JPS6123066B2 - - Google Patents

Info

Publication number
JPS6123066B2
JPS6123066B2 JP5722881A JP5722881A JPS6123066B2 JP S6123066 B2 JPS6123066 B2 JP S6123066B2 JP 5722881 A JP5722881 A JP 5722881A JP 5722881 A JP5722881 A JP 5722881A JP S6123066 B2 JPS6123066 B2 JP S6123066B2
Authority
JP
Japan
Prior art keywords
welding
welded
welding machine
tig
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5722881A
Other languages
Japanese (ja)
Other versions
JPS57171586A (en
Inventor
Tatsuaki Noda
Shinichi Nishijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP5722881A priority Critical patent/JPS57171586A/en
Publication of JPS57171586A publication Critical patent/JPS57171586A/en
Publication of JPS6123066B2 publication Critical patent/JPS6123066B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls

Description

【発明の詳細な説明】 本発明は板厚を周期的に変化させた金属材料或
いは周期的に表面に凸凹模様を附した金属材料の
自動溶接方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic welding method for a metal material whose plate thickness is periodically changed or a metal material whose surface is periodically patterned.

板厚が変化する金属材料を溶接する場合、板厚
の厚い部分は入熱不足のため、溶接ビードの幅が
狭くなりやすく、逆に板厚の薄い部分は入熱過剰
のため、溶接ビードの幅が広くなりやすいため、
均一な溶接を自動で行わせることは難しいものと
されていた。また、表面に凸凹模様をつけた板材
の溶接を行なう場合においても、平滑部分の板厚
T1に対し、板材の凹溝をつけられた部分と凸溝
をつけられた部分では、第1図に示すように実質
板厚T2が異なるため、それぞれの部分ごとに入
熱量を制御してやらなければ均一な溶接結果を得
ることは困難である。
When welding metal materials with varying plate thicknesses, thicker parts tend to have a narrower weld bead due to insufficient heat input, while thinner parts tend to have a narrower weld bead due to excess heat input. Because the width tends to be wide,
It has been considered difficult to automatically perform uniform welding. Also, when welding plate materials with uneven patterns on the surface, the thickness of the smooth part
In contrast to T 1 , the actual plate thickness T 2 is different between the concave grooved part and the convex grooved part of the plate material, as shown in Figure 1, so it is necessary to control the amount of heat input for each part. Otherwise, it is difficult to obtain uniform welding results.

従来、電子ビーム溶接において、被溶接金属材
料の板厚を検知してその変化に応じて該電子ビー
ム溶接の加熱強度を自動制御する溶接方法が、英
国特許第1360621号明細書に示されている。
Conventionally, in electron beam welding, British Patent No. 1360621 discloses a welding method in which the plate thickness of the metal material to be welded is detected and the heating intensity of the electron beam welding is automatically controlled according to the change. .

ところが、電子ビーム溶接は真空中で行なわれ
るものであるため、その装置並びに操作が複雑と
なるのみならず、連続板材の溶接には不向である
等の種々の問題点がある。
However, since electron beam welding is performed in a vacuum, it not only requires complicated equipment and operation, but also has various problems such as being unsuitable for welding continuous plates.

従つて、本発明者等は下記に説明するように、
TIG溶接又はプラズマ溶接を用いる方法につき
種々研究実験を行つた。
Therefore, the inventors, as explained below,
Various research experiments were conducted on methods using TIG welding or plasma welding.

1〜数本のTIGトーチを溶接予定線上に並べ、
全部又は一部のTIGトーチの電流を制御すること
は公知の方法である。しかし、この方法では、周
期的に実質板厚が急激に変化する金属材料に対し
均一な溶接結果を得ることはできない。なんとな
れば、TIG溶接においては、タングステン電極は
アークが定常的に発生している状態では熱陰極と
してアークを安定に維持するが、始動的には、タ
ングステン電極が加熱されるまでは冷陰極特性を
示すため、アークが不安定となる。そのためアー
クのON・OFFを精密にくり返す制御には不向き
である。又、ON・OFFせずに電流の大小で制御
する場合にも、TIGトーチは小電流範囲において
アークが安定しないので、良好な制御電流が得ら
れない。
Line up one or several TIG torches on the welding planned line,
It is a known method to control the current of all or some TIG torches. However, with this method, it is not possible to obtain uniform welding results for metal materials whose actual plate thickness periodically changes rapidly. In TIG welding, the tungsten electrode acts as a hot cathode and maintains the arc stably when the arc is constantly generated, but during startup, the tungsten electrode has cold cathode characteristics until it is heated. The arc becomes unstable. Therefore, it is not suitable for control that precisely repeats ON/OFF of the arc. Furthermore, even when controlling by the magnitude of the current without turning it on or off, a good control current cannot be obtained because the arc of the TIG torch is not stable in the small current range.

一方プラズマ溶接では、高周波電流によりパイ
ロツトアークを常時点弧しておき、パイロツトア
ークと被溶接材である母材の間にプラズマアーク
を噴射させるため、アークの精密なON・OFF制
御ができる。
In plasma welding, on the other hand, a pilot arc is constantly ignited using a high-frequency current, and the plasma arc is injected between the pilot arc and the base metal to be welded, allowing precise ON/OFF control of the arc.

さらにプラズマ溶接ではTIG溶接に比べ、入熱
密度が大きいため、実質厚さの厚い部分の加熱に
適している。又、プラズマジエツトによれば突合
せ開先は第2図のように開先の隙間を通じて十分
に加熱される。これに対し、TIG溶接の場合は第
3図のように開先の一部のみの加熱となりやす
い。
Furthermore, plasma welding has a higher heat input density than TIG welding, so it is suitable for heating thick parts. Furthermore, according to the plasma jet, the butt grooves are sufficiently heated through the gap between the grooves as shown in FIG. On the other hand, in the case of TIG welding, only a portion of the groove is likely to be heated, as shown in Figure 3.

しかし、プラズマ溶接機の設備費はTIG溶接機
に比して遥かに高価である。そこで、本発明者等
はプラズマ溶接機とTIG溶接機を併用する溶接方
法を開発した。
However, the equipment costs for plasma welding machines are much higher than those for TIG welding machines. Therefore, the present inventors developed a welding method that uses both a plasma welder and a TIG welder.

すなわち、本発明は、以上の点に鑑みてなした
もので、プラズマ溶接とTIG溶接を併用した比較
的簡単な方法により、被溶接金属材料の実質的板
厚の変化に対応して均一な溶接を連続して行うこ
との出来る溶接方法を提供することを目的とす
る。
That is, the present invention has been made in view of the above points, and uses a relatively simple method that combines plasma welding and TIG welding to achieve uniform welding in response to substantial changes in the thickness of the metal material to be welded. The purpose of the present invention is to provide a welding method that allows continuous welding.

上記の目的を達成するための本発明の溶接方法
による溶接用加熱は、被溶接材の溶接予定線上に
直列に配設されたプラズマ溶接機とTIG溶接機に
より行われており、上記各溶接機は、被溶接材が
まずプラズマ溶接機で加熱され、次にTIG溶接機
で加熱されるように配置し、TIG溶接機の電流は
一定に保持しておき、プラズマ溶接機の電流だけ
を実質板厚の変化に連動して制御することを特徴
としている。
Heating for welding according to the welding method of the present invention to achieve the above object is performed by a plasma welder and a TIG welder that are arranged in series on the welding line of the material to be welded. In this method, the material to be welded is first heated by a plasma welding machine and then heated by a TIG welding machine, the current of the TIG welding machine is kept constant, and only the current of the plasma welding machine is applied to the actual plate. It is characterized by control in conjunction with changes in thickness.

次に、本発明の一実施例を図面について説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

第2図は本発明に用いられるプラズマ溶接機1
の要部断面図であり、第3図は同TIG溶接機2の
要部断面図である。第2図に示すプラズマ溶接機
1は、タングステン電極よりなる陰極3の外周
に、冷却水路が形成されている拘束ノズル4が設
けられ、この拘束ノズル4のさらに外周に保護ガ
スノズル5が設けられた構成とされており、上記
陰極3と上記拘束ノズル4との間から動作ガスと
してのアルゴンガスArが供給され、拘束ノズル
4と保護ガスノズル5との間から保護ガスとして
のヘリウムガスHeが供給されている。さらに、
上記拘束ノズル4と被溶接材6には陰極3に対応
するプラス電位が加えられている。
Figure 2 shows plasma welding machine 1 used in the present invention.
FIG. 3 is a sectional view of the main parts of the TIG welding machine 2. In the plasma welding machine 1 shown in FIG. 2, a restrained nozzle 4 in which a cooling channel is formed is provided on the outer periphery of a cathode 3 made of a tungsten electrode, and a protective gas nozzle 5 is further provided on the outer periphery of this restrained nozzle 4. Argon gas Ar is supplied as an operating gas from between the cathode 3 and the restraint nozzle 4, and helium gas He is supplied as a protective gas from between the restraint nozzle 4 and the protective gas nozzle 5. ing. moreover,
A positive potential corresponding to the cathode 3 is applied to the constrained nozzle 4 and the workpiece 6 .

一方、第3図に示すTIG溶接機2は、タングス
テン電極よりなる陰極3の外周に、ガスノズル7
が設けられた構成とされており、その陰極3とガ
スノズル7との間から動作ガスとしてのアルゴン
ガスArが供給され、陰極3に対応するプラス電
位は被溶接材6のみに加えられている。
On the other hand, the TIG welding machine 2 shown in FIG.
Argon gas Ar is supplied as a working gas from between the cathode 3 and the gas nozzle 7, and the positive potential corresponding to the cathode 3 is applied only to the material to be welded 6.

しかして、上記各溶接機1,2は第6図に示す
ように、被溶接機6の溶接予定線上に直列に近接
して配設されており、プラズマ溶接機1は被溶接
材6の流れ方向における上流側に、TIG溶接機2
は下流側に設置されている。さらに、上記プラズ
マ溶接機1の上流側には第4図に示す超音波厚み
計8もしくは第5図に示す光電変換装置9が設け
られている。この光電変換装置9は投光器9aと
光電管受光部9bとで構成されており、投光器9
aから発せられて被溶接材6の面で反射された光
は、被溶接材6が平滑面の時は受光せず、凸凹模
様の面で散乱された光が受光されるように、その
投光器9aと受光器9bとの位置関係及び取付角
度が設定されている。
As shown in FIG. 6, the welding machines 1 and 2 are arranged close to each other in series on the welding line of the machine to be welded 6, and the plasma welding machine 1 is connected to the flow of the material to be welded 6. On the upstream side in the direction, TIG welding machine 2
is installed on the downstream side. Further, on the upstream side of the plasma welding machine 1, an ultrasonic thickness gauge 8 shown in FIG. 4 or a photoelectric conversion device 9 shown in FIG. 5 is provided. This photoelectric conversion device 9 is composed of a light emitter 9a and a phototube light receiving section 9b.
The light emitted from a and reflected by the surface of the material to be welded 6 is not received when the material to be welded 6 is a smooth surface, but the light that is scattered by the surface with an uneven pattern is received by the projector. The positional relationship and mounting angle between the light receiver 9a and the light receiver 9b are set.

上記超音波厚み計8若しくは光電変換装置9に
より、第5図に示すような検出信号Sが得られ、
この検出信号により、プラズマ溶接機1における
陰極3と被溶接材6との間に加えられる電流が
ON・OFF操作されるのであるが、上記プラズマ
溶接機1と、超音波厚み計8もしくは光電変換装
置9とが、互いに隔れた箇所に配置される場合
は、遅延回路あるいはメモリーカウンターによれ
回路を用いることにより、検出位置と操作位置と
のズレが補正されることになる。従つて、第6図
に示すように、溶接電流は被溶接材6との例え厚
さ変化に一致した状態となる。
A detection signal S as shown in FIG. 5 is obtained by the ultrasonic thickness gauge 8 or the photoelectric conversion device 9,
Based on this detection signal, the current applied between the cathode 3 and the workpiece 6 in the plasma welding machine 1 is
The ON/OFF operation is performed, but if the plasma welding machine 1 and the ultrasonic thickness gauge 8 or the photoelectric conversion device 9 are located at separate locations, the circuit may be turned off by a delay circuit or a memory counter. By using this, the deviation between the detected position and the operating position is corrected. Therefore, as shown in FIG. 6, the welding current matches the change in thickness of the material 6 to be welded.

なお、上記実施例においては、TIG溶接機2に
は一定電流を流しておき、実質板厚の厚い部分に
だけTIG溶接機2の前に、すなわち被溶接材6の
流れにおける上流側に設置したプラズマ溶接機1
による加熱を施す。従つて、プラズマ溶接機1は
原則としてON・OFF制御で作動されるが、プラ
ズマ溶接機1のベース電流は必ずゼロでなければ
ならないわけではない。すなわち、プラズマ溶接
機は電流を大小に切りかえる制御によつて作動さ
せてもよい。
In the above embodiment, a constant current was passed through the TIG welding machine 2, and the TIG welding machine 2 was installed only in the thick part of the plate, that is, in front of the TIG welding machine 2, that is, on the upstream side of the flow of the material to be welded 6. Plasma welding machine 1
Heating is performed by Therefore, although the plasma welding machine 1 is operated under ON/OFF control in principle, the base current of the plasma welding machine 1 does not necessarily have to be zero. That is, the plasma welding machine may be operated by controlling the current to be switched between high and low levels.

また、本発明の実施例においては、プラズマ溶
接機2をTIG溶接機1の前方に設置されている。
従つて、プラズマ溶接機1がONの状態において
は、まずプラズマ溶接機1による入熱によつて被
溶接機6は十分に深部に達する予熱を受け、次い
でTIG溶接機2による加熱で溶融される。被溶接
材6の面は図示の如き平面のみならず曲面でも良
く、又、その面上の周期的変化とは、変化が一回
だけの場合も包含する。
Further, in the embodiment of the present invention, the plasma welding machine 2 is installed in front of the TIG welding machine 1.
Therefore, when the plasma welding machine 1 is in the ON state, the welding machine 6 is first preheated sufficiently deep by the heat input by the plasma welding machine 1, and then is melted by the heating by the TIG welding machine 2. . The surface of the material to be welded 6 may be not only a flat surface as shown in the figure but also a curved surface, and periodic changes on the surface also include cases where the change occurs only once.

以上により、板厚を周期的に変化させた金属材
料或いは周期的に表面に凸凹模様を附した金属材
料を均一に自動溶接するため高能率且つ経済的な
方法を確立したものであり、すなわち、本発明に
よれば、溶接用加熱をプラズマ溶接機とTIG溶接
機との併用により行なわせるとともに、プラズマ
溶接機の電流だけを被溶接材の実質板厚の変化に
連動して制御するようにしたので、溶接機全体の
コストをそれほど増加させることはなく、確実で
均一な自動制御による溶接結果を得ることができ
る効果がある。
As described above, a highly efficient and economical method has been established for uniformly and automatically welding metal materials whose plate thicknesses are periodically changed or metal materials whose surfaces are periodically patterned. According to the present invention, heating for welding is performed by using a plasma welder and a TIG welder together, and only the current of the plasma welder is controlled in conjunction with changes in the actual plate thickness of the material to be welded. Therefore, the cost of the entire welding machine does not increase significantly, and it is possible to obtain reliable and uniform welding results through automatic control.

本発明の溶接方法が適用される被溶接金属の種
類については特に限定しないが、ステンレス、銅
合金、或いはチタン、ジルコニウム、ニツケルも
しくはそれらの合金、或いはその他の金属又は合
金の溶接に最適であり、各種装置、構造物又はそ
れらの部品もしくは部材の製作に実用される。
There are no particular limitations on the type of metal to be welded to which the welding method of the present invention is applied, but it is most suitable for welding stainless steel, copper alloys, titanium, zirconium, nickel or their alloys, or other metals or alloys, It is used in the production of various devices, structures, and their parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロ,ハ,ニ,ホは本発明の使用対象
となる被溶接材を示す要部断面図及び斜視図、第
2図は本発明の実施例に用いられるプラズマ溶接
機の要部断面図、第3図は同TIG溶接機の要部断
面図、第4図は被溶接材と超音波厚み計との関係
を示す説明図、第5図は被溶接材と光電変換装置
との関係を示す説明図、第6図はプラズマ溶接
機・TIG溶接機と被溶接材との関係及び溶接電流
との関係を示す説明図である。 1……プラズマ溶接機、2……TIG溶接機、6
……被溶接材、8……超音波厚み計、9……光電
変換装置。
Figures 1 A, B, C, D, and H are sectional views and perspective views of the main parts of materials to be welded to which the present invention can be used, and Figure 2 is a main part of a plasma welding machine used in an embodiment of the present invention. Figure 3 is a cross-sectional view of the main parts of the TIG welding machine, Figure 4 is an explanatory diagram showing the relationship between the material to be welded and the ultrasonic thickness gauge, and Figure 5 is a diagram showing the relationship between the material to be welded and the photoelectric conversion device. FIG. 6 is an explanatory diagram showing the relationship between the plasma welding machine/TIG welding machine and the workpiece and the welding current. 1...Plasma welding machine, 2...TIG welding machine, 6
... Material to be welded, 8 ... Ultrasonic thickness gauge, 9 ... Photoelectric conversion device.

Claims (1)

【特許請求の範囲】 1 板厚を変化させた金属材料或いは、表面に凸
凹模様を附した金属材料よりなる被溶接材の前記
板厚或いは表面凸凹模様の少なくともいずれか一
方を検知し、前記板厚変化或いは表面凸凹模様の
少なくともいずれか一方に伴う実質板厚の変化に
連動して溶接用加熱の強度を自動制御する溶接方
法において、前記溶接用加熱は、被溶接材の溶接
予定線上に直列に配設されたプラズマ溶接機と
TIG溶接機により行われており、上記各溶接機
は、被溶接材がまずプラズマ溶接機で加熱され、
次にTIG溶接機で加熱されるように配置し、TIG
溶接機の電流は一定に保持しておき、プラズマ溶
接機の電流だけを実質板厚の変化に連動して制御
することを特徴とする溶接方法。 2 前記被溶接材の表面凸凹模様の検知方法は、
被溶接材の表面を光線によつて照射し、該表面で
反射する光線の強さを光電変換装置で検知する方
法が用いられている特許請求の範囲第1項記載の
溶接方法。
[Scope of Claims] 1. Detecting at least one of the plate thickness or the surface uneven pattern of a material to be welded made of a metal material with a changed plate thickness or a metal material with an uneven pattern on the surface, In a welding method in which the intensity of welding heating is automatically controlled in conjunction with a change in the actual plate thickness due to at least one of a thickness change and a surface unevenness pattern, the welding heating is arranged in series on a welding line of the material to be welded. Plasma welding machine installed in
TIG welding is performed using a TIG welding machine, and in each of the above welding machines, the material to be welded is first heated with a plasma welding machine,
Then place it to be heated by the TIG welder and TIG
A welding method characterized by keeping the current of the welding machine constant and controlling only the current of the plasma welding machine in conjunction with changes in the actual plate thickness. 2. The method for detecting the uneven pattern on the surface of the material to be welded is as follows:
2. The welding method according to claim 1, wherein a method is used in which the surface of the material to be welded is irradiated with a light beam and the intensity of the light beam reflected from the surface is detected by a photoelectric conversion device.
JP5722881A 1981-04-17 1981-04-17 Welding method Granted JPS57171586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5722881A JPS57171586A (en) 1981-04-17 1981-04-17 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5722881A JPS57171586A (en) 1981-04-17 1981-04-17 Welding method

Publications (2)

Publication Number Publication Date
JPS57171586A JPS57171586A (en) 1982-10-22
JPS6123066B2 true JPS6123066B2 (en) 1986-06-04

Family

ID=13049663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5722881A Granted JPS57171586A (en) 1981-04-17 1981-04-17 Welding method

Country Status (1)

Country Link
JP (1) JPS57171586A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920681B1 (en) * 2007-09-10 2009-12-04 Snecma USE OF AN ACTING FLOW FOR TIG WELDING OF METAL PARTS
JP5882773B2 (en) * 2012-02-10 2016-03-09 株式会社神戸製鋼所 Single-sided welding apparatus, program used for single-sided welding apparatus, and single-sided welding method

Also Published As

Publication number Publication date
JPS57171586A (en) 1982-10-22

Similar Documents

Publication Publication Date Title
CA1245298A (en) High-frequency electric resistance welding method using irradiation with a laser beam
FI83399C (en) Method of welding metal sheet
EP0098306B1 (en) Welding method using laser beam
US5821493A (en) Hybrid laser and arc process for welding workpieces
JPH029538B2 (en)
US3567899A (en) Weld-penetration control
JP2001047233A (en) Welding method of railroad rail and equipment therefor
JP3034294B2 (en) Laser welding method and laser welding device
JPS6123066B2 (en)
EP3717169B1 (en) Method of welding with melting and welding devices and desactivation of the melting device ; corresponding welding apparatus
US6437281B1 (en) Apparatus, system, and related method for sensing a characteristic of a workpiece in an automated process
JP3635199B2 (en) Laser welding nozzle for butt welding of hot rolled steel slabs
JPS58100982A (en) Electric resistance welding using energy beam in combination
Blackman et al. High-speed tandem GMAW for pipeline welding
JPS60106688A (en) Laser working device
JPH03477A (en) Welding equipment utilizing combined heat sources
JPH0451271B2 (en)
JPH01186281A (en) Welding method
JP2002361465A (en) Composite welding nozzle
JPH06155059A (en) Welding method in automatic pipe-making machine
JPS6364269B2 (en)
JPS6418592A (en) Manufacture of laser welded can barrel
US20200215636A1 (en) Method and system for hot-wire strip wire deposition and cladding
SU831454A1 (en) Method of welding by different-polarity compressed arcs
JPS6247108B2 (en)