JPS61230853A - Continuous down feeding of semi-conductor wafer on automatic plane grinding machine - Google Patents

Continuous down feeding of semi-conductor wafer on automatic plane grinding machine

Info

Publication number
JPS61230853A
JPS61230853A JP6912685A JP6912685A JPS61230853A JP S61230853 A JPS61230853 A JP S61230853A JP 6912685 A JP6912685 A JP 6912685A JP 6912685 A JP6912685 A JP 6912685A JP S61230853 A JPS61230853 A JP S61230853A
Authority
JP
Japan
Prior art keywords
grinding
wafer
continuous
rotary table
chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6912685A
Other languages
Japanese (ja)
Inventor
Kazuo Kobayashi
一雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibayama Kikai Co Ltd
Original Assignee
Shibayama Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibayama Kikai Co Ltd filed Critical Shibayama Kikai Co Ltd
Priority to JP6912685A priority Critical patent/JPS61230853A/en
Publication of JPS61230853A publication Critical patent/JPS61230853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To eliminate thermal stress generated by volume change or grinding frictional heat on the basis of grinding resistance or property change in grinding by fine setting the sinking speed of a diamond grinding wheel continuous by and steplessly by the continuous down-feed method. CONSTITUTION:A wafer is attracted to six chucks 9 set by six-divided frame of a rotary table 8. The rotary table 8 rotates intermittently at a slow speed at 1/6 turn steps. In the chuck position 9b, a diamond grinding wheel fixed to a cup wheel 11 at the bottom of a rotating spindle 10 sinks from above automatically to start course grinding. In the chuck positions 9c and 9d, prefinish and finish grindings are performed, respectively. These grinding in chuck position 9b, 9c, 9d are made by the continuous down-feed system at 0.01mum-0.3mm/ min.

Description

【発明の詳細な説明】 本発明は、単品毎にカートリッジから送出される広径薄
物ウェハを平面研削盤へ正確に載置し。
DETAILED DESCRIPTION OF THE INVENTION The present invention accurately places wide-diameter thin wafers sent out from a cartridge individually onto a surface grinder.

バキューム吸着せしめて自動研削する平面研削盤に関す
る。
This invention relates to a surface grinder that performs automatic grinding using vacuum suction.

現今における弛まざる技術革新は目覚ましいものがあり
、其の先端技術による開発によって、優れた様々な商品
群が多数送出されている。
Today's continuous technological innovation is remarkable, and the development of cutting-edge technology has produced a large number of excellent product groups.

本発明に係る特にこの種のコンピュータ、マイコン等を
搭載した電子関連機器の開発は、実に日進月歩の感があ
り、更により高度な応用技術の開発に鏑を削っている実
状にある。
In particular, the development of electronic equipment equipped with computers, microcomputers, etc. of this type according to the present invention seems to be progressing rapidly, and efforts are being made to develop even more advanced applied technologies.

このため半導体ウェハは、より超高度の質性と、小型化
に繋がる或は大量集積回路化の図れるように、広径化、
極薄化が要求されてきている。
For this reason, semiconductor wafers are becoming wider and wider in order to achieve ultra-high quality, miniaturization, and mass integration of circuits.
There is a growing demand for ultra-thin devices.

従来、半導体ウェハ用の平面研削盤においてはクリープ
フィード方式、又はワンパス方式と称され、砥石の切り
込み量を研削する取り代とほぼ同程度になるようにして
、一度に仕上げを終了する加工法が用いられていた。
Conventionally, surface grinding machines for semiconductor wafers are known as the creep-feed method or one-pass method, which is a processing method that completes finishing at once by making the depth of cut of the grinding wheel approximately equal to the amount of material to be removed during grinding. It was used.

この様な方法は、研削能率のみの向上を目指している加
工法であり、被研削物である半導体ウェハが研削後ある
程度の肉厚(0,4mm)を有し、かつ。
This method is a processing method that aims to improve only the grinding efficiency, and the semiconductor wafer that is the object to be ground has a certain thickness (0.4 mm) after grinding.

小径(5インチ以下)のウェハであれば若干問題は残る
が使用は可能であった。しかし、現今の要求の高い広径
化(5インチ以上)極薄化(0,2+nm以下)の傾向
にある半導体ウェハでは、ダイヤモンド砥石と被研削物
であるウェハの研削時の干渉領域やその近傍には、研削
抵抗、変性に基づく体積変化、研削摩擦熱に伴う熱膨張
などによって、局部的に強い応力が発生して、研削割れ
や、亀裂、クラック等が生じ、巨視的に見た場合に、見
掛上は平坦面を呈していても〜残留応力や変質層(ダメ
ージ)が残り、反りや、歪みが出て、高精度の鏡面研削
は不可能であった。
It was possible to use small diameter wafers (less than 5 inches), although some problems remained. However, in semiconductor wafers, which are currently in high demand for larger diameters (more than 5 inches) and ultra-thinners (0.2+ nm or less), the diamond grinding wheel and the wafer to be ground have an interference area during grinding and the vicinity thereof. When viewed macroscopically, strong stress is generated locally due to grinding resistance, volume change due to denaturation, thermal expansion due to grinding friction heat, etc., resulting in grinding cracks, cracks, etc. Even if the surface appears to be flat, residual stress and altered layers (damage) remain, resulting in warpage and distortion, making it impossible to perform high-precision mirror polishing.

又、他にステップダウン方式と称される前記のクリープ
フィード方式を改良し、数段階に切り込み量を分けて切
り込んで行く方法も用いられる様になったが、広径化、
極薄化する半導体ウェハには残留応力又は変質層(ダメ
ージ)が残り加工後、経過時間共に反りや歪みやクラッ
クが発生し満足する被研削物は得られなかった。
In addition, a method called the step-down method, which is an improvement on the above-mentioned creep feed method and divides the depth of cut into several steps, has also come into use, but with a wider diameter,
Residual stress or altered layers (damage) remain on extremely thin semiconductor wafers, and after processing, warping, distortion, and cracks occur over time, making it impossible to obtain a satisfactory workpiece.

本発明は上記の事由に着目して、鋭意研錯の結果、これ
らの弊害を一挙に排除すると共に、広径化、極薄化する
半導体ウェハの精度向上の要望に応じて余りある自動平
面研削盤に創達し、これを供せんとするものである。
Focusing on the above-mentioned reasons, the present invention eliminates these disadvantages at once as a result of intensive research, and is capable of improving the accuracy of semiconductor wafers, which are becoming wider in diameter and ultra-thin. It is created on a board and is intended to be offered as an offering.

斯る目的を達成せしめた本発明の半導体ウェハの自動平
面研削盤における連続ダウンフィード方式を以下実施例
の図面によって説明する。
A continuous down-feed method in an automatic surface grinding machine for semiconductor wafers according to the present invention, which achieves the above object, will be explained below with reference to drawings of embodiments.

第1図は本発明の説明の為の一実施例の概要平面図であ
り、第2図はその側面図である。
FIG. 1 is a schematic plan view of an embodiment for explaining the present invention, and FIG. 2 is a side view thereof.

多数枚の広径半導体ウェハAを単品毎に集積格納して昇
降自在なカートリッジBから、ベルトコンベヤー1によ
って送出される半導体ウェハAは、先端に吸着パット2
を備えて半転機能を有する移送アーム3によって吸着、
反転されてプリポジション装置4の面上へ移送される。
Semiconductor wafers A are delivered by a belt conveyor 1 from a cartridge B that stores a large number of wide-diameter semiconductor wafers A individually and can be raised and lowered, and a suction pad 2 is attached to the tip.
It is adsorbed by the transfer arm 3 which has a semi-rotation function.
It is inverted and transferred onto the surface of the preposition device 4.

そして、プリポジション装[4で正確な位置決めと洗浄
を、液体の噴流によって行ない、先端にエヤー吸着パッ
ト5を備えた水平方向に回転かつ進退し、並びに昇降可
能なウェハの移送アーム6によって、平面研削盤本体7
のロータリーテーブル8の6等分した枠によって設けら
れた6ケ箇所のチャック9のチャック位置9aへ正確に
案内され確りとバキューム吸着される。ロータリーテー
ブル8は一定の低速で176づつ回転、停止を繰り返し
、チャック9はロータリーテーブル8が停止した時に予
め規定せしめた自回転を始めロータリーテーブル8の回
転中は自回転を停止する機構である。次いでチャック位
置9aはロータリーテーブル8の回転によって9bの位
置へ移動し、上部より回転するスピンドル軸10下端の
カップホイール11へ常置に固着されたダイヤモンド砥
石が自動降下して来て最初の荒研削が開始される。
A preposition device [4] performs accurate positioning and cleaning using a jet of liquid, and a wafer transfer arm 6, which is equipped with an air suction pad 5 at the tip and can rotate horizontally, move forward and backward, and move up and down, moves the wafer onto a flat surface. Grinding machine body 7
It is accurately guided to the chuck positions 9a of the chuck 9 at six locations provided by the frame divided into six equal parts of the rotary table 8, and is firmly vacuum-adsorbed. The rotary table 8 repeatedly rotates and stops 176 times at a constant low speed, and the chuck 9 is a mechanism that starts self-rotation according to a predetermined value when the rotary table 8 stops, and stops the self-rotation while the rotary table 8 is rotating. Next, the chuck position 9a moves to the position 9b by the rotation of the rotary table 8, and the diamond grinding wheel permanently fixed to the cup wheel 11 at the lower end of the spindle shaft 10 rotating from above automatically descends to perform the first rough grinding. will be started.

本発明はその研削中の削りしろを決定するダイヤモンド
砥石の降下速度を微調整可能なモーター、又は油圧等の
ハイドロリックモーターによって微細に0.01 /A
 m〜0.3ms/ m i nまでを連続、かつ無段
階に微調整設定できる連続゛ダウンフィード方式を用い
たものであり、被研削物にががる砥石の振動、衝撃加圧
を極減せしめることに成功したものである。チャック位
置9bで最初の研削が定められた量の削りしろを任意の
微速度の降下量によるダイヤモンド砥石の切り込み量で
研削した後、スピンドル軸10は上昇して研削砥石がら
ウェハAは開放されロータリーテーブル8の回転により
チャック位[9cへ移動し、更に前記方式方法によって
中仕上げ研削を行なうものである。そして。
The present invention uses a motor that can finely adjust the descending speed of the diamond grinding wheel, which determines the cutting margin during grinding, or a hydraulic motor such as oil pressure, to finely adjust the speed to 0.01/A.
It uses a continuous down-feed method that allows continuous and stepless fine adjustment settings from m to 0.3 ms/min, and minimizes the vibration and impact pressure of the grinding wheel that sticks to the object to be ground. It was a success. After the initial grinding at the chuck position 9b is performed by grinding a predetermined amount of cutting margin with the cutting depth of the diamond grinding wheel determined by the descending amount at an arbitrary slow speed, the spindle shaft 10 is raised and the wafer A is released from the grinding wheel and rotated to the rotary The table 8 is rotated to move to the chuck position [9c, and further semi-finishing grinding is performed using the method described above. and.

チャック位置9dでは同様に仕上げの研削を行なうが、
チャック位置9c、9dでも、本発明の連続ダウンフィ
ード方式を用いて研削を行なうことは勿論である。
Finish grinding is performed in the same way at chuck position 9d, but
Of course, grinding can also be performed at the chuck positions 9c and 9d using the continuous downfeed method of the present invention.

次いで、研削を完了した極薄半導体ウェハAはチャック
位[9eで洗浄された後、先端に収納用移送アームの吸
着パット12を備えた水平方向に回転かつ進退し、並び
に昇降可能な収納用移送アーム13で吸着され洗浄及び
乾燥装置14へ移送されて、洗浄並びに乾燥後に収納用
反転アームのエヤー吸着パット15を備える収納用反転
アーム16で収納用ベルトコンベヤ17に載置され収納
カートリッジCの収納枠へ整然と単品毎に順次収納され
る構成を持つ自動平面研削盤である。
Next, the ultra-thin semiconductor wafer A that has been ground is cleaned in a chuck position [9e], and then moved to a storage transfer arm that is equipped with a suction pad 12 of a storage transfer arm at the tip and that can rotate horizontally, move forward and backward, and move up and down. The storage cartridge C is adsorbed by the arm 13 and transferred to the cleaning and drying device 14, and after cleaning and drying, is placed on the storage belt conveyor 17 by the storage reversal arm 16 equipped with the air suction pad 15 of the storage reversal arm, and the storage cartridge C is stored. This is an automatic surface grinder that has a structure in which each item is stored in a frame in an orderly manner.

前記の説明は、半導体ウェハが一枚での研削工程の説明
であるが、ウェハAがカートリッジBよリベルトコンベ
ヤ1を経て、プリポジション5へ移送された時には、次
のウェハはカートリッジBよりベルトコンベヤ1で移送
され、前のウェハがロータリーテーブル8のチャック位
置9aへ移送されるのを待機する等、これらの動作を繰
返し連続して行なえる自動送り出し、自動回転機構を有
する構成であり、ロータリーテーブル8に設けたチャッ
ク9位置の各々の位置9a〜9fでは夫々作業を同時に
連続して行なうものである。即ち、チャック位置9eで
研削を完了したウェハは洗浄乾燥装置14八移送され、
収納用搬送アーム16で収納用コンベヤ17に載置され
、収納用カートリッジCへ収納されるが、ロータリーテ
ーブル8のチャック9はチャック位置9fで洗浄をし、
次のウェハ研削のための準備を行なうものである。つま
り、ウェハは、カートリッジ→ベルトコンベヤ→反転ア
ーム→プリポジション→チャック位[9a→チャック位
i!9b→チャック位置9c→チャック位[9ci→チ
ャック位[9e→収納用移送ア一ム→洗浄乾燥装置→収
納用反転アーム→収納用ベルトコンベヤ→収納用カート
リッジと1次々と移送され、研削され、収納される自動
平面研削盤である。
The above explanation is about the grinding process for one semiconductor wafer, but when wafer A is transferred from cartridge B to preposition 5 via belt conveyor 1, the next wafer is transferred from cartridge B to belt conveyor 1. 1 and waits for the previous wafer to be transferred to the chuck position 9a of the rotary table 8.The structure has automatic feeding and automatic rotation mechanisms that can repeatedly and continuously perform these operations, such as waiting for the previous wafer to be transferred to the chuck position 9a of the rotary table 8. At each of the positions 9a to 9f of the chuck 9 provided at 8, operations are performed simultaneously and continuously. That is, the wafer that has been completely ground at the chuck position 9e is transferred to the cleaning and drying device 148,
It is placed on the storage conveyor 17 by the storage transfer arm 16 and stored in the storage cartridge C, but the chuck 9 of the rotary table 8 is cleaned at the chuck position 9f.
This is to prepare for the next wafer grinding. In other words, the wafer moves from cartridge to belt conveyor to reversing arm to preposition to chuck position [9a to chuck position i! 9b → Chuck position 9c → Chuck position [9ci → Chuck position [9e → Storage transfer arm → Washing/drying device → Storage reversing arm → Storage belt conveyor → Storage cartridge, and are transferred one after another and ground. It is an automatic surface grinding machine that is stored.

本実施例はロータリーテーブルが6等分された枠で構成
であるが、その加工方法、加工工程等により1等分され
る枠の数は任意に設定できるものである。
In this embodiment, the rotary table is composed of frames divided into six equal parts, but the number of frames divided into six equal parts can be set arbitrarily depending on the processing method, processing steps, etc.

該研削盤に前記連続ダウンフィード方式を用いた本発明
は、被研削物にかかる加圧を激減なさしめているために
、半導体ウェハとダイヤモンド砥石の研削時の干渉領域
での研削抵抗、変性に基づく体積変化、研削摩擦熱に伴
う熱膨張による応力等の発生を皆無となさしめ、残留応
力や変質層(ダメージ)も残らない為に、広径化、極薄
化した半導体ウェハでも反りや歪み、クラック等の存し
ない高精度の鏡面研削を可能となさしめたものである。
The present invention, which uses the above-mentioned continuous downfeed method in the grinding machine, drastically reduces the pressure applied to the object to be ground, and therefore reduces the grinding resistance and denaturation in the interference region when grinding the semiconductor wafer and the diamond grinding wheel. The generation of stress due to volume change and thermal expansion due to grinding friction heat is completely eliminated, and no residual stress or altered layer (damage) remains, so even wide diameter and ultra-thin semiconductor wafers can be prevented from warping or distortion. This enables high-precision mirror grinding without cracks or the like.

従来のように、半導体ウェハの仕上後の肉厚が0.4m
程度のものであっても、前記の弊害が起きていたが現在
要求される0、2+nm程度の肉厚ウェハ、又はそれ以
下の肉厚ウェハで、尚かつ広径化(5インチ以上)を計
るために、本発明の連続ダウンフィード方式は対応して
余り有る画期的な方式であり、高品質、高精度の鏡面を
得ることのできるもので、その貢献度は計りしれないも
のがあり、極めて有意義な効果を奏するものである。
As in the past, the wall thickness of semiconductor wafers after finishing was 0.4 m.
Even if the thickness of the wafer is small, the above-mentioned disadvantages have occurred, but it is currently required to use a wafer with a thickness of about 0.2+nm, or a wafer with a thickness of less than 0.2 nm, and also with a wider diameter (5 inches or more). Therefore, the continuous down-feed method of the present invention is an epoch-making method that can produce a mirror surface of high quality and precision, and its contribution is immeasurable. This has extremely significant effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明のための平面図であり
、第2図はその要部の側面図である。 A−ウェハ、B−カートリッジ、C−収納用カートリッ
ジ。 1−ベルトコンベヤ、2−吸着バット、3−移送アーム
、4−プリポジション、5−エヤー吸着バット、6−移
送アーム、7一平面研削盤本体、8−ロータリーテーブ
ル、9−チャック、9a、9b、9c、9d、9e、9
f−チャック位置、IO−スピンドル軸、11−カップ
ホイール、12−収納用移送アームの吸着バット、13
−収納用移送アーム、14−洗浄及び乾燥装置、15−
収納用反転アームのエヤー吸着バット、16−収納用反
転アーム、17−収納用ベルトコンベヤ。
FIG. 1 is a plan view for explaining one embodiment of the present invention, and FIG. 2 is a side view of the main parts thereof. A-wafer, B-cartridge, C-storage cartridge. 1-belt conveyor, 2-suction bat, 3-transfer arm, 4-preposition, 5-air suction bat, 6-transfer arm, 7-plane grinder body, 8-rotary table, 9-chuck, 9a, 9b , 9c, 9d, 9e, 9
f-chuck position, IO-spindle axis, 11-cup wheel, 12-suction butt of storage transfer arm, 13
- Storage transfer arm, 14- Washing and drying device, 15-
Air suction bat of inversion arm for storage, 16-inversion arm for storage, 17-belt conveyor for storage.

Claims (1)

【特許請求の範囲】[Claims] 複数等分した枠によって形成され、薄物ウエハを液面張
力又はエアー吸着して低速回転するチャック機構を有し
一定の低速で回転、停止を繰り返すロータリーテーブル
へ複数個の半導体ウエハをチャックして自動研削する平
面研削盤であって、スピンドル軸下端辺に固定したカッ
プホイール型ダイヤモンド砥石の切り込み速度を微調整
可能なモーター又は、油圧等のハイドロリックを用いて
0.01μm〜0.3mm/minとなし、微細に研削
速度を設定出来ることを特徴とする半導体ウエハの自動
平面研削盤における連続ダウンフィード方式。
It is formed by a frame divided into multiple equal parts, and has a chuck mechanism that rotates at low speed by adsorbing thin wafers by liquid surface tension or air.It automatically chucks multiple semiconductor wafers onto a rotary table that repeatedly rotates and stops at a constant low speed. A surface grinding machine that grinds, using a motor that can finely adjust the cutting speed of a cup wheel type diamond grinding wheel fixed to the lower end of the spindle shaft or hydraulics such as oil pressure to 0.01 μm to 0.3 mm/min. A continuous downfeed method for automatic surface grinding machines for semiconductor wafers, which is characterized by the ability to finely set the grinding speed.
JP6912685A 1985-04-03 1985-04-03 Continuous down feeding of semi-conductor wafer on automatic plane grinding machine Pending JPS61230853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6912685A JPS61230853A (en) 1985-04-03 1985-04-03 Continuous down feeding of semi-conductor wafer on automatic plane grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6912685A JPS61230853A (en) 1985-04-03 1985-04-03 Continuous down feeding of semi-conductor wafer on automatic plane grinding machine

Publications (1)

Publication Number Publication Date
JPS61230853A true JPS61230853A (en) 1986-10-15

Family

ID=13393632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6912685A Pending JPS61230853A (en) 1985-04-03 1985-04-03 Continuous down feeding of semi-conductor wafer on automatic plane grinding machine

Country Status (1)

Country Link
JP (1) JPS61230853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785578A (en) * 1994-06-15 1998-07-28 Norsk Hydro A.S. Equipment for the grinding of material samples

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785578A (en) * 1994-06-15 1998-07-28 Norsk Hydro A.S. Equipment for the grinding of material samples

Similar Documents

Publication Publication Date Title
US7278903B2 (en) Processing method for wafer and processing apparatus therefor
US4054010A (en) Apparatus for grinding edges of planar workpieces
KR102507675B1 (en) Wafer processing method
JP4977493B2 (en) Dressing method and dressing tool for grinding wheel
WO1982003038A1 (en) One-pass type automatic plane multi-head grinding polishing and cleaning machine
JP3658851B2 (en) Thin plate surface grinding method
JPS61230853A (en) Continuous down feeding of semi-conductor wafer on automatic plane grinding machine
US6969302B1 (en) Semiconductor wafer grinding method
JP6851761B2 (en) How to process plate-shaped objects
JP5399829B2 (en) Polishing pad dressing method
JPS6377647A (en) Grinding method for plate-shaped body and its device
JPH1148107A (en) Method and device for grinding both side
JPH06270041A (en) Grinding for semiconductor wafer and device therefor
JP4336085B2 (en) Polishing equipment
JP2003305643A (en) Polishing device
JP2613081B2 (en) Mirror polishing method for wafer periphery
JPH029535A (en) Method and device of manufacturing thin base sheet
JP3007678B2 (en) Polishing apparatus and polishing method
JPH08107093A (en) Working method for semiconductor substrate
JPS61274876A (en) Semiconductor wafer measuring method in automatic surface grinder
JP7154690B2 (en) Grinding wheel dressing method
JPS62224537A (en) Composite working machine for manufacture of thin base plate
JP2542445Y2 (en) Buff groove processing equipment
JPS63288654A (en) Method and device for grinding semiconductor wafer
JP2002254288A (en) Apparatus and method for finishing work