N-type high concentration drain diffused layer 5. A P-type, the same conductive type as the silicon substrate 1, high concentration channel stopper layer 7 is formed under a source side field oxide film and not formed under a drain side field oxide film 2. As the low concentration layers of the gate and the drain overlap each other, a region in which there is no inversion does not exist so that current-voltage characteristics and instability of a threshold voltage of a MOSFET can be improved. As a channel stopper is not provided under the drain side field region, deterioration of a dielectric strength on the side of the channel stopper of the drain is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS型電界効果トランジスタに関し、社V恵
ト=錫浩冬友寸入MTQ柑j宙界鮪里トラソジスタVc
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an MIS field effect transistor,
related.

〔従来の技術〕[Conventional technology]

MIS型電界効果トランジスタ(以後MISFETと記
す)の最も一般的なもの[MO8型電界効果トランジス
タ(以後MO8FETと記す)であるのでMO8FET
K)いて説明する。一般KM08FETのドレイン耐圧
は、ドレイン−ソース間およびドレイン−ゲート間の電
界集中によるドレイン近傍のアバランシェ破壊で決まっ
ている。そこで従来の方法では、ゲートをドレイン領域
にのばしたフィールドプレート法、あるいはゲート電極
で反転しきれない領域を電極で反転させ長いドリフトチ
ャネル領域を形成して電圧効果をはかるスタックド・ゲ
ート法によ、り7MO8FETの耐圧を向上している。
The most common MIS type field effect transistor (hereinafter referred to as MISFET) [MO8 type field effect transistor (hereinafter referred to as MO8FET), so MO8FET
K) Explain. The drain breakdown voltage of a general KM08FET is determined by avalanche breakdown near the drain due to electric field concentration between the drain and the source and between the drain and the gate. Therefore, conventional methods use the field plate method, in which the gate extends into the drain region, or the stacked gate method, in which the region that cannot be inverted by the gate electrode is inverted by the electrode, forming a long drift channel region to measure the voltage effect. , the withstand voltage of the 7MO8FET has been improved.

しかしながら、フィールドプレート法では、ドリフト領
域を長くとる必要がありこのため、MOSFETの万ン
抵抗Revは大きくなシ、相互コンダクタンスg1は小
さいという欠点がある。スタックド・ゲート法でも、ド
リフチャネル領域を長〈とる必要があυ、オン抵抗RO
N及び相互コンダクタンスg、は改善されない。そこで
、ゲートとドレイン間の距離を比較的短かくし、オン抵
抗を下げる方法としてドレイン側のゲート酸化膜を厚く
して、ゲート−ドレイン間の電界集中を抑える方法がと
られている。この方法を第2図を用いて説明する。ドレ
イン側の厚いゲート酸化膜3は工程の簡単化のためシリ
コンゲート型MOS F ETのフィールド酸化膜を形
成するLOCO8法で同時に形成する。Pfi不純物基
板1とフィールド酸化膜2.3の間には、比較的高濃度
のP型不純物層7,10がチャネルストッパーとして設
けられる。
However, in the field plate method, it is necessary to make the drift region long, and therefore the MOSFET has the drawbacks of a large resistance Rev and a small mutual conductance g1. Even in the stacked gate method, it is necessary to make the drift channel region long, and the on-resistance RO
N and transconductance g, are not improved. Therefore, in order to reduce the on-resistance by making the distance between the gate and the drain relatively short, a method has been adopted in which the gate oxide film on the drain side is made thicker to suppress the electric field concentration between the gate and the drain. This method will be explained using FIG. 2. The thick gate oxide film 3 on the drain side is formed at the same time by the LOCO8 method, which is used to form a field oxide film of a silicon gate type MOSFET, in order to simplify the process. Between the Pfi impurity substrate 1 and the field oxide film 2.3, relatively high concentration P type impurity layers 7 and 10 are provided as channel stoppers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のMISFETは、LOCO8法によシ形
成したフィールド酸化膜の下に基板と同じ導’it型の
高濃度チャネルストッパーが存在するため、厚いゲート
酸化膜の下のチャネルストッパーは、MISFETのド
レインピンチ抵抗として相互フンダクタンスg1を下げ
、電流−電圧特性を劣化させる。また、ドレイン側のチ
ャネルストッパーは、ドレインと接しているため接合耐
圧が弱(、MISFETの高耐圧化に適していないとい
う欠点がある。
In the conventional MISFET described above, a high concentration channel stopper of the same conductivity type as the substrate exists under the field oxide film formed by the LOCO8 method, so the channel stopper under the thick gate oxide film is As a drain pinch resistance, it lowers the mutual fundance g1 and deteriorates the current-voltage characteristics. Further, since the channel stopper on the drain side is in contact with the drain, the junction breakdown voltage is weak (and is not suitable for increasing the breakdown voltage of MISFETs).

本発明は、上記欠点を除去し、ドレイン側のピンチ抵抗
を小さくしそれによシミ波電圧特性を改善し、またしき
い電圧VTの不安定性をなくシ、かつ、ドレイン−基板
間耐圧を改善したMIS型電界効果トランジスタを提供
することを目的とする。
The present invention eliminates the above drawbacks, reduces pinch resistance on the drain side, thereby improving stain wave voltage characteristics, eliminates instability of threshold voltage VT, and improves drain-substrate breakdown voltage. An object of the present invention is to provide a MIS type field effect transistor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のMIS型電界効果トランジスタは、−導電型を
有する半導体基板の一主表面にドレイン近傍のゲート絶
縁膜が厚く形成されたMIS型電界効果トランジスタに
おいて、前記厚い絶縁膜下の半導体基板表面には反対導
電型層を有し、反対導電型を有するドレイン領域は前記
反対導電型層に接し、かつ前記半導体基板よシ高い不純
物濃度を有する一導電型領域とは#I間されていること
を特徴として構成される。
The MIS field effect transistor of the present invention has a thick gate insulating film near the drain formed on one main surface of a semiconductor substrate having a -conductivity type, wherein has an opposite conductivity type layer, and the drain region having the opposite conductivity type is in contact with the opposite conductivity type layer and is separated from the one conductivity type region having a higher impurity concentration than the semiconductor substrate. Constructed as a feature.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図である。本実施例で
はMISFETKつき説明する。
FIG. 1 is a sectional view of an embodiment of the present invention. In this embodiment, MISFETK will be explained.

まず、第1図に示すように、P型シリコン基板に、LO
CO8法で形成した厚いゲートm化膜3の直下にイオン
注入法にてN型低濃度膚8を、N型高漉度のドレイン拡
散膚5と接するように形成する。また、シリコン基板と
同導ル、形のP型窩濃度層チャネルストッパー7Lソー
ス側のフィールド酸化膜の下に形成し、ドレイン側には
形成しない。
First, as shown in FIG. 1, LO
An N-type low concentration layer 8 is formed by ion implantation directly under the thick gate m-concentration layer 3 formed by the CO8 method so as to be in contact with the N-type high concentration drain diffusion layer 5. Further, a P-type hole concentration layer channel stopper 7L having the same conductivity as the silicon substrate is formed under the field oxide film on the source side, but not on the drain side.

このように形成された高耐圧MO8FETはドレイン側
の厚いゲー)[化膜3の下に低濃度のN型導電層を設け
ているため、ピンチ抵抗が小さくなる。
The high breakdown voltage MO8FET formed in this manner has a thick gate on the drain side and has a low concentration N-type conductive layer under the dielectric film 3, so that the pinch resistance is reduced.

また、ゲートとドレイン低濃度層が、オーバーラツプし
ているため、反転しない領域が存在しなくなり、MOS
FETの電流−電圧特性が改善されるとともに、しきい
電圧VTの不安定性が改善される。また、ドレイン側の
フィールド領域下には、千七未ルストッパー9語H%I
ハので ト01/インのチャネルストッパー側での耐圧
の劣化がなくなる。
In addition, since the gate and drain low concentration layers overlap, there is no region that does not invert, and the MOS
The current-voltage characteristics of the FET are improved, as well as the instability of the threshold voltage VT. In addition, under the field area on the drain side, there is a 9-word stopper H%I.
Therefore, there is no deterioration in the withstand voltage on the channel stopper side of the 01/in.

なお、本実施例ではNチャネル型のMOSFETについ
て説明したがPチャネル型のMOSFETにも適用でき
ることは説明するまでもなく、またMISFET全般に
適用できる。
In this embodiment, an N-channel type MOSFET has been described, but it goes without saying that the present invention can also be applied to a P-channel type MOSFET, and can also be applied to MISFETs in general.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、MISFETのドレイン
側の厚いゲート絶縁膜の下にシリコン基板と逆導電型の
低濃度層を形成することによシ、ドレイン側で生じるピ
ンチ抵抗を小さくすることができる。
As explained above, the present invention makes it possible to reduce the pinch resistance occurring on the drain side by forming a low concentration layer of the opposite conductivity type to the silicon substrate under the thick gate insulating film on the drain side of the MISFET. can.

また、このためMISFETの電流−電圧特性も改善さ
れる。また、ゲー1[造がオフセットでなくなるためM
ISFETのしきい電圧VTの不安定性がなくなる。
Furthermore, the current-voltage characteristics of the MISFET are also improved. Also, since game 1 [structure is no longer offset, M
The instability of the threshold voltage VT of the ISFET is eliminated.

さらに、フィールド酸化膜の下は、ソース側では基板と
h導電型のチャネルストッパーを設はフィールドの反転
防止を行ない、ドレイン側は、チャネルストッパーを設
けないことによシトレイン−基板間耐圧は、向上できる
Furthermore, under the field oxide film, a channel stopper of h-conductivity type is provided with the substrate on the source side to prevent field reversal, and no channel stopper is provided on the drain side, thereby improving the breakdown voltage between the cell line and the substrate. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は従来の高
耐圧MO8FETの断面図である。 l・・・・・・P型シリコン基板、2・・・・・・フィ
ールド酸化膜、3・・・・・・ドレイン側の厚いゲー)
&化膜、4・・・・・・N型ソース拡散層、5・・・・
・・N型ドレイン拡散層、6・・・・・・多結晶シリコ
ンケート、7・・・・・・P型高濃度のチャネルストッ
パー、8・・・・・・N型低濃度層、9・・・・・・ソ
ース側の薄いゲート酸化膜、10・・・・・・P型高濃
度層。 第1図 第2図
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional high voltage MO8FET. 1... P-type silicon substrate, 2... Field oxide film, 3... Thick gate on drain side)
& chemical film, 4...N-type source diffusion layer, 5...
...N-type drain diffusion layer, 6...Polycrystalline silicone layer, 7...P-type high concentration channel stopper, 8...N-type low concentration layer, 9. ... Thin gate oxide film on the source side, 10 ... P-type high concentration layer. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する半導体基板の一主表面にドレイン近傍
のゲート絶縁膜が厚く形成されたMIS型電界効果トラ
ンジスタにおいて、前記厚いゲート絶縁膜下の半導体基
板表面には反対導電型層を有し、反対導電型を有するド
レイン領域は前記反対導電型層に接し、かつ前記半導体
基板より高い不純物濃度を有する一導電型領域とは離間
されていることを特徴とするMIS型電界効果トランジ
スタ。
In a MIS field effect transistor in which a thick gate insulating film near the drain is formed on one main surface of a semiconductor substrate having one conductivity type, a layer of an opposite conductivity type is provided on the surface of the semiconductor substrate under the thick gate insulating film, A MIS type field effect transistor characterized in that a drain region having an opposite conductivity type is in contact with the opposite conductivity type layer and is separated from a one conductivity type region having an impurity concentration higher than that of the semiconductor substrate.
JP60073902A 1985-04-08 1985-04-08 Mis type field effect transistor Pending JPS61231768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60073902A JPS61231768A (en) 1985-04-08 1985-04-08 Mis type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60073902A JPS61231768A (en) 1985-04-08 1985-04-08 Mis type field effect transistor

Publications (1)

Publication Number Publication Date
JPS61231768A true JPS61231768A (en) 1986-10-16

Family

ID=13531586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60073902A Pending JPS61231768A (en) 1985-04-08 1985-04-08 Mis type field effect transistor

Country Status (1)

Country Link
JP (1) JPS61231768A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164258A (en) * 1986-12-25 1988-07-07 Fujitsu Ltd Input/output circuit characterized by high breakdown strength
US5598021A (en) * 1995-01-18 1997-01-28 Lsi Logic Corporation MOS structure with hot carrier reduction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164258A (en) * 1986-12-25 1988-07-07 Fujitsu Ltd Input/output circuit characterized by high breakdown strength
US5598021A (en) * 1995-01-18 1997-01-28 Lsi Logic Corporation MOS structure with hot carrier reduction
US5663083A (en) * 1995-01-18 1997-09-02 Lsi Logic Corporation Process for making improved MOS structure with hot carrier reduction

Similar Documents

Publication Publication Date Title
KR100854078B1 (en) MOS gated power semiconductor device and method for fabricating the same
JPH04154171A (en) Semiconductor device
JPS6237545B2 (en)
KR890013796A (en) Semiconductor device and manufacturing method
JPH08107202A (en) Lateral type high withstand voltage field effect transistor and its manufacture
JP2663682B2 (en) Complementary field effect transistor
JP2599493B2 (en) Semiconductor device
US20060145249A1 (en) LDMOS transistor
JPS63252480A (en) Vertical mos field-effect transistor
JPH0237777A (en) Vertical type field-effect transistor
JPS61231768A (en) Mis type field effect transistor
JPH0349266A (en) Mos-type semiconductor device
EP0160183A2 (en) High voltage mos field effect transistor
JP2730088B2 (en) High voltage semiconductor device
JPS59121979A (en) High dielectric strength insulated gate type semiconductor device
JP2727590B2 (en) MIS type semiconductor device
US20050116298A1 (en) MOS field effect transistor with small miller capacitance
JPH051083Y2 (en)
JPH02102575A (en) Semiconductor device
JPH01111378A (en) Vertical mosfet
JPS62222676A (en) High withstanding-voltage mos transistor
JPS62101074A (en) Semiconductor device
JPH01138745A (en) Semiconductor device
JPH01108774A (en) Semiconductor device
JPS6295863A (en) Semiconductor device with high dielectric strength