JPS61231492A - Auxiliary facility for nuclear reactor - Google Patents

Auxiliary facility for nuclear reactor

Info

Publication number
JPS61231492A
JPS61231492A JP60071020A JP7102085A JPS61231492A JP S61231492 A JPS61231492 A JP S61231492A JP 60071020 A JP60071020 A JP 60071020A JP 7102085 A JP7102085 A JP 7102085A JP S61231492 A JPS61231492 A JP S61231492A
Authority
JP
Japan
Prior art keywords
reactor
residual heat
heat removal
removal system
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60071020A
Other languages
Japanese (ja)
Inventor
一明 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60071020A priority Critical patent/JPS61231492A/en
Publication of JPS61231492A publication Critical patent/JPS61231492A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は原子炉補助設備に係り、特に原子炉冷却材浄
化系および残留熱除去系の構成を改良した原子炉補助設
備に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to nuclear reactor auxiliary equipment, and more particularly to nuclear reactor auxiliary equipment in which the configurations of a reactor coolant purification system and a residual heat removal system are improved.

〔発明の技術的背景〕[Technical background of the invention]

第2図は、従来の原子炉補助設備において原子炉冷却材
浄化系および残留熱除去系を示す系統図である。
FIG. 2 is a system diagram showing a reactor coolant purification system and a residual heat removal system in conventional reactor auxiliary equipment.

原子力発電所の通常運転時には、原子炉冷却材浄化系1
および2系列から構成された残留熱除去系3がそれらの
機能を遂行する。
During normal operation of a nuclear power plant, reactor coolant purification system 1
and a residual heat removal system 3 composed of two lines performs these functions.

つまり、原子炉運転中には、原子炉冷却材浄化系1の原
子炉冷却材浄化系ポンプ5が起動し、原子炉圧力容器7
内の冷却材を再生熱交換器9および非再生熱交換器11
へ導き、冷却する。これらの熱交換器9,11にて冷却
された冷却材は、濾過脱塩装置13により不純物が除去
されて浄化された後、再生熱交換器9にて加熱され、原
子炉圧力容器7へ戻される。
That is, during reactor operation, the reactor coolant purification system pump 5 of the reactor coolant purification system 1 is activated, and the reactor pressure vessel 7 is activated.
The coolant in the regenerative heat exchanger 9 and the non-regenerative heat exchanger 11
and cool it. The coolant cooled by these heat exchangers 9 and 11 is purified by removing impurities by a filtration demineralization device 13, heated by a regenerative heat exchanger 9, and returned to the reactor pressure vessel 7. It will be done.

また、原子炉停止時には、原子炉冷却材浄化系1が上述
のように作動するとともに、残留熱除去系3も作動する
。この残留熱除去系3の作動は、残留熱除去系ポンプ1
5の起動により行なわれる。
Further, when the reactor is shut down, the reactor coolant purification system 1 operates as described above, and the residual heat removal system 3 also operates. The operation of this residual heat removal system 3 is as follows:
5 is activated.

残留熱除去系ポンプ15が起動すると、原子炉圧力容器
7内の冷却材は、残留熱除去系熱交換器17に導かれて
冷却され、その後原子炉圧力容器7内へ戻される。これ
により、炉心の残留熱が除去される。
When the residual heat removal system pump 15 is started, the coolant in the reactor pressure vessel 7 is guided to the residual heat removal system heat exchanger 17 to be cooled, and then returned to the reactor pressure vessel 7. This removes residual heat from the core.

一方、原子炉工学安全系における炉心冷却系統の機能が
要求される事故、例えば原子炉−次系配管破断事故等の
発生時には、原子炉冷却材浄化系1がその機能を停止し
、残留熱除去系3が機能を遂行する。
On the other hand, in the event of an accident that requires the functions of the core cooling system in the nuclear reactor engineering safety system, such as a rupture accident of the reactor-subsystem piping, the reactor coolant purification system 1 stops its function and removes residual heat. System 3 performs the function.

つまり、事故が発生して原子炉水位が異常に低下した場
合には、残留熱除去系ポンプ15が起動し、原子炉格納
容器19内のサプレッションプール水20を、熱交換器
バイパス弁21を介して原子炉圧力容器7へ供給し、原
子炉水位を回復する。
In other words, when an accident occurs and the reactor water level drops abnormally, the residual heat removal system pump 15 is activated and the suppression pool water 20 in the reactor containment vessel 19 is removed via the heat exchanger bypass valve 21. The water is then supplied to the reactor pressure vessel 7 to restore the reactor water level.

また、事故が発生して、原子炉格納容器19内の温度、
圧力が上昇した場合には、原子炉格納容器19内のサプ
レッションプール水20を残留熱除去系熱交換器17に
導いて冷却し、その後原子炉格納容519内へ戻すこと
により、原子炉格納容器19内の温度、圧力上昇を抑制
する。
In addition, if an accident occurs, the temperature inside the reactor containment vessel 19,
When the pressure rises, the suppression pool water 20 in the reactor containment vessel 19 is guided to the residual heat removal system heat exchanger 17 to be cooled, and then returned to the reactor containment vessel 519. 19 to suppress the temperature and pressure rise.

〔費用技術の問題点〕[Problems with cost technology]

原子炉補助設備の原子炉冷却材浄化系および残留熱除去
系は上述のように作動するが、原子力発電所の通常運転
時および炉心冷却系統の機能が要求される事故発生時の
いずれの場合においても、両系1.3の熱交換器9,1
1.17において除去すべき熱容量のトータルは、熱交
換器2基分である。しかしながら、従来のこれら原子炉
冷却材浄化系1および残留熱除去系3には、安全性の要
請から熱交換器9,11.17が4基設けられているが
、3基でも十分と考えられる。したがって、コストの観
点からすれば熱交換器1基が余分となっている。
The reactor coolant purification system and residual heat removal system of the reactor auxiliary equipment operate as described above, but both during normal operation of the nuclear power plant and in the event of an accident requiring the functionality of the core cooling system. Also, heat exchanger 9,1 of both systems 1.3
The total heat capacity to be removed in 1.17 is for two heat exchangers. However, although the conventional reactor coolant purification system 1 and residual heat removal system 3 are equipped with four heat exchangers 9, 11, and 17 for safety reasons, it is believed that three heat exchangers are sufficient. . Therefore, from a cost standpoint, one heat exchanger is redundant.

〔発明の目的〕[Purpose of the invention]

この発明は、上記事実を考慮してなされたものであり、
原子力発電所の建設コストの低減を図ることができる原
子炉補助設備を提供することを目的とする。
This invention was made in consideration of the above facts,
The purpose is to provide reactor auxiliary equipment that can reduce the construction costs of nuclear power plants.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、この発明に係る原子炉補助
設備は、ろ過脱塩器、再生熱交換器および非再生熱交換
器を備えた原子炉冷却材浄化系と、熱交換器を備えた残
留熱除去系とを有す葛ものにおいて、上記原子炉冷却材
浄化系の非再生熱交換器が上記残留熱除去系の熱交換器
を兼用したものであり、原子炉補助設備に備えられる無
要換器の基数を減少したものである。  □ 〔発明の実施例〕             □駅下、
この発明の実施例を図面に基づいて説明゛する。
In order to achieve the above object, the reactor auxiliary equipment according to the present invention includes a reactor coolant purification system equipped with a filtration demineralizer, a regenerative heat exchanger, and a non-regenerative heat exchanger, and a heat exchanger. The non-regenerative heat exchanger of the reactor coolant purification system also serves as the heat exchanger of the residual heat removal system, and the non-regenerative heat exchanger of the reactor coolant purification system also serves as the heat exchanger of the residual heat removal system. This is a reduced number of cardinals. □ [Embodiment of the invention] □ Under the station,
Embodiments of the invention will be described based on the drawings.

第1図は、この発明に係る原子炉補助設備の一実施例を
示す原子炉冷却材浄化系および残留熱除去系の系統図で
ある。
FIG. 1 is a system diagram of a reactor coolant purification system and a residual heat removal system showing an embodiment of reactor auxiliary equipment according to the present invention.

原子炉補助設備23は、原子炉冷却材浄化系25、残留
熱除去系27および原子炉隔離時冷却系等から構成され
、゛原子炉の正常運転を維持し、原子炉の起動□・停止
を円滑に行なうための設備である。
The reactor auxiliary equipment 23 is composed of a reactor coolant purification system 25, a residual heat removal system 27, a reactor isolation cooling system, etc., and is used to maintain normal operation of the reactor and to start and stop the reactor. This is equipment to ensure smooth operation.

このうち、原子炉冷却材浄化系25は、原子炉格納容器
29に内蔵された原子炉圧力容器31内の冷却材の一部
を原子炉格納容器外部に導いた後 −再び戻す原子炉冷
却材浄化系配管33とン原子炉冷却材浄化系ポンプ35
、再生熱交換!s37、非再生熱交換器39およびろ過
装置としての濾過脱塩装W141等の主要m器とからi
成される。これらの畝芋炉再循環系ポンプ35、再生熱
交換器37、非再生熱交換器39および濾過脱塩装r!
I41は、威子炉冷却材浄化系配管33に上流側から下
流側に向って順次配設される。再生熱交換器37および
非再生熱交換器39は、゛冷却材を濾過IB2B2H4
1の処理水温度領域まで冷却するものである。さらに、
再生熱交換器37は、濾過脱塩装置41 fiXら流出
した冷却材を加熱する機能をも有する。また、濾過脱塩
装置41は、冷却材中の不純物を除去して、冷却材を浄
化するものである。
Among these, the reactor coolant purification system 25 is a reactor coolant that guides a part of the coolant in the reactor pressure vessel 31 built in the reactor containment vessel 29 to the outside of the reactor containment vessel, and then returns it again. Purification system piping 33 and reactor coolant purification system pump 35
, regenerative heat exchange! s37, non-regenerative heat exchanger 39 and filtration desalination equipment W141 as a filtration device, etc.
will be accomplished. These potato furnace recirculation system pump 35, regenerative heat exchanger 37, non-regenerative heat exchanger 39, and filtration desalination system r!
I41 is sequentially arranged in the Ishi reactor coolant purification system piping 33 from the upstream side to the downstream side. The regenerative heat exchanger 37 and the non-regenerative heat exchanger 39 filter the coolant IB2B2H4.
The treated water is cooled down to the temperature range of No. 1. moreover,
The regenerative heat exchanger 37 also has a function of heating the coolant flowing out from the filtration and demineralization device 41 fiX. Further, the filtration and demineralization device 41 purifies the coolant by removing impurities from the coolant.

さらに、原子炉冷W材浄化系ポンプ35の上流側には、
原子炉格納容器29を挟んで隔離弁43゜45がそれぞ
れ設置される。また、非再生熱交換器39の上流および
下流側に6隔離弁47.49が設けられる。さらに、原
子炉冷却材浄化系配管33における再生熱交換器37の
加熱側下流には、原子炉格納容器29の外側に隔離弁5
1が設けられる。また、隔離弁49の下流側には、濾過
脱塩装置41と並列に濾過脱塩装置バイパス管53が設
置され、この濾過脱塩装置バイパス管53に濾過脱塩装
置バイパス弁55が配設される。原子力発電所の通常運
転時には、隔離弁43.45.47.49.51が開弁
され、原子炉冷却材浄化系ポンプ35が起動されて、冷
却材が高純度に維持される。また、原子炉工学系におけ
る炉心冷却系統の機能が要求される事故発生時には、隔
離弁43.45.47.49が閉弁され、原子炉冷却材
浄化系ポンプ35が停止する。
Furthermore, on the upstream side of the reactor cold W material purification system pump 35,
Isolation valves 43 and 45 are installed across the reactor containment vessel 29, respectively. Six isolation valves 47, 49 are also provided upstream and downstream of the non-regenerative heat exchanger 39. Further, an isolation valve 5 is provided on the outside of the reactor containment vessel 29 downstream of the heating side of the regenerative heat exchanger 37 in the reactor coolant purification system piping 33.
1 is provided. Further, on the downstream side of the isolation valve 49, a filtration and demineralization device bypass pipe 53 is installed in parallel with the filtration and demineralization device 41, and a filtration and demineralization device bypass valve 55 is arranged in this filtration and demineralization device bypass pipe 53. Ru. During normal operation of a nuclear power plant, the isolation valves 43, 45, 47, 49, 51 are opened, the reactor coolant purification system pump 35 is started, and the coolant is maintained at a high purity. Furthermore, in the event of an accident requiring the functionality of the core cooling system in the nuclear reactor engineering system, the isolation valves 43, 45, 47, 49 are closed and the reactor coolant purification system pump 35 is stopped.

さて、残留熱除去系27は2系列存在する。このうち、
残留熱除去系第1系列57は残留熱除去系熱交換器59
を有する系列であり、残留熱除去系第2系列61は残留
熱除去系熱交換器が原子炉冷却材浄化系25の非再生熱
交換器39に兼用された系列である。
Now, there are two residual heat removal systems 27. this house,
The residual heat removal system first series 57 includes a residual heat removal system heat exchanger 59
The second residual heat removal system system 61 is a system in which the residual heat removal system heat exchanger is also used as the non-regenerative heat exchanger 39 of the reactor coolant purification system 25.

残留熱除去系第1系列57は、原子炉圧力容器31内の
冷却材の一部を原子炉格納容器29の外部へ導いた後戻
す残留熱除去系配管63と、残留熱除去系ポンプ65A
および残留熱除去系熱交換2!i59等の主要機器から
構成される。残留熱除去系ポンプ65Aおよび残留熱除
去系熱交換器59は、残留熱除去系配管63の上流から
下流に順次配設される。残留熱除去系配管63の上流お
よび下流には、原子炉格納容器29の外側に隔離弁69
A、71Aがそれぞれ配設される。さらに、残留熱除去
系熱交換器59の上流および下流にも、それぞれ隔離弁
73.75が設けられる。
The first residual heat removal system series 57 includes a residual heat removal system piping 63 that guides a portion of the coolant in the reactor pressure vessel 31 to the outside of the reactor containment vessel 29 and then returns it, and a residual heat removal system pump 65A.
And residual heat removal system heat exchange 2! Consists of main equipment such as i59. The residual heat removal system pump 65A and the residual heat removal system heat exchanger 59 are sequentially arranged from upstream to downstream of the residual heat removal system piping 63. Isolation valves 69 are installed outside the reactor containment vessel 29 upstream and downstream of the residual heat removal system piping 63.
A and 71A are provided, respectively. Furthermore, isolation valves 73 and 75 are also provided upstream and downstream of the residual heat removal system heat exchanger 59, respectively.

隔離弁69A、71Aは、原子力発電所通常運転時にお
ける原子炉停止運転時に開弁される。さらに、隔離弁7
1Aは事故発生時において原子炉水位が異常低下した場
合にも開弁する。また、隔離弁73.75は、原子炉通
常運転時における原子炉停止運転時および事故発生時に
おいて原子炉格納容!I29内の温度、圧力が上昇した
場合にも開弁する。
The isolation valves 69A and 71A are opened during reactor shutdown operation during normal operation of the nuclear power plant. Furthermore, isolation valve 7
1A will also open if the reactor water level drops abnormally in the event of an accident. In addition, the isolation valves 73 and 75 control the reactor containment capacity during normal reactor operation, when the reactor is shut down, and when an accident occurs. The valve also opens when the temperature and pressure inside I29 rise.

また、残留熱除去系配管63には、残留熱除去系熱交換
器59および隔離弁73.75と並列して熱交換器バイ
パスライン77Aが設けられ、この熱交換器バイパスラ
イン77Aに熱交換器バイパス弁79Aが設置される。
Further, a heat exchanger bypass line 77A is provided in the residual heat removal system piping 63 in parallel with the residual heat removal system heat exchanger 59 and isolation valves 73. A bypass valve 79A is installed.

熱交換器バイパス弁79Aの弁開度調整により、バイパ
スライン合流部80Aの下流側を流れる冷却材温度が制
御される。
By adjusting the opening degree of the heat exchanger bypass valve 79A, the temperature of the coolant flowing downstream of the bypass line merging section 80A is controlled.

また、残留熱除去系ポンプ65Aの上流側は、管路82
Aを介して原子炉格納容器29のサプレッションチャン
バ81に連結され、この管路82Aに隔離弁83Aが設
けられる。さらに、バイパスライン合流部80Aの下流
には、隔離弁71Aが配設された管路と並列して管路8
5Aが設けられる。この管路85Aの開口端部は原子炉
工学系B29内に至るとともに、この管路85Aに隔離
弁87Aが配設される。隔離弁83Aは事故発生時にお
いて原子炉水位が異常低下した場合および原子炉格納容
器内温度、圧力が上昇した場合に開弁する。また、隔離
弁87Aは事故発生時に原子炉格納容器内温度、圧力が
上昇した場合に開弁する。
Further, the upstream side of the residual heat removal system pump 65A is connected to a pipe line 82.
A is connected to the suppression chamber 81 of the reactor containment vessel 29 via a pipe line 82A, and an isolation valve 83A is provided in this pipe line 82A. Further, downstream of the bypass line confluence section 80A, a conduit 8 is provided in parallel with the conduit in which the isolation valve 71A is disposed.
5A is provided. The open end of this pipe 85A reaches into the nuclear reactor engineering system B29, and an isolation valve 87A is provided in this pipe 85A. The isolation valve 83A opens when the reactor water level drops abnormally or when the temperature and pressure inside the reactor containment vessel rises when an accident occurs. Further, the isolation valve 87A opens when the temperature and pressure inside the reactor containment vessel rise when an accident occurs.

一方、残留熱除去系第2系列61は、残留熱除去系第1
系列57とほぼ同様な構成であるため、同様な部分につ
いては添字をBとした同一の符号を付す、例えば残留熱
除去系ポンプ65Bなどと付すことにより説明を省略す
る。
On the other hand, the second residual heat removal system 61 is connected to the first residual heat removal system 61.
Since it has almost the same configuration as the series 57, similar parts will be designated with the same reference numerals with the suffix B, for example, the residual heat removal system pump 65B, and a description thereof will be omitted.

この残留熱除去系第2系列61が残留熱除去系第1系列
57と異なる点は、残留熱除去系配管89におけるバイ
パスライン分岐部91の下流部分93が原子炉冷却材浄
化系25の非再生熱交換器39および隔離弁47間に連
結されていること、および残留熱除去系配管89のバイ
パスライン合流部80Bの上流部分95が原子炉冷却材
浄化系25の非再生熱交換器39および隔離弁49間に
連結されていることである。これらの下流部分93、上
流部分95にはそれぞれ隔離弁97.99が配設される
The difference between this second residual heat removal system series 61 and the first residual heat removal system series 57 is that the downstream portion 93 of the bypass line branch section 91 in the residual heat removal system piping 89 is a non-regenerating part of the reactor coolant purification system 25. The upstream portion 95 of the bypass line confluence section 80B of the residual heat removal system piping 89 is connected between the heat exchanger 39 and the isolation valve 47, and the The valve 49 is connected between the valves 49 and 49. Isolation valves 97 and 99 are provided in the downstream portion 93 and upstream portion 95, respectively.

この隔離弁97.99は事故発生時あるいは原子力発電
所通常運転時における原子炉停止蓮転時においで開弁さ
れる。隔離弁97.99が開弁された際には、残留熱除
去系ポンプ65Bより圧送されたサプレッションブール
水100あるいは冷却材が、下流部分93を介して非再
生熱交換器39へ導かれ、この非再生熱交換5539に
て冷却された後、濾過脱塩装置41または上流部分95
へ供給される。
The isolation valves 97 and 99 are opened when an accident occurs or when the reactor is shut down during normal operation of the nuclear power plant. When the isolation valves 97 and 99 are opened, the suppression boule water 100 or coolant pumped by the residual heat removal system pump 65B is guided to the non-regenerative heat exchanger 39 via the downstream portion 93, and is After being cooled in the non-regenerative heat exchange 5539, the filtration desalination device 41 or the upstream section 95
supplied to

次に作用を説明する。Next, the effect will be explained.

原子力発電所通常運転時における原子炉運転中には、原
子炉冷却材浄化系25がその機能を遂行し、残留熱除去
系27が停止する。このとき、隔離弁43.45.47
.49.51が開弁状態にあり、かつ隔離弁97.99
が閉弁状態にある。
During reactor operation during normal operation of a nuclear power plant, the reactor coolant purification system 25 performs its function and the residual heat removal system 27 is shut down. At this time, isolation valve 43.45.47
.. 49.51 is in the open state and isolation valve 97.99
is in the closed state.

この状態で原子炉冷却材浄化系ポンプ35が起動すると
、原子炉圧力容器31内の冷却材が再生熱交換器37お
よび非再生熱交換器39へ導かれて冷却される。非再生
熱交換器39にて冷却された冷却材は、濾過脱塩装置4
1により不純物が除去されて浄化され、その後再生、熱
交換器37にて加熱された後、隔離弁51を介して原子
炉圧力容器内へ戻される。この原子炉冷却材浄化系25
の作動により、冷却材の高純度が維持される。
When the reactor coolant purification system pump 35 is started in this state, the coolant in the reactor pressure vessel 31 is guided to the regenerative heat exchanger 37 and the non-regenerative heat exchanger 39 and cooled. The coolant cooled in the non-regenerative heat exchanger 39 is transferred to the filtration and demineralization device 4
1 to remove impurities and purify it, and after that, it is regenerated and heated in a heat exchanger 37, and then returned to the reactor pressure vessel via an isolation valve 51. This reactor coolant purification system 25
operation maintains high purity of the coolant.

原子力発電所通常運転時における原子炉停止時には、原
子炉冷却材浄化系25および残留熱除去系27が2段階
の作動を行なう。第1段階の作動では、原子炉冷却材浄
化系25および残留熱除去系第1系列57がその機能を
遂行し、第2段階の作動では残留熱除去系第2系列が機
能を遂行する。
When the reactor is shut down during normal operation of the nuclear power plant, the reactor coolant purification system 25 and the residual heat removal system 27 perform two stages of operation. In the first stage of operation, the reactor coolant purification system 25 and the first series of residual heat removal systems 57 perform their functions, and in the second stage of operation, the second series of residual heat removal systems performs their functions.

第1段階の作動時には、原子炉冷却材浄化系25の隔離
弁43.45.47,49.51が開弁状態にあり、隔
離弁97.99が閉弁状態にある。
During the first stage of operation, the isolation valves 43, 45, 47, 49, 51 of the reactor coolant purification system 25 are in the open state, and the isolation valves 97, 99 are in the closed state.

さらに、残留熱除去系第1系列57の隔離弁69A、7
1A、73.75が開弁状態にあり、隔離弁83A、8
7Aが閉弁状態にある。なお、残留熱除去系第2系列6
1の隔離弁83Bは、安全性確保のだ、め開弁状態にあ
る。これらの状態のもとに、原子炉冷却材浄化系ポンプ
35および残留熱除去系ポンプ65Aが起動する。
Furthermore, the isolation valves 69A and 7 of the first series 57 of the residual heat removal system
1A, 73.75 are in the open state, isolation valves 83A, 8
7A is in a closed state. In addition, the residual heat removal system 2nd series 6
The isolation valve 83B of No. 1 is in an open state to ensure safety. Under these conditions, the reactor coolant purification system pump 35 and the residual heat removal system pump 65A are activated.

原子炉冷却材浄化系、ポンプ35Aの起動により、原子
炉冷却材浄化系25は原子炉運転中と同様に機能を遂行
し、冷却材が浄化される。また、残留熱除去系ポンプ6
5Aが起動すると、原子炉運転中131内の冷却材が、
隔離弁69.A、73を経て残留熱除去系熱交換器59
へ導かれ、残留熱が除去されて冷却される。その後、冷
却された冷却材は、隔離弁75.71Aを経て原子炉圧
力容器31へ戻される。この残留熱除去系第1系列57
の作動において、熱交換器バイパス弁79Aの開度が調
整され、原子炉運転中!!31へ戻される冷却材の温度
が制御される。
By starting the reactor coolant purification system and pump 35A, the reactor coolant purification system 25 performs its function in the same manner as during nuclear reactor operation, and the coolant is purified. In addition, the residual heat removal system pump 6
When 5A starts, the coolant in 131 during reactor operation will
Isolation valve 69. Residual heat removal system heat exchanger 59 via A, 73
The residual heat is removed and cooled. The cooled coolant is then returned to the reactor pressure vessel 31 via the isolation valve 75.71A. This residual heat removal system first series 57
In the operation, the opening degree of the heat exchanger bypass valve 79A is adjusted, and the reactor is operating! ! The temperature of the coolant returned to 31 is controlled.

次に、原子炉冷却材浄化系25および残留熱除去系27
の第2段階の作動時には、原子炉冷却材浄化系25が機
能を停止し、残留熱除去系箱1および第2系列57.6
1の機能を遂行する。したがって、残留熱除去系ポンプ
65Aが第1段階から引続き起動し続け、残留熱除去系
第1系列57はこの第2段階においても冷却材の残留熱
を除去することとなる。
Next, the reactor coolant purification system 25 and the residual heat removal system 27
During the second stage of operation, the reactor coolant purification system 25 stops functioning, and the residual heat removal system box 1 and the second train 57.6
Performs the function of 1. Therefore, the residual heat removal system pump 65A continues to operate from the first stage, and the first series 57 of the residual heat removal system removes the residual heat of the coolant even in this second stage.

原子炉冷却材浄化系25の機能停止および残留熱除去系
第2系列61の機能開始は次の手順で行なわれる。
The function of the reactor coolant purification system 25 is stopped and the residual heat removal system second line 61 is started in the following procedure.

まず、残留熱除去系第2系列61の隔離弁83Bを閉弁
し、隔離弁69Bを開弁する。次に、原子炉冷却、材浄
化系25の原子炉冷却材浄化系ポンプ35を停止1.シ
、隔離弁47.43.45を閉弁する。次に、残留熱除
去系第2系列61の隔離弁97.99.718を開弁し
、隔離弁87Bを閉弁する。この状態で、残留熱除去系
ポンプ65Bを起動させる。すると、原子炉圧力容器3
]内の冷却材は隔離弁69B、、97を経、残留熱除去
系配管下流部分93を介して原子炉冷却材浄化系25の
非再生熱交換器39へ導かれる。冷却材はこの非再生熱
交換器39にて、残留熱が除去された後、隔離弁49を
経て濾過脱塩装置41へ導かれるものと残留熱除去系配
管、上流部分95へ導かれるものとに分流される。
First, the isolation valve 83B of the second line 61 of the residual heat removal system is closed, and the isolation valve 69B is opened. Next, stop the reactor coolant purification system pump 35 of the reactor cooling and material purification system 25.1. Close isolation valves 47, 43, and 45. Next, the isolation valve 97, 99, 718 of the second line 61 of the residual heat removal system is opened, and the isolation valve 87B is closed. In this state, the residual heat removal system pump 65B is started. Then, reactor pressure vessel 3
] is led to the non-regenerative heat exchanger 39 of the reactor coolant purification system 25 via the isolation valves 69B, , 97 and the downstream portion 93 of the residual heat removal system piping. After the residual heat is removed from the coolant in this non-regenerative heat exchanger 39, the coolant is guided to the filtration and demineralization device 41 via the isolation valve 49, and the coolant is guided to the residual heat removal system piping and the upstream section 95. It is divided into

濾過IB2fJA@11141へ導かれた冷却材は、こ
の濾過脱塩装置常運転時て、浄化された後、隔離弁51
を介し原子、炉圧力容器31内へ戻される。また、残留
熱除去系配管上流部分95へ尋かれた冷却材は、隔離弁
99.718を経て原子炉圧力容器31内へ戻される。
The coolant guided to the filtration IB2fJA@11141 is purified during normal operation of the filtration and demineralization device, and then passes through the isolation valve 51.
The atoms are returned to the reactor pressure vessel 31 through the reactor pressure vessel 31. In addition, the coolant that has entered the upstream portion 95 of the residual heat removal system piping is returned to the reactor pressure vessel 31 via the isolation valve 99.718.

なお、この残留熱除去系第2系列61の作動時において
も、熱交換器バイパス弁79Bの開度が調整され、隔離
弁99.71Bを経て原子炉圧力容器31内へ戻される
冷却材の温度が制御される。
Note that even when the second line 61 of the residual heat removal system is in operation, the opening degree of the heat exchanger bypass valve 79B is adjusted, and the temperature of the coolant returned to the reactor pressure vessel 31 via the isolation valve 99.71B is adjusted. is controlled.

さて、原子炉工学安全系における炉心冷却系統の機能が
要求される事故、例えば原子炉−次系配管の破断事故発
生時には、原子炉冷却材浄化系25がその機能を停止し
、残留熱除去系27がlfi能を遂行する。
Now, in the event of an accident that requires the functions of the core cooling system in the nuclear reactor engineering safety system, such as a rupture accident in the reactor-subsystem piping, the reactor coolant purification system 25 stops its function, and the residual heat removal system 27 performs lfi functions.

この事故発生時において原子炉水位が異常低下した場合
には、残留熱除去系第1および第2系列57.61の隔
離弁83A、B、71A、8.79A、Bをそれぞれ開
弁する。そして、隔離弁69A、B、71A、Bを閉弁
する。さらに、隔離弁73.75,97.99をも閉弁
する。この状態で、残留熱除去系ポンプ65A、Bを起
動させると、サプレッションチャンバ81内のサプレッ
ションプール水100が管路82A、Bおよび熱交換器
バイパスライン77A、Bを経て、隔離弁71A、Bを
介し原子炉圧力容器31内へ供給される。このサプレッ
ションプール水100の供給により、原子炉水位の回復
維持が図られる。
If the reactor water level drops abnormally when this accident occurs, the isolation valves 83A, B, 71A, 8.79A, and B of the first and second residual heat removal system series 57.61 are opened, respectively. Then, the isolation valves 69A, B, 71A, and B are closed. Furthermore, isolation valves 73.75 and 97.99 are also closed. In this state, when the residual heat removal system pumps 65A and 65B are started, the suppression pool water 100 in the suppression chamber 81 passes through the pipes 82A and 82B and the heat exchanger bypass lines 77A and 77B, and then the isolation valves 71A and 71B. It is supplied into the reactor pressure vessel 31 through the reactor pressure vessel 31. By supplying this suppression pool water 100, the reactor water level is restored and maintained.

事故発生時において原子炉格納容器29内の温度、圧力
が上昇した場合にも、残留熱除去系第1および第2系列
57.61が同時に作動する。この場合、残留熱除去系
第1系列57の隔離弁83A、87A、73.75を開
弁状態とし、隔離弁69A、71Aを閉弁状態とする。
Even if the temperature and pressure inside the reactor containment vessel 29 rise when an accident occurs, the first and second residual heat removal systems 57 and 61 operate simultaneously. In this case, the isolation valves 83A, 87A, 73.75 of the first series 57 of the residual heat removal system are opened, and the isolation valves 69A, 71A are closed.

さらに、残留熱i去系第2系列61の隔離弁83B、8
7B。
Furthermore, isolation valves 83B, 8 of the second residual heat removal system 61
7B.

97.99を開弁状態とし、隔離弁698.71B、4
7.49を閉弁状態とする。これらの状態において、残
留熱除去系ポンプ65A、Bを同時起動する。
97.99 is opened, isolation valve 698.71B, 4
At 7.49, the valve is closed. In these conditions, the residual heat removal system pumps 65A and 65B are started simultaneously.

すると、残留熱除去系第1系列57では、サプレッショ
ンプール水100が管路82Aを介し、隔離弁83A、
73を粁て残留熱除去系熱交換器59へ導かれ冷却され
る。その後、冷却されたプール水100は隔離弁75.
87Aを経て管路85Aからサプレッションチャンバ8
1内へ戻される。
Then, in the first line 57 of the residual heat removal system, the suppression pool water 100 passes through the pipe 82A to the isolation valve 83A,
73 and is led to a residual heat removal system heat exchanger 59 and cooled. The cooled pool water 100 is then transferred to the isolation valve 75.
Suppression chamber 8 from conduit 85A via 87A
Returned to 1.

一方、残留熱除去系第2系列61では、サプレッション
プール水100が隔離弁838.97を経、管路82B
および残留熱除去系配管上流部分93を介して非再生熱
交換器39へ導かれ、冷却される。この非再生熱交換器
39にて冷却されたサブレッショ“ンブール水100は
残留熱除去系配管上流部分95および配管85Bを介し
、隔離弁99A、87Bを経てサブレッションチ11ン
バ81内へ戻される。
On the other hand, in the residual heat removal system second line 61, the suppression pool water 100 passes through the isolation valve 838.97 and enters the pipe line 82B.
The residual heat removal system piping is guided to the non-regenerative heat exchanger 39 via the upstream portion 93 and cooled. The subrection chamber water 100 cooled by the non-regenerative heat exchanger 39 is returned to the subrepression chamber 81 via the upstream portion of the residual heat removal system piping 95 and the piping 85B, via the isolation valves 99A and 87B.

これら残留熱除去系第1および第2系列57゜61の機
能遂行により、原子炉格納容器29内の温度および圧力
効果が図られる。なお、残留熱除去系第1および第2系
列57.61の作動時において、熱交換器バイパス弁7
9A、Bが開度調整され、管路85A、Bからサプレッ
ションチャンバ81へ戻されるサプレッションプール水
100の温度が制御される。
By performing the functions of the first and second residual heat removal systems 57 and 61, temperature and pressure effects within the reactor containment vessel 29 are controlled. Note that when the first and second residual heat removal systems 57 and 61 are in operation, the heat exchanger bypass valve 7
The opening degrees of pipes 85A and 95B are adjusted to control the temperature of suppression pool water 100 returned to suppression chamber 81 from pipes 85A and 85B.

上記実施例によれば、原子炉冷却材浄化系25の非再生
熱交換器39が残留熱除去系第2系列61の熱交換器を
兼用したものであることから、原子炉補助設備23の熱
交換器の基数を減少させることができ、その結果、原子
力発電所の建設コストを低減することができる。
According to the above embodiment, since the non-regenerative heat exchanger 39 of the reactor coolant purification system 25 also serves as the heat exchanger of the second line 61 of the residual heat removal system, the heat exchanger of the reactor auxiliary equipment 23 is The number of exchangers can be reduced, and as a result, the construction cost of nuclear power plants can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る原子炉補助設備によれば
、原子炉冷却材浄化系の非再生熱交換器を残留熱除去系
の熱交換器に兼用するよう構成したことから、原子炉設
備の熱交換器基数を減少させて、原子力発電所建設コス
トを低減することができるという効果を奏する。
As described above, according to the reactor auxiliary equipment according to the present invention, since the non-regenerative heat exchanger of the reactor coolant purification system is also used as the heat exchanger of the residual heat removal system, the reactor equipment This has the effect of reducing the number of heat exchangers in the nuclear power plant, thereby reducing nuclear power plant construction costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る原子炉補助設備6第1実施例を
示す原子炉冷却材浄化系および残留熱除去系の系統図、
第2図は従来の原子炉設備における原子炉冷却材浄化系
および残留熱除去系を示す系統図である。 23・・・原子炉補助設備、25・・・原子炉冷却材浄
化系、27・・・残留熱除去系、29・・・原子炉格納
容器、31・・・原子炉圧力容器、37・・・再生熱交
換器、39・・・非再生熱交換器、41・・・減退脱塩
装置、59・・・残留熱除去系熱交換器、61−0.残
留熱除去系第2系列。
FIG. 1 is a system diagram of a reactor coolant purification system and a residual heat removal system showing a first embodiment of reactor auxiliary equipment 6 according to the present invention;
FIG. 2 is a system diagram showing a reactor coolant purification system and residual heat removal system in conventional nuclear reactor equipment. 23... Reactor auxiliary equipment, 25... Reactor coolant purification system, 27... Residual heat removal system, 29... Reactor containment vessel, 31... Reactor pressure vessel, 37... - Regenerative heat exchanger, 39... Non-regenerative heat exchanger, 41... Reduction desalination device, 59... Residual heat removal system heat exchanger, 61-0. Residual heat removal system 2nd line.

Claims (1)

【特許請求の範囲】 1、ろ過脱塩器、再生熱交換器および非再生熱交換器を
備えた原子炉冷却材浄化系と、熱交換器を備えた残留熱
除去系とを有する原子炉補助設備において、上記原子炉
冷却材浄化系の非再生熱交換器が上記残留熱除去系の熱
交換器を兼用したことを特徴とする原子炉補助設備。 2、原子炉冷却材浄化系の非再生熱交換器は残留熱除去
系の一系列の熱交換器を兼用したものである特許請求の
範囲第1項記載の原子炉補助設備。
[Claims] 1. Reactor auxiliary having a reactor coolant purification system equipped with a filtration desalter, a regenerative heat exchanger, and a non-regenerative heat exchanger, and a residual heat removal system equipped with a heat exchanger. A reactor auxiliary equipment, characterized in that the non-regenerative heat exchanger of the reactor coolant purification system also serves as a heat exchanger of the residual heat removal system. 2. The reactor auxiliary equipment according to claim 1, wherein the non-regenerative heat exchanger of the reactor coolant purification system also serves as a series of heat exchangers of the residual heat removal system.
JP60071020A 1985-04-05 1985-04-05 Auxiliary facility for nuclear reactor Pending JPS61231492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60071020A JPS61231492A (en) 1985-04-05 1985-04-05 Auxiliary facility for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60071020A JPS61231492A (en) 1985-04-05 1985-04-05 Auxiliary facility for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS61231492A true JPS61231492A (en) 1986-10-15

Family

ID=13448417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60071020A Pending JPS61231492A (en) 1985-04-05 1985-04-05 Auxiliary facility for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS61231492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194194A (en) * 2000-09-04 2012-10-11 Pebble Bed Modular Reactor (Pty) Ltd Nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194194A (en) * 2000-09-04 2012-10-11 Pebble Bed Modular Reactor (Pty) Ltd Nuclear reactor

Similar Documents

Publication Publication Date Title
US5271051A (en) Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank
JPH056082B2 (en)
JPS61231492A (en) Auxiliary facility for nuclear reactor
US4043864A (en) Nuclear power plant having a pressurized-water reactor
EP0546798B1 (en) Reactor water cleanup and cooling system
WO2022135455A1 (en) Safety injection system for optimizing design of main pipe
KR100448876B1 (en) Emergency feed water system in nuclear power plant
CN209843262U (en) Nuclear power plant nuclear fuel waste heat derivation system
JP2001091684A (en) Fuel pool cooling equipment
JPH0259699A (en) Operating method for nuclear reactor apparatus cooling equipment
JPH05203788A (en) System for purifying reactor water and fuel pool water
JPS5816479B2 (en) Comprehensive reactor backup cooling system equipment
JPS61207997A (en) Nuclear reactor system facility
JPS60178394A (en) Refrigerant purifying system of nuclear reactor
JPH06160586A (en) Reactor coolant purifying facility
JPH029720B2 (en)
JPH0345800B2 (en)
JPH04270995A (en) Purification system of nuclear reactor coolant
JPH03170095A (en) Coolant cleaning system for nuclear reactor
JPS5915891A (en) Cooling circuit for reactor equipment
JPH10142373A (en) Pool water purification facility
JPH0197899A (en) Nuclear reactor water circulating device
JPS6157891A (en) Cooling system on suspension of nuclear reactor
JPH10319174A (en) Boiling water reactor power plant
JPS62190496A (en) Purifier for coolant of nuclear reactor