JPS61230318A - Method for scanning laser - Google Patents

Method for scanning laser

Info

Publication number
JPS61230318A
JPS61230318A JP60070883A JP7088385A JPS61230318A JP S61230318 A JPS61230318 A JP S61230318A JP 60070883 A JP60070883 A JP 60070883A JP 7088385 A JP7088385 A JP 7088385A JP S61230318 A JPS61230318 A JP S61230318A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
laser beam
mirror
laser
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60070883A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamaguchi
泰広 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60070883A priority Critical patent/JPS61230318A/en
Publication of JPS61230318A publication Critical patent/JPS61230318A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head

Abstract

PURPOSE:To achieve efficient laser scanning by rotating a laser beam with the center of a semiconductor wafer being the center or rotation, and simultaneously displacing the laser beam radially of the semiconductor wafer. CONSTITUTION:A laser beam is rotated in the clockwise direction with the center of a semiconductor wafer l being the center of rotation,and simultaneously the laser beam is displaced radially from the outer periphery of the wafer 1 to the center thereof. Further, the laser beam is rotated in the counterclockwise direction with the center of the wafer 1 being the center of rotation, and simultaneously the laser beam is displaced radially from the center of the wafer 1 to the outer periphery thereof, thereby performing laser scanning. With this, uniform and efficient laser scanning can be performed on the whole surface of the wafer 1.

Description

【発明の詳細な説明】 〔発明の利用分野) 本発明は、レーザの走査方法に係り、特に薄膜形成中に
半導体ウェハ表面全体を均一に、かつ効率よくレーザ走
査することにより、薄膜の了ニールを行うために好適な
レーザの走査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a laser scanning method, and in particular, the present invention relates to a laser scanning method, and in particular, to uniformly and efficiently laser scan the entire surface of a semiconductor wafer during thin film formation. The present invention relates to a laser scanning method suitable for performing.

〔発明の背景〕[Background of the invention]

この種レーザの走査方法の先行技術としては。 This is the prior art of this type of laser scanning method.

特開昭55−150238号公報に開示されているよう
に、レーザ光を半導体ウェハの半径方向に走査しながら
、半導体ウェハを回転させて、半導体ウニ八表面にレー
ザ走査する技術が知られている。
As disclosed in Japanese Unexamined Patent Publication No. 55-150238, a technique is known in which the semiconductor wafer is rotated while the laser beam is scanned in the radial direction of the semiconductor wafer, and the surface of the semiconductor wafer is laser-scanned. .

しかし、真空中で薄膜を形成する装置では。However, in a device that forms thin films in a vacuum.

軸受に潤滑剤を使用できないため、半導体ウェハ載置台
の回転速度が遅く、薄膜形成完了まで忙半導体ウェハが
1回転しかしないものもある。
Since no lubricant can be used in the bearings, the rotation speed of the semiconductor wafer mounting table is slow, and in some cases the semiconductor wafer rotates only once until the thin film formation is completed.

この場合には、レーザ光が半導体ウェハ表面を1回転し
て走査するのみであり、半導体ウニ八表面全体にレーザ
光を照射できない。
In this case, the laser beam only scans the semiconductor wafer surface by making one rotation, and the entire surface of the semiconductor wafer cannot be irradiated with the laser beam.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、半導体ウニ八表面全体を均一に、かつ
効率よくレーザ走査し得るレーザの走査方法を提供する
ことにある。
An object of the present invention is to provide a laser scanning method capable of uniformly and efficiently laser scanning the entire surface of a semiconductor.

〔発明の概要〕[Summary of the invention]

本発明は、レーザ光を半導体ウェハの中心を回転中心と
して回転させると同時に、半導体ウェハの半径方向に変
位させ、半導体ウニ八表面全体をレーザ走査するように
したところに特徴を有するもので、この構成により、半
導体ウェハ表面全体を均一に、かつ効率よくレーザ走査
することができる、 〔発明の実施例〕 以下3本発明の実施例を図面により説明する。
The present invention is characterized in that the laser beam is rotated around the center of the semiconductor wafer and simultaneously displaced in the radial direction of the semiconductor wafer so that the entire surface of the semiconductor wafer is scanned with the laser beam. With this configuration, the entire surface of a semiconductor wafer can be uniformly and efficiently laser scanned. [Embodiments of the Invention] Three embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明方法の一実施例を示すもので。FIG. 3 shows an embodiment of the method of the present invention.

レーザ光を半導体ウェハ1の中心0を回転中心として時
計方向に回転させると同時に、レーザ光を半導体ウーハ
1の外縁部から半径方向に中心0に向かって変位させ、
またはレーザ光を半導体ウェハ1の中心Oを回転中心と
して反時計方向に回転させると同時に、レーザ光を半導
体ウェハlの中心Oから半径方向に外縁部に向かって変
位させてレーザ走査している。
rotating the laser beam clockwise around the center 0 of the semiconductor wafer 1, and simultaneously displacing the laser beam from the outer edge of the semiconductor wafer 1 in the radial direction toward the center 0;
Alternatively, the laser beam is rotated counterclockwise around the center O of the semiconductor wafer 1, and at the same time, the laser beam is displaced from the center O of the semiconductor wafer 1 in the radial direction toward the outer edge for laser scanning.

その結果、第3図に示す走査線2から分かるよつ釦、前
記いずれの場合にも、半導体ウェハ1の表面全体なレー
ザ走査することができる。
As a result, the entire surface of the semiconductor wafer 1 can be laser scanned in any of the above cases as can be seen from the scanning line 2 shown in FIG.

次に、第4図は本発明方法の他の実施例を示すもので、
この実施例では段階的に走査線20半径を小さくして、
半導体ウェハlの表面をレーザ走査している。
Next, FIG. 4 shows another embodiment of the method of the present invention,
In this embodiment, the radius of the scanning line 20 is gradually reduced,
The surface of a semiconductor wafer l is scanned with a laser.

この第4図に示す実施例においても、半導体ウェハlの
表面全体をレーザ走査することが可能となる。
Also in the embodiment shown in FIG. 4, it is possible to laser scan the entire surface of the semiconductor wafer l.

また、前記Pg3図、第4図に示す実施例ともレーザ光
を半導体ウェハ1の中心0を回転中心として回転させ、
かつ半導体ウェハ1の半径方向に変位させてレーザ走査
を行うようにしており、レーザ光を真空中で駆動させる
必要がなく。
In addition, in the embodiments shown in FIG. 3 and FIG. 4, the laser beam is rotated about the center 0 of the semiconductor wafer 1,
Moreover, the laser scanning is performed by displacing the semiconductor wafer 1 in the radial direction, so there is no need to drive the laser beam in a vacuum.

したがってレーザ光の駆動部を高速で駆動させることが
できるので、効率、よくレーザ走査を行うことができる
Therefore, since the laser beam driving section can be driven at high speed, efficient laser scanning can be performed.

ついで、第1図は薄膜形成装置の−・例としてのマイク
ロ波励磁プラズマCVD装置に本発明方法を適用する場
合を示し、第2図はレーザ光の駆動部としてのミラー駆
動部の詳細を示す。
Next, FIG. 1 shows a case where the method of the present invention is applied to a microwave-excited plasma CVD apparatus as an example of a thin film forming apparatus, and FIG. 2 shows details of a mirror drive section as a laser beam drive section. .

その第1図に示すマイクロ波CVD装置は。The microwave CVD apparatus shown in FIG.

半導体ウェハ1を載置する半導体ウェハ載置台3と、真
空ポンプ4と、この真空ポンプ4により減圧される反応
室5と、放電管6と、この放電管6内のプラズマに電子
サイクロトロン共鳴を引き起こさせるコイル7およびガ
ス導入口8と、マイクロ波発生源9と、レーザ導入用の
窓11を有する導波管10と、レーザ12と、レーザ光
用のミラー13と、ミラー駆動部14とを備えている。
A semiconductor wafer mounting table 3 on which a semiconductor wafer 1 is placed, a vacuum pump 4, a reaction chamber 5 whose pressure is reduced by the vacuum pump 4, a discharge tube 6, and a plasma in the discharge tube 6 that causes electron cyclotron resonance. A microwave generation source 9, a waveguide 10 having a window 11 for laser introduction, a laser 12, a mirror 13 for laser light, and a mirror drive unit 14. ing.

このマイクロ波CVD装置では、レーザ12かう発射さ
れたレーザ光は、ミラー13で反射し。
In this microwave CVD apparatus, the laser beam emitted from the laser 12 is reflected by the mirror 13.

窓11を通り1石英製の放電管6を通過して半導体ウェ
ハlの表面なレーザ走査する。前記ミラー13は、ミラ
ー駆動部14に取り付けられていて。
The laser beam passes through a window 11 and passes through a quartz discharge tube 6 to scan the surface of the semiconductor wafer l. The mirror 13 is attached to a mirror drive section 14.

このミラー駆動部14によりミラー13の傾き角を変化
させながらミラー13を回転させ、レーザ光を照射する
ようになっている。
The mirror driving section 14 rotates the mirror 13 while changing the inclination angle of the mirror 13, and irradiates the laser beam.

第2図に示すミラー駆動部14は、ミラー回転機構15
と、ミラー傾き角調整機構16とを主要部としてい乙。
The mirror drive unit 14 shown in FIG. 2 includes a mirror rotation mechanism 15.
and a mirror tilt angle adjustment mechanism 16 as the main parts.

前記ミラー回転機構15は、支持体17に取り付けられ
た第1のモータ18と、この第1のモータI8に連結さ
れかつベアリング19に支持された主軸20とを有して
いる。前記ミラー傾き角調整機構16は、前記主軸20
に設けられたブラケット30に取り付けられた第2のモ
ータ21と。
The mirror rotation mechanism 15 has a first motor 18 attached to a support 17 and a main shaft 20 connected to the first motor I8 and supported by a bearing 19. The mirror tilt angle adjustment mechanism 16 is connected to the main shaft 20.
and a second motor 21 attached to a bracket 30 provided in the.

この@2のモータ21の回転軸に取り付けられた第1の
歯車22と、前記主軸20にカラー24を介して装着さ
れていて前記主軸20とは各別に回転し得るように設け
られかつ前記第1の歯車22にかみ合わされた第2の歯
車23と、この第2の歯車23にかみ合わされた第3の
歯車25と、この第3の歯車25に連結されかつ取り付
は台31に形成されたナツトに螺合されたねじ26と、
前記主軸20の先端部にビン28を介して揺動自在に取
り付げられたミラーホルダ27と、このミラーホルダ2
7を前記ねじ26の凸円弧形の先端部に当接させるばね
29とを備えて構成されており、前記ミラーホルダ27
にミラー13が固着されている。
A first gear 22 attached to the rotating shaft of the motor 21 of @2 and a first gear 22 attached to the main shaft 20 via a collar 24 and rotatable separately from the main shaft 20 are provided. a second gear 23 meshed with the first gear 22; a third gear 25 meshed with the second gear 23; a screw 26 screwed into the nut;
A mirror holder 27 is swingably attached to the tip of the main shaft 20 via a pin 28, and this mirror holder 2
7 and a spring 29 that brings the mirror holder 27 into contact with the convex arc-shaped tip of the screw 26.
A mirror 13 is fixed to.

そして、前記構成のミラー駆動部14は次のように作用
する。
The mirror driving section 14 having the above structure operates as follows.

すなわち、ミラー回転機構15の第1のモータ18を駆
動させると、主軸20な介してミラー傾き角調整機構1
6全体が回転し、これに伴いミラーホルダ27に固着さ
れたミラー13が回転する。
That is, when the first motor 18 of the mirror rotation mechanism 15 is driven, the mirror tilt angle adjustment mechanism 1 is rotated through the main shaft 20.
The entire mirror 6 rotates, and the mirror 13 fixed to the mirror holder 27 also rotates accordingly.

また、ミラー傾き角調整機構16の第2のモータ21を
順方向または逆方向に駆動させると、第1、第2の歯車
22 、23を介して!3の歯車25が順方向または逆
方向に回転し、この第3の歯車25によりねじ26が回
転するとともに、ねじ作用によりねじ26は軸方向に進
出または後退移動する。前記ねじ26が進出方向に移動
した場合には。
Furthermore, when the second motor 21 of the mirror tilt angle adjustment mechanism 16 is driven in the forward or reverse direction, the motor 21 of the mirror tilt angle adjustment mechanism 16 is driven through the first and second gears 22 and 23! The third gear 25 rotates in the forward or reverse direction, and the third gear 25 rotates the screw 26, and the screw 26 moves forward or backward in the axial direction due to the screw action. When the screw 26 moves in the advancing direction.

ミラーホルダ・27を押進し、これによりミラーホルダ
27がピン28を支点として第4図において反時計方向
に揺動してミラー13を傾斜させ、前記ねじ26が後退
方向に移動した場合には、ミラーホルダ27から遠ざか
り、ばね29の作用によりミラーホルダ27が第4図に
おい℃時計方向に揺動してミラー13を傾斜させる。
When the mirror holder 27 is pushed forward, the mirror holder 27 swings counterclockwise in FIG. , moves away from the mirror holder 27, and the mirror holder 27 swings clockwise in FIG. 4 due to the action of the spring 29, thereby tilting the mirror 13.

したがって、前記ミラー駆動部14のミラー回転機構1
5の第1のモータ18と、ミラー傾き角調整機構16の
第2のモータ21とを同期的に駆動させることにより、
任意にミラー13の回転と傾き角とを制御できる結果、
第3図、@4図に示すようなレーザ光の走査線2を描く
ことができる。
Therefore, the mirror rotation mechanism 1 of the mirror drive section 14
By synchronously driving the first motor 18 of No. 5 and the second motor 21 of the mirror tilt angle adjustment mechanism 16,
As a result of being able to arbitrarily control the rotation and tilt angle of the mirror 13,
It is possible to draw a scanning line 2 of laser light as shown in FIGS. 3 and 4.

なお1本発明方法を実施するに当たっては。Note: 1. When carrying out the method of the present invention.

前記第1図および第2図に示すマイクロ波CVD装置お
よびミラー駆動部に限らず、要はレーザ光を半導体ウェ
ハ1の中心Oを回転中心として回転させると同時に、半
導体ウェハ1の半径方向に変位させ得るものであればよ
い。
Not limited to the microwave CVD apparatus and the mirror drive unit shown in FIGS. 1 and 2, the point is that the laser beam is rotated about the center O of the semiconductor wafer 1 and at the same time is displaced in the radial direction of the semiconductor wafer 1. It is fine as long as it can be done.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、レーザ光を半導体ウェハ
の中心を回転中心として回転させると同時に、半導体ク
エへの半径方向(変位させ。
According to the present invention described above, the laser beam is rotated about the center of the semiconductor wafer and at the same time is displaced in the radial direction (displaced) toward the semiconductor wafer.

半導体ウェハ表面全体をレーザ走査するようにしている
ので、半導体ウェハ表面全体を均一にレーザ走査でき、
その結果薄膜形成中に半導体ウェハ表面に1v膜を均一
にアニールし得る効果を有する外、レーザ光を駆動させ
てレーザ走査することができるので、高速駆動が可能と
なり。
Since the entire surface of the semiconductor wafer is scanned with the laser, the entire surface of the semiconductor wafer can be uniformly scanned with the laser.
As a result, in addition to having the effect of uniformly annealing a 1V film on the surface of a semiconductor wafer during thin film formation, the laser beam can be driven to perform laser scanning, making high-speed driving possible.

したがって効率よくレーザ走査し得る効果がある。Therefore, there is an effect that laser scanning can be performed efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用する薄膜形成装置の一例を示
+概念図、第2図t:ki1図に示す薄膜形成装置を構
成1−ているミう一駆動部の拡大縦断面図、第3図は本
発明方法の一実施例を示すもので、半導体ウエノ・表面
へのレーザ光の走査線を示す図6第4図は本発明方法の
他の実施例を示すもので、半導体ウェー・表面へのレー
ザ光の走査線を示す図である。 l・・・半導体’)エノ−,2・・・レーザ光の走査線
。 3・・・薄膜形成装置を構成している半導体ウエノ・載
置台。 5・・・同反応室、    6・・・同放電管。 7・・・同コイル、    8・・・同ガス導入口。 9・・・同マイクロ波発生源。 10・・・同導波管、12・・・同1/−ザ、13・・
・同ミラー、     14・・・同ミラー駆動部。 15・・・ミラー駆動部のミラー回転機構。 16・・・同ミラー傾き角調整機構。 、ぐt (・− 2嬌
Fig. 1 shows an example of a thin film forming apparatus to which the method of the present invention is applied; Fig. 3 shows an embodiment of the method of the present invention, and Fig. 6 shows a scanning line of laser light on the surface of a semiconductor wafer. - It is a figure showing the scanning line of the laser beam to the surface. l... Semiconductor') Eno-, 2... Scanning line of laser light. 3...Semiconductor wafer/mounting table that constitutes the thin film forming apparatus. 5... Same reaction chamber, 6... Same discharge tube. 7...Same coil, 8...Same gas inlet. 9...The same microwave generation source. 10...Same waveguide, 12...Same 1/-the, 13...
・Same mirror, 14...Same mirror drive unit. 15...Mirror rotation mechanism of the mirror drive section. 16... Mirror tilt angle adjustment mechanism. ,gut (・- 2 嬌

Claims (1)

【特許請求の範囲】[Claims] レーザ光を半導体ウェハの中心を回転中心として回転さ
せると同時に、半導体ウェハの半径方向に変位させ、半
導体ウェハ表面全体をレーザ走査することを特徴とする
レーザの走査方法。
A laser scanning method characterized by rotating a laser beam around the center of a semiconductor wafer and simultaneously displacing the semiconductor wafer in the radial direction to scan the entire surface of the semiconductor wafer with the laser beam.
JP60070883A 1985-04-05 1985-04-05 Method for scanning laser Pending JPS61230318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60070883A JPS61230318A (en) 1985-04-05 1985-04-05 Method for scanning laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070883A JPS61230318A (en) 1985-04-05 1985-04-05 Method for scanning laser

Publications (1)

Publication Number Publication Date
JPS61230318A true JPS61230318A (en) 1986-10-14

Family

ID=13444378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070883A Pending JPS61230318A (en) 1985-04-05 1985-04-05 Method for scanning laser

Country Status (1)

Country Link
JP (1) JPS61230318A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173616A (en) * 1987-12-26 1989-07-10 Sharp Corp Film formation device
US5273935A (en) * 1989-03-30 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Method of controlling etching with a focused charged beam by detecting electrical current or secondary electrons
US8314360B2 (en) * 2005-09-26 2012-11-20 Ultratech, Inc. Apparatuses and methods for irradiating a substrate to avoid substrate edge damage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173616A (en) * 1987-12-26 1989-07-10 Sharp Corp Film formation device
US5273935A (en) * 1989-03-30 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Method of controlling etching with a focused charged beam by detecting electrical current or secondary electrons
US8314360B2 (en) * 2005-09-26 2012-11-20 Ultratech, Inc. Apparatuses and methods for irradiating a substrate to avoid substrate edge damage

Similar Documents

Publication Publication Date Title
US4160894A (en) Method and apparatus for the focal form cutting of a moving web of material by a laser beam
US4128765A (en) Ion beam machining techniques and apparatus
US20050218128A1 (en) Laser processing apparatus with polygon mirror
JPH06170571A (en) Laser polishing method for diamond and device and diamond product formed by utilizing this method and device
JPH01306088A (en) Variable beam laser processing device
JPS61230318A (en) Method for scanning laser
JPH053699B2 (en)
CN113634925B (en) Laser rotary cutting processing system and method
JP2000071088A (en) Laser processing machine
US5468930A (en) Laser sputtering apparatus
KR900007148B1 (en) Method and apparatus for scanning a laser beam to examine the surface of semiconductor wafer
JP2010040593A (en) Ion implanting device and method
JP3149798B2 (en) Platen support drive mechanism for ion implanter
JPH07321063A (en) System and method of controlling temperature and homogeneityof wafer in occasion of simox injection process
JPH03146284A (en) Production of dynamic fluid bearing
JPH08134668A (en) Ion beam milling method and device therefor
JPH0774372B2 (en) Laser hardening method
JPH09118589A (en) Method for forming thin oxide film
JP2002217132A (en) Vacuum deposition apparatus
KR100439679B1 (en) Laser device for patterning light guide panels
US6403969B1 (en) Ion implantation system and ion implantation method
JPH0639575A (en) Laser beam machine
JPH0354515A (en) Noise eliminating device for rotary polygon mirror
JPH0663106B2 (en) Spinning device
JPH05333268A (en) Circular lighting device