JPS61230077A - Plasma-shape controller in magnetic nuclear fusion reactor - Google Patents

Plasma-shape controller in magnetic nuclear fusion reactor

Info

Publication number
JPS61230077A
JPS61230077A JP60071832A JP7183285A JPS61230077A JP S61230077 A JPS61230077 A JP S61230077A JP 60071832 A JP60071832 A JP 60071832A JP 7183285 A JP7183285 A JP 7183285A JP S61230077 A JPS61230077 A JP S61230077A
Authority
JP
Japan
Prior art keywords
plasma
magnetic
coil
computer
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60071832A
Other languages
Japanese (ja)
Inventor
藤村 明宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60071832A priority Critical patent/JPS61230077A/en
Publication of JPS61230077A publication Critical patent/JPS61230077A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 磁気核融合炉では炉内に高温、高密度のプラズマを作り
、その形状及び位置をほぼ一定に保つ必要がある。
DETAILED DESCRIPTION OF THE INVENTION In a magnetic fusion reactor, it is necessary to create high-temperature, high-density plasma within the reactor and to maintain its shape and position approximately constant.

現在作られている磁気核融合炉では、ある程度高温、高
密度のプラズマができても、比較的短時間のうちに形が
崩れ広が、てしまう傾向が強い。
In magnetic fusion reactors currently being built, even if a certain amount of high-temperature, high-density plasma is created, it tends to lose its shape and spread out within a relatively short period of time.

本発明はこの問題を解決しようとするものである。以下
本発明を実験用磁気ミラー炉に用いた実施例につき説明
する。
The present invention seeks to solve this problem. An example in which the present invention is applied to an experimental magnetic mirror furnace will be described below.

図中(1)は両端が、細くなつた円筒形のアルミニウム
容器からなる炉壁。(2)は周知であるため詳細構造は
図示しないが、炉壁(1)の左端につらなる重水素の中
性粒子ビーム発生装置。(3)は炉壁(1)の右端につ
らなる三重水素の中性粒子ビーム発生装置。(4)は炉
壁(1)の左端を囲む超伝導コイル。(5)は炉壁(1
)の右端を囲む超伝導コイル。
In the figure (1) is a furnace wall consisting of a cylindrical aluminum container with tapered ends. (2) is a deuterium neutral particle beam generator connected to the left end of the reactor wall (1), although its detailed structure is not shown because it is well known. (3) is a tritium neutral particle beam generator connected to the right end of the reactor wall (1). (4) is a superconducting coil surrounding the left end of the furnace wall (1). (5) is the furnace wall (1
) superconducting coil surrounding the right end of the.

(6)ないし(29)は炉壁(1)の前面または後面に
取り付けた普通銅線製ソレノイドコイルで、そのうち(
6)(12)(18)(24)はコイル軸が左右に向い
た少巻数の左右方向の磁気分布測定用コイル。(7)(
13)(19)(25)は前後方向の磁気分布測定用コ
イル。(8)(14)(20)(26)は上下方向の磁
気分布測定用コイル。(9)(15)(21)(27)
はコイル軸が左右に向いた左右方向の磁気分布制御用コ
イル。
(6) to (29) are solenoid coils made of ordinary copper wire attached to the front or rear surface of the furnace wall (1), of which (
6) (12) (18) (24) are coils for measuring horizontal magnetic distribution with a small number of turns, with the coil axis facing left and right. (7)(
13) (19) and (25) are coils for measuring magnetic distribution in the front-back direction. (8) (14) (20) (26) are coils for measuring magnetic distribution in the vertical direction. (9) (15) (21) (27)
is a coil for horizontal magnetic distribution control with the coil axis facing left and right.

(10)(16)(22)(28)は前後方向の磁気分
布制御用コイル。(11)(17)(23)(29)は
上下方向の磁気分布制御用コイル。(30)は炉壁(1
)(2)開けた窓を通して内部を撮影するための低感度
のテレビカメラ。(31)(32)(33)(34)は
周囲とは電気的に絶縁され、炉壁(1)の内面の上部ま
たは下部に取り付けられた電位分布測定用電極。(35
)(36)(37)(38)は周囲とは絶縁され、各測
定用電極板の周囲を囲み、かつ炉壁(1)の内面に取り
付けられた枠形の電位分布制御用電極である。
(10), (16), (22), and (28) are coils for controlling magnetic distribution in the front-rear direction. (11), (17), (23), and (29) are coils for vertical magnetic distribution control. (30) is the furnace wall (1
) (2) A low-sensitivity television camera to photograph the interior through an open window. (31), (32), (33), and (34) are electrodes for measuring potential distribution that are electrically insulated from the surroundings and attached to the upper or lower part of the inner surface of the furnace wall (1). (35
)(36)(37)(38) are frame-shaped potential distribution control electrodes which are insulated from the surroundings, surround each measurement electrode plate, and are attached to the inner surface of the furnace wall (1).

第4図、電気回路のブロツク線図中、(39)は10−
4秒ごとの各磁気分布測定用コイルの端子間電圧及び炉
壁(1)に対する各電位分布測定用電極の電圧をデイジ
タル信号に変換し、コンピューター(40)に入力する
A−D変換器。(40)は種々のプログラムを内蔵した
デイジタルコンピユータ。(41)はテレビカメラ(3
0)とコンピューター(40)につらなるビデオレコー
ダー。(42)はコンピューター(40)につらなるマ
ルチトラツクデータレコーダー。(43)は各磁気測定
用コイルの共通端子をA−D変換器(39)から切り離
す際に用いるスイツチ。(44)はコンピューター(4
0)のデイジタル信号出力をアナログ信号に変換するD
−A変換器。(45)はD−A変換器(44)の出力の
一部を各々増幅して各磁気分布制御用コイルに送るため
の電力増幅器。(46)はD−A変換器(44)の出力
の一部を各々増幅して各電位分布制御用電極に送るため
の電圧増幅器である。
In Fig. 4, a block diagram of an electric circuit, (39) is 10-
An A-D converter that converts the voltage between the terminals of each magnetic distribution measuring coil and the voltage of each potential distribution measuring electrode with respect to the furnace wall (1) every 4 seconds into a digital signal and inputs it to the computer (40). (40) is a digital computer containing various programs. (41) is a TV camera (3
A video recorder connected to 0) and a computer (40). (42) is a multi-track data recorder connected to the computer (40). (43) is a switch used to disconnect the common terminal of each magnetic measurement coil from the A-D converter (39). (44) is a computer (4
D converting the digital signal output of 0) into an analog signal
-A converter. (45) is a power amplifier for amplifying a part of the output of the DA converter (44) and sending it to each magnetic distribution control coil. (46) is a voltage amplifier for amplifying a part of the output of the DA converter (44) and sending it to each potential distribution control electrode.

次にこの動作を説明する。Next, this operation will be explained.

図示しないが、付属の送気ポンプや排気ポンプを働かせ
、炉壁(1)内に常に10−7気圧程度の重水素及び三
重水素の混合気が存在するように保つ。
Although not shown, the attached air supply pump and exhaust pump are operated to maintain a mixture of deuterium and tritium at a pressure of about 10 −7 atmospheres within the furnace wall (1) at all times.

超伝導コイル(4)及び(5)に通電し、コイル(4)
内には右向きの200Kガウスの磁場が生じ、その磁力
線は炉壁(1)の広い部い入つてラツパ状に広がり、コ
イル(4)の外側を回り、左側からコイル内に帰る。
The superconducting coils (4) and (5) are energized, and the coil (4)
A 200K Gauss magnetic field is generated in the right direction, and the lines of magnetic force enter the wide part of the furnace wall (1), spread out in a ripple shape, go around the outside of the coil (4), and return to the inside of the coil from the left side.

コイル(5)内には左向きの200Kガウスの磁場が生
じ、磁力線は炉壁(1)の中央部に入つてラツパ状に広
がり、コイル(5)の外側を回り、右側からコイル(5
)内に帰る。
A 200K Gauss magnetic field directed to the left is generated inside the coil (5), and the lines of magnetic force enter the center of the furnace wall (1), spread out in a ripple shape, go around the outside of the coil (5), and enter the coil (5) from the right side.
) to return inside.

両コイルの作る各磁場はそれぞれ両磁場間にあるプラズ
マ中の運動する荷電粒子(電子及びイオン)をはね返す
いわゆる磁気ミラーとなり、両ミラー間にプラズマを閉
じ込める磁気ミラー室を構成する。
The magnetic fields created by both coils act as so-called magnetic mirrors that repel moving charged particles (electrons and ions) in the plasma between the two magnetic fields, forming a magnetic mirror chamber that confines the plasma between the two mirrors.

中性粒子ビーム発生装置(2)はまず重水素の200K
eV程度に加速された右向きのイオンビームを作り、冷
却重水素ガス中を適し、ガスから電子を受け取り、中性
粒子ビームにし、磁力や電気力の作用を受けず、炉壁(
1)内に送り込む。
The neutral particle beam generator (2) first generates 200K of deuterium.
Create a right-directed ion beam accelerated to about eV, place it in a cooled deuterium gas, receive electrons from the gas, turn it into a neutral particle beam, and it will not be affected by magnetic or electric force, and will not be affected by the reactor wall (
1) Send it inside.

中性粒子ビーム発生装置(3)は同様に、三重水素の中
性粒子ビームを作り、炉壁(1)内に送り込む。
The neutral particle beam generator (3) similarly produces a neutral particle beam of tritium and sends it into the reactor wall (1).

両ビームは炉壁(1)内のガスに衝突し、それを高温の
プラズマにし、以後、ビームはプラズマの温度維持とプ
ラズマ原料の補充作用をする。
Both beams collide with the gas in the furnace wall (1), turning it into high-temperature plasma, and thereafter the beams maintain the temperature of the plasma and replenish the plasma raw material.

生じたプラズマは磁気ミラーで反射され、炉壁(1)に
接触しない状態で初期には保持されるが、そのプラズマ
の形はやがて変形し、さまざまな形になつたり、広がつ
たりし、プラズマの密度と温度が下がつたり、炉壁(1
)に接触したりする。
The generated plasma is reflected by a magnetic mirror and is initially held without contacting the reactor wall (1), but the shape of the plasma eventually deforms and takes on various shapes and spreads out. As the plasma density and temperature decrease, the furnace wall (1
).

プラズマ内の電子とイオンは常に高速度で激しく運動し
ているが、電子とイオンの質量差が大きいため、運動状
態も相違し、電子群とイオン群が多少ずれ、プラズマ内
及びその周囲に電位分布を生じ、コイル(4)(5)に
よる磁場にプラズマ内荷電粒子の運動による磁気が重畳
した磁気分布が生ずる。
Electrons and ions in the plasma are always moving violently at high speeds, but because the mass difference between the electrons and ions is large, the state of movement is also different, causing a slight deviation between the electron group and the ion group, causing a potential in and around the plasma. A magnetic distribution is generated in which the magnetism due to the movement of charged particles in the plasma is superimposed on the magnetic field due to the coils (4) and (5).

両分布、すなわち空間内の各所における電位と磁気の、
強さ及び方向は、プラズマの形が変われは変わることに
なる。
Both distributions, i.e. potential and magnetism at various locations in space,
The intensity and direction will change as the shape of the plasma changes.

実験的に作つたプラズマにつき、テレビ撮影その他の測
定を行う。
Television photography and other measurements will be performed on the experimentally created plasma.

テレビカメラ(30)は画系数は40×40=1600
項、コマ数は104/sec程度のものを用い。ビデオ
レコーダー(41)もそれに適合するものを用い、プラ
ズマの形状変化を撮影記録する。(カメラは離れた場所
に置き、フアイバースコープなどで炉内の像を導くこと
が望ましい。) 同時に各電位分布測定用電極(31)(32)(33)
(34)は炉壁(1)内の各部のプラズマ形状の変化に
対応する電圧変化をとらえ、A−D変換器(39)とコ
ンピューター(40)を経てデータレコーダー(42)
に記録する。
The number of images for the TV camera (30) is 40 x 40 = 1600.
The term and number of frames are approximately 104/sec. A video recorder (41) suitable for this purpose is also used to photograph and record changes in the shape of the plasma. (It is desirable to place the camera in a remote location and guide the image inside the furnace using a fiberscope, etc.) At the same time, each potential distribution measurement electrode (31) (32) (33)
(34) captures voltage changes corresponding to changes in plasma shape in various parts of the furnace wall (1), and sends them to a data recorder (42) via an A-D converter (39) and a computer (40).
to be recorded.

同時に磁気分布測定用コイル(6)(12)(18)(
24)はそれぞれの場所における左右方向の磁気変化の
大きさに対応する誘導起電力による電圧を発生し、A−
D変換器(39)を経て、コンピューター(40)内で
各コイルごとの出力値が積算され、変化値の積分で求め
られる磁気量に変換され、毎秒104回データレコーダ
ー(42)に記録される。
At the same time, magnetic distribution measurement coils (6) (12) (18) (
24) generates a voltage due to the induced electromotive force corresponding to the magnitude of the magnetic change in the left and right direction at each location, and A-
Through the D converter (39), the output value for each coil is integrated in the computer (40), converted into a magnetic quantity determined by integrating the change value, and recorded on the data recorder (42) 104 times per second. .

(コイルの代わりに冷却箱に収めたホール■子などを用
いれば、積算する必要はない。)同様にコイル(7)(
13)(19)(25)は各部の磁気の前後方向成分を
、コイル(8)(14)(20)(26)は上下方向成
分をとらえ、データレコーダー(42)に記録する。
(If you use a Hall element placed in a cooling box instead of the coil, there is no need to integrate it.) Similarly, coil (7) (
13), (19), and (25) capture the longitudinal component of the magnetism of each part, and the coils (8), (14), (20, and 26) capture the vertical component, and record them on the data recorder (42).

なお超伝導コイル(4)(5)に通電を開始したり、切
つたりする場合、スイツチ(43)を開き、コイル(4
)(5)の磁気がデータに加わらないようにし、かつ変
換器(39)に大電圧がかかり、破損することを防ぐ。
In addition, when starting or turning off the superconducting coils (4) and (5), open the switch (43) and turn off the coil (4).
) Prevent the magnetism of (5) from being applied to the data, and prevent damage from being applied to the converter (39) due to large voltage.

このようにしてプラズマの形状変化に対応する電位分布
及び磁気分布の時間的な変化が記録されることになる。
In this way, temporal changes in the potential distribution and magnetic distribution corresponding to changes in plasma shape are recorded.

次にビデオレコーダー(41)の映像を再生し、人間が
それを見て、プラズマの明るさが最も強く、かつ小範囲
に絞られている時期を、録画時にコンピューター(40
)から送り込んでビデオテープに記録している時刻信号
を読み取るなどの方法で知り、データレコーダー(42
)に記録されている同じ時刻信号上の時期における電位
分布及び磁気分布のデータをコンピューター(40)に
出力させる。
Next, the image from the video recorder (41) is played back, and a human being watches it to determine when the brightness of the plasma is the strongest and narrowed down to a small area.
) and record the time signal on a videotape.
) is output to the computer (40) data on the potential distribution and magnetic distribution at the same time period on the same time signal.

このデータは良好なプラズマが作られているときに固有
な値とみなすことができ、そのような電位分布や磁気分
布を示すように、外部から制御エネルギーを加えるなど
すれば、プラズマを良好な状態に制御できることになる
This data can be regarded as a unique value when a good plasma is created, and by applying external control energy to show such potential distribution and magnetic distribution, the plasma can be brought into a good state. This means that it can be controlled.

今、そのデータが、電極(31)(32)(33)(3
4)はいずれも−1KV、ホイル(6)(18)は左向
きの1Kガウス、(12)(24)は右向きの1Kガウ
ス、(7)(13)は後向きの1Kガウス、(19)(
25)は前向きの1Kガウス、(8)(14)(20)
(26)は0ガウスであつたとすると、それを基準値(
理想値)とみなし、コンピューター(40)に(基準値
)として入力し記憶させる。
Now, that data is electrode (31) (32) (33) (3
4) are all -1 KV, foils (6) (18) are 1 K Gauss facing left, (12) (24) are 1 K Gauss facing right, (7) (13) are 1 K Gauss facing backward, (19) (
25) is forward 1K Gauss, (8) (14) (20)
Assuming that (26) is 0 Gauss, we set it to the reference value (
It is regarded as an ideal value) and is input into the computer (40) as a reference value and stored.

次に各センサーの示す測定値が基準値より変化した場合
、その変化を抑制するため、変化を検出したセンサーの
近傍の制御電極または制御コイルに、プラズマに作用さ
せるための、制御用の電圧または磁力を加えるプログラ
ムを作り、そのプログラムをコンピューター(40)に
与え、次のプラズマ発生実験を行う。
Next, if the measured value indicated by each sensor changes from the reference value, in order to suppress the change, apply a control voltage or voltage to the control electrode or control coil near the sensor that detected the change. A program for applying magnetic force is created, and the program is given to the computer (40) to perform the next plasma generation experiment.

前述のように炉壁(1)内にプラズマを作り、良好な形
のプラズマが出来上がり、各センサーの測定値が基準値
を示していたとき、プラズマの変形が始まり、電極(3
1)が−1.1KVになつたとすると、コンピューター
(40)は直ちに基準値との差が−0.1KV生じたこ
とを判定し、制御用出力信号をD−A変換器(44)を
経て増幅器(46)に送り、電極(35)に−2KVの
電圧を加える。
As mentioned above, plasma is created within the furnace wall (1), and when a well-shaped plasma is completed and the measured values of each sensor are showing the reference value, the plasma begins to deform and the electrode (3)
1) becomes -1.1KV, the computer (40) immediately determines that there is a difference of -0.1KV from the reference value, and sends the control output signal to the DA converter (44). It is sent to an amplifier (46) and a voltage of -2 KV is applied to the electrode (35).

電極(31)の測定値が−0.1KV増したということ
は、プラズマ中の電子群が電極(31)に接近するか、
イオン群が遠去かることを意味し、制御電極(35)に
−2KVの電圧が加わることにより、電子群は押し返さ
れ、イオン群は引き戻されることになる。(加える電圧
値は任意に選びうる。)そして電極(31)にはプラズ
マから及ぶ電位と制御電極(35)から受ける電位の重
畳されたものが加わり、コンピューター(40)に伝え
られるが、コンピューター(40)は制御電極(35)
に送つている電圧値の電極(31)に対する影響(あら
かじめ行う実験により求められる)を差し引き、プラズ
マから受ける電圧のみを求め、もしそれが基準値より、
なお低ければ、さらに電極(35)の電圧を下げ、高け
れば、加える電圧をやや高める。
The fact that the measured value of the electrode (31) has increased by -0.1 KV means that the electron group in the plasma is approaching the electrode (31).
This means that the ion group will move away, and by applying a voltage of -2 KV to the control electrode (35), the electron group will be pushed back and the ion group will be pulled back. (The voltage value to be applied can be arbitrarily selected.) Then, a superimposed potential of the potential from the plasma and the potential received from the control electrode (35) is applied to the electrode (31), and is transmitted to the computer (40). 40) is the control electrode (35)
By subtracting the influence of the voltage value sent to the electrode (31) on the electrode (31) (determined by experiments conducted in advance), only the voltage received from the plasma is determined, and if it is lower than the reference value,
If it is still low, the voltage of the electrode (35) is further lowered, and if it is high, the applied voltage is slightly increased.

コンピューター(40)はこのようにして各センサーか
ら毎秒104回入つてくる測定値をチエツクし、制御出
力を調節し、プラズマの変形が小さいうちに修正する。
The computer (40) thus checks the incoming measurements from each sensor 104 times per second and adjusts the control output to correct for small plasma deformations.

(プラズマが変形し、プラズマ内の電位分布や磁気分布
が変わると、それが原因となつて、より大きな異常を引
き起こすという、悪循環が起る。チエツクの頻度は任意
に選びうる。)測定用コイル(12)の測定値が基準値
より1Kガウス大きい右向きの2Kガウスになつた場合
、コンピューター(40)はD−A変換器(44)を経
て増幅器(45)に出力を送り、制御用コイル(15)
に通電し、左向きの10Kガウスの磁気をコイル内に発
生させる。
(When the plasma is deformed and the potential distribution and magnetic distribution within the plasma change, this causes a vicious cycle that causes larger abnormalities. The frequency of checking can be selected arbitrarily.) Measuring coil When the measured value of (12) becomes 2K Gauss to the right, which is 1K Gauss larger than the reference value, the computer (40) sends an output to the amplifier (45) via the DA converter (44), and the control coil ( 15)
energized to generate a leftward 10K Gauss magnetism inside the coil.

コイル(12)に加わる右向きの磁気が強まるというこ
とは、プラズマ中の下向きの電子流か、上向きのイオン
流が、コイル(12)に接近したことなどを意味する。
Increasing the rightward magnetism applied to the coil (12) means that either a downward electron flow or an upward ion flow in the plasma approaches the coil (12).

制御電流により、コイル(15)の内部から左向きに生
じた磁力線はコイルの周囲を巡り、右からコイル内に入
るが、プラズマ中の電子流やイオン流に対しては右向き
の磁場を作用させ、その流れを後方に移動させ、プラズ
マ内に押し返す。(フレミング左手の法則に従う)次に
コイル(15)の影響を差し引いたコイル(12)の測
定値をコンピューター(40)が調べ、基準値との差が
残つていれば、制御出力を修正する。
Due to the control current, the magnetic field lines generated from inside the coil (15) to the left go around the coil and enter the coil from the right, but a rightward magnetic field acts on the electron flow and ion flow in the plasma. Move that flow backwards and push it back into the plasma. (According to Fleming's left-hand rule) Next, the computer (40) examines the measured value of the coil (12) after subtracting the influence of the coil (15), and if a difference from the reference value remains, the control output is corrected. .

このようにしてプラズマの大きな変形を防ぐ。In this way, large deformations of the plasma are prevented.

上記の実施例は種々の変形が可能である。以下その概要
を記す。
Various modifications are possible to the above embodiment. The outline is described below.

本発明はタンデムミラー型、トーラス型、その他の磁気
核融合炉にも応用しうる。
The present invention can also be applied to tandem mirror type, torus type, and other magnetic fusion reactors.

プラズマの状態をとらえるため、多数の指向性X線セン
サー、光電管、電波受信器、電界効果トランジスター、
中性子センサー、サーミスター、立体テレビジヨンカメ
ラ、その他任意のセンサーを配置してもよい。
In order to capture the plasma state, a large number of directional X-ray sensors, phototubes, radio receivers, field effect transistors,
A neutron sensor, a thermistor, a stereoscopic television camera, or any other sensor may be arranged.

プラズマの形を制御するため、多数のイオンや中性粒子
の打ち込み装置を炉壁(1)の周囲に配置し、テレビカ
メラ(30)がとらえたプラズマ像の変形をコンピュー
ター(40)が認識すると、膨み部を押えるため、ある
いはやせ細つている部にガスを補充するためなどの目的
で、プラズマや中性粒子を任意の量、任意の速度で、任
意の範囲に打ち込むようにしてもよい。
In order to control the shape of the plasma, a large number of ion and neutral particle implantation devices are placed around the reactor wall (1), and when the computer (40) recognizes the deformation of the plasma image captured by the television camera (30), , plasma or neutral particles may be injected into any range in any amount, at any speed, for the purpose of suppressing bulging areas or replenishing gas in emaciated areas. .

センサーや制御用電極、コイルなどは実施例よりはるか
に多数、各部に配置することが望ましい。
It is desirable to arrange a far greater number of sensors, control electrodes, coils, etc. in each part than in the embodiment.

制御用電極やコイルの形、大きさ、位置などは種々に選
択しうる。
Various shapes, sizes, positions, etc. of the control electrodes and coils can be selected.

センサーのとらえた情報をもとに、コンピューター(4
0)は制御用出力を発生するが、どのような場合に、ど
んな制御エネルギーを、どこに送るかのプログラミング
は種々な形が可能である。
Based on the information captured by the sensor, a computer (4
0) generates a control output, but various forms of programming are possible in which case, what kind of control energy is sent, and where.

例えば、測定用電極やコイルの測定値が基準値からずれ
、そのセンサーの近傍の電極やコイルに制御出力を送つ
ても基準値に回復しない場合、他の電極やコイルにも種
々の量、同時通電、順次通電などを試行錯誤的に行い、
有効な通電様式を自動的に見出すようにしてもよい。テ
レビカメラでとらえた像の良否をコンピューターで判定
し。良好なプラズマが常に形成されるようにする通電様
式を求める際などに利用してもよい。
For example, if the measured value of a measurement electrode or coil deviates from the reference value and does not recover to the reference value even if a control output is sent to the electrode or coil near the sensor, various amounts may be applied to other electrodes or coils at the same time. By trial and error, we turned on the electricity, turned on the electricity in sequence, etc.
A valid energization pattern may be automatically found. A computer determines the quality of the image captured by the television camera. It may also be used when determining an energization pattern that will ensure that good plasma is always formed.

テレビ像からプラズマの歪曲が認識された場合には、炉
壁(1)内の相対する2電極に正負の荷電を与え、軽い
電子が集まつて表面が負に荷電しているプラズマの歪曲
を修正したり、タンデムミラー炉など、長いプラズマの
一部が膨らみ始めたことがテレビカメラでわかれば、ど
の周囲に被せた多数の制御用集束コイルのうち、最も近
くにあるものに通電するようにしたりしてもよい。
If distortion of the plasma is recognized from the TV image, positive and negative charges are applied to two opposing electrodes in the furnace wall (1) to eliminate the distortion of the plasma whose surface is negatively charged due to the collection of light electrons. If the TV camera detects that a part of the long plasma, such as a tandem mirror reactor, has begun to swell, the system will energize the closest one of the many control focusing coils placed around it. You can also

プラズマ崩壊の過程をとらえた多数の映像やデーターを
人間またはコンピューターで分類し、その種類に応じて
制御出力の出し方を変えてもよい。
A large number of images and data capturing the process of plasma decay can be classified by humans or computers, and the control output method can be changed depending on the type.

研究が進めば、可能な限り、使用するセンサーや制御エ
ネルギー放出器の種類や個数を減らせばよい。
As research progresses, the type and number of sensors and controlled energy emitters used should be reduced to the extent possible.

コンピューター(40)の機能を他の電気回路で置き換
えてもよい。
The functions of the computer (40) may be replaced by other electrical circuits.

中性粒子ビーム発生装置(2)(3)の出力値なども、
プラズマの形状に関連するデータに加えてもよい。
The output values of neutral particle beam generators (2) and (3), etc.
It may also be added to data related to the shape of the plasma.

プラズマ形状制御のためのパラメーターの1つとして、
コイル(4)(5)の電流値を加減してもよい。
As one of the parameters for plasma shape control,
The current values of the coils (4) and (5) may be adjusted.

本発明を実施すれば、磁気核融合炉内に高温高密度のプ
ラズマを長時間閉じ込めることが容易になる利点が生ず
る。
Implementation of the present invention provides the advantage that it becomes easy to confine high-temperature, high-density plasma in a magnetic fusion reactor for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した核融合用磁気ミラー炉の平面
図。第2図はその縦断正面図。第3図は縦断左側面図。 第4図は電気回路のブロツク線図である。 藤村明宏
FIG. 1 is a plan view of a magnetic mirror reactor for nuclear fusion in which the present invention is implemented. Figure 2 is its vertical front view. Figure 3 is a vertical left side view. FIG. 4 is a block diagram of the electric circuit. Akihiro Fujimura

Claims (1)

【特許請求の範囲】[Claims] 炉壁(1)の内外に取り付けたテレビカメラ(30)、
多数の電位分布測定用電極、多数の磁気分布測定用コイ
ル、その他からなるプラズマ形状測定用センサーを設け
、炉壁(1)の内外に取り付けた多数の電位分布制御用
電極、多数の磁気分布制御用コイル、その他からなるプ
ラズマ形状制御用エネルギー放出器を設け、プラズマ形
状修正用プログラムを内蔵したコンピューター(40)
の入力回路にプラズマ形状測定用センサーの出力回路を
つなぎ、コンピューター(40)の出力回路を増幅器(
45)(46)の入力回路につなぎ、増幅器(45)(
46)の出力回路をプラズマ形状制御用エネルギー放出
器につないでなる、磁気核融合炉に用いるプラズマ形状
制御装置。
TV cameras (30) installed inside and outside the furnace wall (1),
A plasma shape measuring sensor consisting of a large number of potential distribution measuring electrodes, a large number of magnetic distribution measuring coils, and others is provided, and a large number of potential distribution control electrodes and a large number of magnetic distribution control sensors are installed inside and outside the furnace wall (1). A computer (40) equipped with an energy emitting device for plasma shape control consisting of a coil for use with other devices, and a built-in program for modifying the plasma shape.
The output circuit of the plasma shape measurement sensor is connected to the input circuit of the computer (40), and the output circuit of the computer (40) is connected to the amplifier (
45) Connect to the input circuit of (46), and connect to the input circuit of amplifier (45) (
A plasma shape control device used in a magnetic fusion reactor, which connects the output circuit of 46) to an energy emitter for plasma shape control.
JP60071832A 1985-04-04 1985-04-04 Plasma-shape controller in magnetic nuclear fusion reactor Pending JPS61230077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60071832A JPS61230077A (en) 1985-04-04 1985-04-04 Plasma-shape controller in magnetic nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60071832A JPS61230077A (en) 1985-04-04 1985-04-04 Plasma-shape controller in magnetic nuclear fusion reactor

Publications (1)

Publication Number Publication Date
JPS61230077A true JPS61230077A (en) 1986-10-14

Family

ID=13471911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60071832A Pending JPS61230077A (en) 1985-04-04 1985-04-04 Plasma-shape controller in magnetic nuclear fusion reactor

Country Status (1)

Country Link
JP (1) JPS61230077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181177A (en) * 2011-02-28 2012-09-20 Tochisawa Ikuo Nuclear fusion reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865397A (en) * 1971-12-13 1973-09-08
JPS5857300A (en) * 1981-09-30 1983-04-05 株式会社東芝 Plasma unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865397A (en) * 1971-12-13 1973-09-08
JPS5857300A (en) * 1981-09-30 1983-04-05 株式会社東芝 Plasma unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181177A (en) * 2011-02-28 2012-09-20 Tochisawa Ikuo Nuclear fusion reactor

Similar Documents

Publication Publication Date Title
JP2003521849A (en) Electron impact active pixel sensor camera incorporating gain control
JPS61230077A (en) Plasma-shape controller in magnetic nuclear fusion reactor
US4417145A (en) Apparatus for controlling magnetic field intensity
US4722097A (en) X-ray diagnostics installation with spatial frequency high-pass filtering
JPS57183186A (en) Focusing point detector
US4881914A (en) Getter arrangement having a getter detector and a post-heating timer
JP2865327B2 (en) Particle beam measurement device
KR102094424B1 (en) Apparatus and method of controlling electronic beam spot using ccd camera image
GB1480342A (en) Pyroelectric camera tubes
JPS5810818B2 (en) electromagnetic lens device
JPS63158797A (en) Neutral particle injector
US4539589A (en) Image stabilized rotational modulator for pyroelectric imaging devices
US4319274A (en) Method of recording image information on the target of a scan converter tube
JP3234373B2 (en) Magnetic field type electron lens and electron beam device using the same
Klaproth et al. Development of a Control System Based on Experimental Data for Space Charge Lenses
JPH05182632A (en) Secondary electron multiplier
JPS58154553U (en) Charged particle beam accelerator
JPS63182056U (en)
JPH0524159Y2 (en)
JPH0644004Y2 (en) Image intensifier
Kanstein et al. Low intensity beam monitoring with an image-intensified scintillator detector
JPS55154050A (en) Electron beam automatic alignment equipment
Skvortsov et al. The magnetic monopoles generation in laser-induced discharges
SU1582226A1 (en) Device for checking surface micropotentials
RU2244981C2 (en) Control apparatus for electronic devices