JPS61227108A - Method for charging raw material to blast furnace - Google Patents

Method for charging raw material to blast furnace

Info

Publication number
JPS61227108A
JPS61227108A JP6739685A JP6739685A JPS61227108A JP S61227108 A JPS61227108 A JP S61227108A JP 6739685 A JP6739685 A JP 6739685A JP 6739685 A JP6739685 A JP 6739685A JP S61227108 A JPS61227108 A JP S61227108A
Authority
JP
Japan
Prior art keywords
furnace
raw material
charging
storage hopper
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6739685A
Other languages
Japanese (ja)
Other versions
JPS6339642B2 (en
Inventor
Takuji Mitsuyasu
光安 拓治
Shinichi Matsunaga
松永 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6739685A priority Critical patent/JPS61227108A/en
Publication of JPS61227108A publication Critical patent/JPS61227108A/en
Publication of JPS6339642B2 publication Critical patent/JPS6339642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To flatten the level of a charge raw material and to control the grain size distribution in the diametral direction of a furnace by discharging the charge raw material for one time from a storage hopper by each grain size and controlling adequately the angle of inclination, swiveling speed and discharging speed of a swiveling chute in the furnace. CONSTITUTION:The raw material conveyed by a belt conveyor 3 is charged into the storage hopper 1 and is discharged into the swiveling chute 2 in the furnace. The material is charged into the furnace A by the tilting and swiveling of the swiveling chute 2. The raw material is discharged in order of small grains S middle grains M large grains L in the case of charging the raw material in order of the small grains S, the middle grains M and the large grains L into the storage hopper 1 and discharging the raw material from the hopper 1. The raw material grain sizes are gradually made larger from a furnace wall 9 side toward a furnace core side by the effect of natural classification if the raw material is distributed from the wall 9 side toward the furnace core side by controlling the angle of inclination and swiveling speed of the chute 2 in the furnace in this state. The level of the charge raw material is thus flattened and the grain size distribution of the raw material in the diametral direction of the furnace is controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高炉のベルレス式原料装入装置における原料装
入方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an improvement in a material charging method in a bellless material charging device for a blast furnace.

(従来の技術) 一般にベルレス式原料装入装置を有する高炉においては
、第1図に示すように炉頂部に原料貯留ホッパー1を備
え、該貯留ホッパー1の下方に炉内旋回シュート2を備
えておシ、ベルトコンベヤー等8によって炉頂部に搬送
された鉄鉱石、コークス、石灰石等の諸原料は、切替シ
ュート4.案内シュート5を経て貯留ホッパー1に装入
されたのち、この貯留ホッパー1から集合シュート6を
経て炉内旋回シュート2上に排出され、この炉内旋回シ
ュート2の傾斜および旋回によって炉内Aに装入される
ようになっている。
(Prior Art) In general, a blast furnace having a bell-less material charging device is equipped with a material storage hopper 1 at the top of the furnace and an in-furnace rotating chute 2 below the storage hopper 1, as shown in FIG. Various raw materials such as iron ore, coke, and limestone are transported to the top of the furnace by a conveyor belt or a belt conveyor 8, and are transported to the top of the furnace by a switching chute 4. After being charged into the storage hopper 1 through the guide chute 5, it is discharged from the storage hopper 1 through the collecting chute 6 onto the furnace rotating chute 2, and into the furnace A by tilting and rotating the furnace rotating chute 2. It is ready to be loaded.

高fの操業を安定的に維持するためには炉内各位置にお
ける鉄鉱石の量とコークスの量の比(010)を一定に
保ち、炉内ガス流分布、炉熱分布等を均一にすることが
重要であシ、そのための有効な手段として、例えば第2
図(a)のように炉内装入原料mを炉径方向に傾斜堆積
させるようにした傾斜装入が普及されている。(例えば
特公昭59−10401号の発明) この原料の傾斜角は装入物の重量、粒度、装入速度、銘
柄、ガス流速等により異なることが一般に知られてお)
、シたがってこの傾斜装入における傾斜角はこれらの要
素を考慮して設定されるが、実際には、この設定角度を
安定的に維持することは困難である。
In order to maintain stable high-f operation, the ratio (010) between the amount of iron ore and the amount of coke at each location in the furnace must be kept constant, and the gas flow distribution, furnace heat distribution, etc. in the furnace should be made uniform. This is important, and as an effective means for that purpose, for example, the second
Inclined charging, in which the raw material m to be introduced into the furnace is deposited at an angle in the radial direction of the furnace, as shown in Figure (a), has become widespread. (For example, the invention of Japanese Patent Publication No. 59-10401) It is generally known that the inclination angle of this raw material varies depending on the weight of the charge, particle size, charging speed, brand, gas flow rate, etc.)
Therefore, the angle of inclination in this inclined charging is set in consideration of these factors, but in reality, it is difficult to maintain this set angle stably.

例えば、第2図(a)のように原料の落下点位置りを一
定にし、原料の傾斜角θ1.θ2を得ようとしても、実
際には第2図(b)のように原料の傾斜角はθ3゜θ4
のように崩れてしまうことが多く、結果とじて010を
一定に維持できず、所望の炉内ガス流分布、炉熱分布を
得ることが非常に難しいという欠点を有している。
For example, as shown in FIG. 2(a), if the position of the falling point of the raw material is kept constant, the inclination angle of the raw material is θ1. Even if you try to obtain θ2, the inclination angle of the raw material is actually θ3°θ4 as shown in Figure 2(b).
As a result, 010 cannot be maintained constant, and it is very difficult to obtain desired gas flow distribution and furnace heat distribution in the furnace.

(発明が解決しようとする問題点〕 本発明は、上記従来の傾斜装入の場合のような欠点を有
しないベルレス式原料装入装置の高炉の原料装入方法を
提供するものである。
(Problems to be Solved by the Invention) The present invention provides a method for charging materials into a blast furnace using a bell-less type material charging device, which does not have the drawbacks of the conventional inclined charging described above.

本発明によれば、炉内ガス流分布、炉熱分布等の制御性
が容易に向上し、したがって高炉の安定操業を確保する
ことができる。
According to the present invention, controllability of in-furnace gas flow distribution, furnace heat distribution, etc. can be easily improved, and therefore stable operation of the blast furnace can be ensured.

(問題点を解決するための手段) 本発明は、貯留ホッパーからの原料を炉内旋回シュート
を介してその傾斜及び旋回によシ、炉内に装入分配する
ようにした高炉のベルレス式原料装入装置において、前
記貯留ホッパーから一回分の装入原料を粒度別に排出し
、炉内旋回シュートの傾斜角、旋回速度と排出速度を炉
内の各装入ゾーンの面積に応じて制御するととkよって
炉内装入原料レベルを7ラツトにし、炉径方向における
原料の粒度分布を制御することを特徴とするものである
(Means for Solving the Problems) The present invention provides a bellless type raw material for a blast furnace in which raw material from a storage hopper is charged and distributed into the furnace by tilting and rotating the raw material through an in-furnace rotating chute. In the charging device, the charging material for one batch is discharged from the storage hopper according to particle size, and the inclination angle, rotation speed and discharge speed of the rotating chute in the furnace are controlled according to the area of each charging zone in the furnace. Therefore, the level of the raw material introduced into the furnace is set at 7 lats, and the particle size distribution of the raw material in the radial direction of the furnace is controlled.

即ち本発明は、ベルレス式原料装入装置の高炉の原料装
入において、炉内における装入原料の傾斜角を積極的K
O即ち装入原料レベルをフラットにして安定させ、炉径
方向における粒度分布を制御して炉内ガス流分布、炉熱
分布等を制御して高炉操業の安定化を図るものである◇ 以下本発明について詳細に説明する〇 先ず炉内装入原料レベルをフラットにすることについて
述べる。
That is, the present invention actively adjusts the angle of inclination of the charged material in the furnace when charging material into a blast furnace using a bellless material charging device.
In other words, it is intended to stabilize the blast furnace operation by flattening and stabilizing the charging material level, controlling the particle size distribution in the furnace radial direction, and controlling the gas flow distribution in the furnace, furnace heat distribution, etc. Detailed explanation of the invention First, we will discuss flattening the level of the raw material input into the furnace.

本発明においては、炉内旋回シュートの傾斜と旋回によ
りて原料を炉内の所定装入ラインにおいて炉壁から炉心
に向けて原料装入領域に対して分配するようにしたので
、この原料装入領域を例えば第8図のように炉壁9から
炉心Ofでとし、これを10等分して等分された各領域
における原料装入量が等しくなるように原料を分配する
ことを考える。
In the present invention, the raw material is distributed to the raw material charging area from the furnace wall toward the core at a predetermined charging line in the furnace by tilting and rotating the rotating chute in the furnace. Consider, for example, assuming that the region is from the reactor wall 9 to the core Of as shown in FIG. 8, and dividing this into 10 equal regions and distributing the raw material so that the amount of raw material charged in each of the equally divided regions is equal.

原料装入ラインにおける炉口半径をRとすると炉壁9に
近い領域(ゾーンという)程面積が太きくなり、iゾー
ンの面積憤はつぎのように表わされる。
When the radius of the furnace mouth in the raw material charging line is R, the area (referred to as zone) closer to the furnace wall 9 becomes thicker, and the area of zone i is expressed as follows.

となシ、横軸に炉心から炉壁までの各ゾーンを、縦軸に
炉心から炉壁までの各ゾーンの面積に対して炉口半径R
で基準化した値をとると第4図のようになシ、この値は
炉壁側のゾーンになる程大きくなる。
The horizontal axis shows each zone from the reactor to the reactor wall, and the vertical axis shows the reactor mouth radius R relative to the area of each zone from the reactor to the reactor wall.
If we take the value standardized by , it becomes as shown in Fig. 4, and this value becomes larger toward the zone closer to the furnace wall.

したがってここで、炉壁から炉心の間の全領域に原料を
分配する場合に各ゾーンの原料装入量をWiとじ、1チ
ヤージの全装入量Wを均等に各ゾーンに配分したとすれ
ば第5図のようになシ、炉心に近いゾーン程面積Siが
小さくなることから炉心に近いゾーン程原料層厚が大き
くなシ、フラット装入は達成できないことになる。
Therefore, when distributing raw materials to the entire area between the reactor wall and the reactor core, if the raw material charge amount of each zone is set as Wi, and the total charge amount W of one charge is equally distributed to each zone. As shown in FIG. 5, since the area Si is smaller in the zone closer to the reactor core, the material layer thickness is larger in the zone closer to the reactor core, so flat charging cannot be achieved.

即ち第5図は、横軸に炉径方向、縦軸には各ゾーンの装
入量(この場合は全装入量Wに対してWi = W−)
 Wi 、炉口径R1原料の密度ρで基準化した層厚(
π几2/ρWi)Tをとって表わしたものであシ、炉壁
に近いゾーン程基準化層厚は小さくなりこの基準化層厚
は炉壁部で0.526と最低になる。
In other words, in Fig. 5, the horizontal axis represents the furnace radial direction, and the vertical axis represents the charging amount of each zone (in this case, Wi = W- for the total charging amount W).
Wi, furnace diameter R1 layer thickness standardized by the density ρ of the raw material (
It is expressed by taking π几2/ρWi)T, and the closer the zone is to the furnace wall, the smaller the normalized layer thickness is, and the normalized layer thickness is the lowest at 0.526 at the furnace wall.

この値は第4図における同ゾーンの基準化面積0519
の逆数として表わされる。
This value is the standardized area of the same zone in Figure 4, 0519
is expressed as the reciprocal of

したがって炉内装入原料レベルをフラットにするために
は、第6図のように面積の大きい炉壁側から炉心に向っ
て順次各ゾーンにおける装入量を減じて行く必要がある
・ 即ち、横軸に炉心から炉壁までの各ゾーンを、縦軸に各
ゾーンにおける原料装入量の基準値Wi/Wをとれば、
この原料装入量の基準値は炉壁側から0.19W、0.
17W、0.15W、・・・・・・0.01Wと炉心に
向って小さくすればフラット装入が達成できることにな
る◇ しかしこれはあくまでもゾーンを10区分して単純に計
算値をあてはめたに過ぎず厳密には装入原料は傾斜して
流れ込むため前述の装入量比は必ずしも一致しない0 
 ゛ 例えば第7図(a)は、炉壁側から原料装入を開始し炉
心部で原料装入を終了した場合のフラット装入における
装入原料の堆積状況を示しておシ、第7図(b)は、炉
心側から原料装入を開始し炉壁部で原料装入を終了した
場合のフラット装入における装゛入原料の堆積状況を示
し、第8図からも明らかなように炉心側から炉壁側に装
入した場合と、炉壁側から炉心側に装入した場合とでは
特に炉心部と炉壁部においては厳密には装入量に相異が
でてくる。したがって実際の原料装入に際してはこの辺
のところについて考慮する必要がある0次に、実際のペ
ルレス式原料装入装置において、炉内旋回シュートによ
シフラット装入を実施する場合について述べる◇ 前述のフラット装入条件を充たすあるゾーンでの装入量
をWiとし、このWi を充たすための条件として原料
の排出速度をVi(m3/5ec)、炉内旋回シュート
の旋回速度を(R−P−M)、そのゾーン(ノツチ〕に
おける旋回数をni、原料密度をρとすると、Wi =
Vi X (RoP、M、) X niρ ・・・・・
・・・・■となる〇 したがって、前述のように7ラツト装入とするために炉
心に向ってWiを小さくするためには、fit  Vi
を小さくする◇ f21  R−P−Miを大きくする。
Therefore, in order to flatten the raw material level in the reactor, it is necessary to sequentially reduce the charging amount in each zone from the reactor wall side, which has a large area, toward the reactor core, as shown in Figure 6. In other words, on the horizontal axis If we take each zone from the core to the reactor wall on the vertical axis and the standard value Wi/W of the raw material charging amount in each zone on the vertical axis, we get
The standard value of this raw material charging amount is 0.19W and 0.19W from the furnace wall side.
Flat charging can be achieved by reducing the power to 17W, 0.15W, ...0.01W toward the core◇ However, this is just a simple calculation of dividing the zones into 10 and applying the calculated values. Strictly speaking, the charged raw materials flow at an angle, so the above-mentioned charge amount ratio does not necessarily match.
゛For example, Fig. 7(a) shows the stacking situation of the charged material in flat charging when the material charging starts from the reactor wall side and finishes in the reactor core. (b) shows the stacking situation of the charged raw material in flat charging when the raw material charging starts from the core side and ends at the reactor wall. Strictly speaking, there is a difference in the amount of charge, especially in the core and the wall, between charging from the side to the reactor wall side and charging from the reactor wall side to the reactor core side. Therefore, it is necessary to consider this aspect when actually charging raw materials.Next, we will discuss the case where flat charging is carried out using the in-furnace rotating chute in an actual pellet-less raw material charging device◇ The charging amount in a certain zone that satisfies the charging conditions is Wi, and the conditions for satisfying this Wi are as follows: the raw material discharge speed is Vi (m3/5ec), and the rotation speed of the rotating chute in the furnace is (R-P-M). ), the number of turns in the zone (notch) is ni, and the raw material density is ρ, then Wi =
Vi X (RoP, M,) X niρ...
・・・・■〇 Therefore, in order to reduce Wi toward the core in order to perform 7-rat charging as described above, fit Vi
Decrease ◇ Increase f21 R-P-Mi.

(31niを減少させる。(Decrease 31ni.

の三つの選択制御手段が考えられる。Three selection control means can be considered.

ただし、これらについてはそれぞれの制約条件がある。However, each of these has its own constraints.

この制約条件を列挙すると (1)  全装入量W=ΣWi において許容される炉内への原料分配時間で(3)  
旧については、炉内の円周方向でのバランスを維持する
上からni≧1でかつ整数であること〇(41Viにつ
いては原料粒度との関係から排出口径を制御するため原
料が安定的に排出可能な最小の排出口径における排出速
IE VMinとvl  との関係がV i ) VM
inとなること。
The constraint conditions are listed as follows: (1) Total charging amount W = ΣWi, allowable raw material distribution time into the furnace (3)
For the old model, in order to maintain the balance in the circumferential direction inside the furnace, ni ≥ 1 and an integer. The relationship between the discharge speed IE VMin and vl at the smallest possible discharge port is V i ) VM
To be in.

このような装入制約条件のもとに、Vi については排
出口径、R−P−Miについては可変周波数制御による
炉内分配シュートの炉径方向での変化、niについては
全旋回数および特定位置における旋回数が整数となる演
算制御を行う事により第9図(b)のよりな72ツト装
入が可能になる。
Under these charging constraint conditions, Vi is the discharge port diameter, R-P-Mi is the change in the furnace radial direction of the distribution chute in the furnace by variable frequency control, and ni is the total number of revolutions and specific position. By performing arithmetic control such that the number of revolutions in is an integer, it becomes possible to perform a more accurate 72-piece charging as shown in FIG. 9(b).

本発明においては、前述の制約条件(1)〜(4)につ
いて達成が困難な場合は、フラット装入領域を炉心から
炉壁側へ若干後退させ、第9図(c)のように炉壁側か
らフラット装入を開始し、炉心部で装入調整を行うこと
も考慮する。
In the present invention, if it is difficult to achieve the above-mentioned constraint conditions (1) to (4), the flat charging area is slightly retreated from the core toward the reactor wall, as shown in FIG. 9(c). Consider starting flat charging from the side and adjusting the charging in the core.

ただし、第9図(a)に示すような現在−膜化されてい
る炉壁近傍部(炉壁から1〜2m)のフラット装入は対
象外とする。
However, flat charging near the furnace wall (1 to 2 m from the furnace wall), which is currently coated with a film, as shown in FIG. 9(a), is not covered.

つぎに本発明の7ラツト装入をよシ効果的ならしめるた
めの重要条件について述べる。
Next, important conditions for making the seven-rat charging method of the present invention more effective will be described.

本発明のフラット装入を実施した場合、各ゾーンにおけ
る原料層厚は一定となるので、高炉内のガス流、炉熱分
布の制御は、従来一般に行われている層厚制御による訳
には行かない。
When the flat charging of the present invention is carried out, the thickness of the raw material layer in each zone is constant, so the gas flow and furnace heat distribution in the blast furnace cannot be controlled by the conventional layer thickness control. do not have.

本発明のフラット装入においては炉内ガス流分布、炉熱
分布の制御は、粒度分布の制御によって行う。
In the flat charging of the present invention, the gas flow distribution in the furnace and the furnace heat distribution are controlled by controlling the particle size distribution.

すなわち、炉径方向における各ゾーンの原料粒度が炉壁
側が小さく炉心側に段階的に大きくなるように装入する
That is, the material is charged so that the raw material particle size in each zone in the radial direction of the furnace is small on the furnace wall side and gradually becomes larger on the core side.

したがって原料の装入に際しては、原料を粒度別に、か
つ連続的に装入できる、ような仕組みを考慮する必要が
ある。
Therefore, when charging raw materials, it is necessary to consider a mechanism that allows raw materials to be charged continuously according to particle size.

予め原料を粒度別に細分して炉頂装入装置に輸送し、炉
内の原料の表面形状をフラットに維持するためには、1
回の装入に必要な時間がはソ一定とすれば、分割装入す
ることによ#)1チヤージの装入時間が延長され、所定
の装入量が確保できなくなり所定の出銑量を得ることが
できなくなるという問題がある。
In order to subdivide the raw material according to particle size and transport it to the furnace top charging device, and to maintain a flat surface shape of the raw material in the furnace, 1.
Assuming that the time required for each charge is constant, by dividing charging, the charging time for one charge will be extended, and the specified charging amount will not be secured, and the specified tapping amount will not be achieved. The problem is that you won't be able to get it.

そこで本発明者等は上記時間的な制約を考慮し、1回の
炉内装入で、粒度分布を連続的に変化させる方法を考え
た。
Therefore, the present inventors took the above-mentioned time constraints into consideration and devised a method of continuously changing the particle size distribution with one loading into the furnace.

第10図に、本発明を実施するためのベルレス式原料装
入装置例を示す。
FIG. 10 shows an example of a bellless type raw material charging apparatus for carrying out the present invention.

第10図(a)はホッパー内に例えば予め粒度調整し細
粒、中粒、大粒の順序で装入し、ホッパーから原料を排
出する場合、細粒→中粒→大粒の順で排出するようにな
し、炉内旋回シュートの傾斜角、旋回速度を制御して、
該原料を炉壁側から炉心側に分配することによって、自
然分級効果と相俟って炉壁側から炉心側に、原料粒度を
大きくして行くことができる。
Figure 10(a) shows that when the raw material is discharged from the hopper by adjusting the grain size in advance and charging it in the order of fine grains, medium grains, and large grains, it is discharged in the order of fine grains → medium grains → large grains. None, by controlling the inclination angle and rotation speed of the rotating chute in the furnace,
By distributing the raw material from the reactor wall side to the reactor core side, together with the natural classification effect, the raw material particle size can be increased from the reactor wall side to the reactor core side.

又、第10回動)は、貯留ホッパーにおける自然分級効
果を利用するものであシ、この場合は大粒、中粒、細粒
が混合状態の原料を貯留ホッパー内に装入するが、ホッ
パーから原料が排出される際は自然分級効果によシ排出
原料の粒度は経時的に大きくなる(ファンネルフロー)
ので、第10図(a)の場合と同様にして炉内旋回シュ
ートの傾斜角、旋回速度を制御することによシ原料を炉
壁側から炉心側に分配することによって、炉壁側から炉
心側に原料の粒度を大きくして行くことができる。
In addition, the 10th rotation) utilizes the natural classification effect in the storage hopper, and in this case, raw materials in a mixed state of large grains, medium grains, and fine grains are charged into the storage hopper. When raw materials are discharged, the particle size of the discharged raw materials increases over time due to the natural classification effect (funnel flow).
Therefore, by controlling the inclination angle and rotation speed of the rotating chute in the reactor in the same manner as in the case of Fig. 10(a), the raw material is distributed from the reactor wall side to the reactor core side. You can go to the side by increasing the particle size of the raw material.

更に第10図(c)は三つの貯留ホッパーを並設し細粒
、中粒、大粒を別々に貯留し、各貯留ホッパーからの原
料の排出を連続して、即ち、細粒の排出完了時点で引続
き中粒の排出を開始し中粒の排出完了時点で引続き大粒
の排出を開始するというように各ホッパーからの原料の
排出を制御することによシ、細粒→中粒→大粒の順で排
出させるようになし、炉内旋回シュートの傾斜角、旋回
速度を制御して該原料を炉壁側から炉心側に分配するこ
とによって炉壁側から炉心側に原料粒度を大きくして行
くことができる。
Further, in Fig. 10(c), three storage hoppers are installed in parallel to store fine grains, medium grains, and large grains separately, and the raw material is discharged from each storage hopper continuously, that is, when the discharge of fine grains is completed. By controlling the discharge of raw materials from each hopper, the discharge of raw materials from each hopper is started in the following order: fine grains → medium grains → large grains. The particle size of the raw material is increased from the furnace wall side to the core side by discharging the raw material from the furnace wall side to the core side by controlling the inclination angle and rotation speed of the rotating chute in the furnace. I can do it.

なお、この装置例においては、貯留ホッパーの原料を細
粒、中粒、大粒の順序で排出するようにしているが、例
えば炉心側から炉壁側に原料を装入して行く場合は、貯
留ホッパーからの原料排出は大粒、中粒、細粒の順に行
えるように、例えば第10図(、)の場合では、貯留ホ
ッパー内の原料の粒度の配列を逆にし、第10図(c)
の場合では、大粒用貯留ホッパー、中粒用貯留ホッパー
、細粒用貯留ホッパーの順で原料を排出することを考慮
する0 (実施例〕 コークスと鉱石について夫々装入原料を、平均粒径:5
mm(細粒) ’  :  15 mm  (中粒) ’:25mm(大粒) 08種類に区分し、第10図(c)タイプの装入装置(
三つの貯留ホッパー)を用い貯留ホッパーに別々に貯留
し、細粒→中粒→大粒→の順序で略一定の排出速度で排
出し旋回シュートを予め設定した炉内における各装入ゾ
ーンの装入原料の層厚が略一定になるような旋回条件で
旋回し、炉壁側から装入を開始し、炉心部で装入を終了
した。
In this example of equipment, raw materials are discharged from the storage hopper in the order of fine particles, medium particles, and large particles, but for example, when charging raw materials from the core side to the furnace wall side, For example, in the case of Figure 10 (,), the particle size arrangement of the raw materials in the storage hopper is reversed so that the raw materials can be discharged from the hopper in the order of large particles, medium particles, and fine particles, and as shown in Figure 10 (c).
In the case of 0, consider discharging raw materials in the order of large grain storage hopper, medium grain storage hopper, and fine grain storage hopper. (Example) For coke and ore, the charged raw materials are respectively charged and the average particle size is: 5
mm (fine grain) ': 15 mm (medium grain) ': 25 mm (large grain)
The particles are stored separately in the storage hopper (three storage hoppers), and the particles are discharged in the order of fine particles, medium particles, large particles, at a nearly constant discharge speed, and each charging zone is charged in a furnace with a rotating chute set in advance. The reactor was rotated under such conditions that the layer thickness of the raw material was approximately constant, and charging started from the furnace wall side and ended at the core.

この場合の、炉内装入原料の層厚は略一定で、第9図(
b)のようにフラットな堆積形状を示し、炉径方向にお
ける各装入ゾーンの平均粒度は炉壁側から炉心部に向は
順次大きくなる分布を示し、炉壁側でのガス流を抑制す
るような分布を得た。
In this case, the layer thickness of the raw material introduced into the furnace is approximately constant, and is shown in Fig. 9 (
As shown in b), it shows a flat deposition shape, and the average particle size of each charging zone in the furnace radial direction shows a distribution that increases from the furnace wall side to the core, suppressing the gas flow on the furnace wall side. We obtained a distribution like this.

なお、本実施例では、貯留ホッパーからの原料の排出速
度を一定にし、旋回シュートの旋回条件を制御(変化)
するようにしたが旋回シュートの旋回条件を一定にして
貯留ホッパーからの原料排出速度を制御するようにして
も良く、あるいは貯留ホッパーからの排出速度と、旋回
シュートの旋回条件を制御するようにしても良い。
In addition, in this example, the discharge speed of the raw material from the storage hopper is kept constant, and the swing conditions of the swing chute are controlled (changed).
However, it is also possible to control the material discharge speed from the storage hopper by keeping the rotation conditions of the rotation chute constant, or by controlling the discharge speed from the storage hopper and the rotation conditions of the rotation chute. Also good.

又、本実施例では炉径方向における各装入ゾーンの原料
の平均粒度は炉壁側から炉心部に向は大きくなるような
分布を得るようにしたが、最適操業条件を得るためにガ
ス流分布、炉熱分布を変える必要が生ずる場合もあシ、
この場合、逆の分布あるいは中間的な分布とすることも
考慮する。
In addition, in this example, the average particle size of the raw material in each charging zone in the furnace radial direction was distributed such that it increases from the furnace wall side to the core. There may be cases where it is necessary to change the furnace heat distribution,
In this case, consideration may be given to an inverse distribution or an intermediate distribution.

したがって、貯留ホッパーからの原料の粒度別の排出順
序を任意に変えることはもちろんであり、又必要に応じ
て、交互に排出することもできる。
Therefore, it goes without saying that the order in which raw materials are discharged by particle size from the storage hopper can be arbitrarily changed, and if necessary, the raw materials can be discharged alternately.

さらに本実施例では、炉壁側から装入するようにしたが
、必要に応じて、炉心側から装入することもできる。
Further, in this embodiment, the material was charged from the reactor wall side, but if necessary, the material may be charged from the reactor core side.

(発明の効果) 本発明においては炉内装入原料レベルをフラットにする
ため010を安定的に一定に保つことが容易であシ炉内
ガス流分布、炉熱分布の制御は粒度分布制御によって容
易である0 したがって高炉の安定操業の実現が容易であるO
(Effect of the invention) In the present invention, it is easy to keep the 010 constant in order to flatten the level of the raw material input into the furnace, and the gas flow distribution and furnace heat distribution in the furnace can be easily controlled by particle size distribution control. 0 Therefore, it is easy to realize stable operation of the blast furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はペルレス式原料装入装置の高炉における一般的
な原料装入の概略説明図、第2図(a)、(b)は従来
の傾斜装入における炉内装入原料の堆積形状の概略説明
図、第8図は高炉炉頂部における原料装入ゾーン区分例
を示す平面概略説明図、第4図は、第8図における各装
入ゾーンの面積比も示す概略説明図、第5図は各装入ゾ
ーンに等量の原料を装入た場合の各装入ゾーンの原料層
厚比を示す概略説明図、第6図は各装入ゾーンの原料層
厚を一定にするための各装入ゾーン原料装入量比を示す
概略説明図、第7図(a)、(b)はフラット装入した
場合の各装入ゾーンにおける、装入原料の堆積形状を示
す概略説明図、第8図は、フラット装入を実施した場合
の各装入ゾーンの原料装入量の変化を示し、特に炉心部
と炉壁部近傍の変動状況を示す概略説明図、第9図は、
従来の傾斜装入の一例と本発明によるフラット装入によ
る炉内装入原料の堆積形状を示す概略説明図で(a)は
従来法、(b)。 (c)は本発明法、第10図(a) 、 (b) 、 
(C)は本発明の実施のために用いられる原料装入装置
例、特に粒度別装入するための貯留ホッパーにおける原
料の貯留例を示す概略説明図である。 1・・・貯留ホッパー  2・・・炉内旋回シュート3
・・・ベルトコンベヤー 4・・・切替シェード5・・
・案内シュート  6・・・集合シュート7.8・・・
排出弁   9・・・炉壁A・・・炉内      m
・・・炉内装入原料0・・・炉心      L・・・
大粒M・・・中粒      S・・・細粒出 願 人
 新日本製鐵株式会社 第2図 第3図 第4図 0 0JII  021 03RO,a  05RQ6
11  Q7a 0J3R(1911$1′″〜512
1 −ト
Figure 1 is a schematic explanatory diagram of general raw material charging in a blast furnace using a pelletless type raw material charging device, and Figures 2 (a) and (b) are schematic diagrams of the stacked shape of raw materials charged in the furnace in conventional inclined charging. 8 is a plan schematic explanatory diagram showing an example of dividing the raw material charging zones at the top of the blast furnace, FIG. 4 is a schematic explanatory diagram also showing the area ratio of each charging zone in FIG. 8, and FIG. A schematic explanatory diagram showing the raw material layer thickness ratio in each charging zone when the same amount of raw material is charged into each charging zone. 7 (a) and (b) are schematic explanatory diagrams showing the charging amount ratio of charged raw materials in each charging zone; FIGS. The figure shows changes in the amount of raw material charged in each charging zone when flat charging is carried out, and in particular is a schematic explanatory diagram showing the fluctuations near the reactor core and the reactor wall.
FIGS. 1A and 2B are schematic explanatory diagrams illustrating the stacked shape of raw materials fed into the furnace by an example of conventional inclined charging and flat charging according to the present invention, in which (a) is a conventional method and (b) is a diagram illustrating the stacked shape of raw materials in a furnace. (c) is the method of the present invention, Fig. 10 (a), (b),
(C) is a schematic explanatory diagram showing an example of a raw material charging device used for implementing the present invention, particularly an example of storing raw materials in a storage hopper for charging according to particle size. 1...Storage hopper 2...In-furnace rotating chute 3
...Belt conveyor 4...Switching shade 5...
・Guide chute 6...Collection chute 7.8...
Discharge valve 9...Furnace wall A...Furnace interior m
...Input raw material in the reactor 0...Reactor core L...
Large grain M...Medium grain S...Fine grain Applicant Nippon Steel Corporation Figure 2 Figure 3 Figure 4 0 0JII 021 03RO,a 05RQ6
11 Q7a 0J3R (1911$1'''~512
1-t

Claims (4)

【特許請求の範囲】[Claims] (1)貯留ホッパーからの原料を炉内旋回シュートを介
してその傾斜及び旋回により、炉内に装入分配するよう
にした高炉のベルレス式原料装入装置において、前記貯
留ホッパーから一回分の装入原料を粒度別に排出し、炉
内旋回シュートの傾斜角、旋回速度と排出速度を炉内各
装入ゾーンの面積に応じて、制御することによって炉内
装入原料レベルをフラットにし、炉径方向における原料
の粒度分布を制御することを特徴とする高炉の原料装入
方法。
(1) In a bellless material charging device for a blast furnace, in which raw material from a storage hopper is charged and distributed into the furnace through an in-furnace rotating chute by tilting and rotating, one batch of raw material is charged from the storage hopper. By discharging the incoming raw material according to particle size and controlling the inclination angle, rotation speed and discharge speed of the rotating chute in the furnace according to the area of each charging zone in the furnace, the level of the incoming raw material in the furnace is flattened, and the level of the incoming raw material in the furnace is flattened. A method for charging raw materials into a blast furnace characterized by controlling the particle size distribution of raw materials in a blast furnace.
(2)貯留ホッパーからの原料の排出速度を一定とし、
炉内旋回シュートの旋回速度を段階的に加速することを
特徴とする特許請求の範囲第1項記載の高炉の原料装入
方法。
(2) The discharge rate of raw materials from the storage hopper is constant,
2. The method for charging raw materials into a blast furnace according to claim 1, wherein the rotation speed of the in-furnace rotation chute is accelerated in stages.
(3)貯留ホッパーからの原料の排出速度と炉内旋回シ
ュートの旋回の制御を併用することを特徴とする特許請
求の範囲第1項記載の高炉の原料装入方法。
(3) A method for charging raw materials into a blast furnace according to claim 1, characterized in that the discharge rate of raw materials from a storage hopper and the rotation of an in-furnace rotating chute are controlled in combination.
(4)旋回シュートの旋回条件を一定とし、貯留ホッパ
ーからの原料の排出速度を制御することを特徴とする特
許請求範囲第1項記載の高炉の原料装入方法。
(4) The method for charging raw materials into a blast furnace according to claim 1, characterized in that the rotating conditions of the rotating chute are kept constant and the discharge rate of the raw materials from the storage hopper is controlled.
JP6739685A 1985-03-30 1985-03-30 Method for charging raw material to blast furnace Granted JPS61227108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6739685A JPS61227108A (en) 1985-03-30 1985-03-30 Method for charging raw material to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6739685A JPS61227108A (en) 1985-03-30 1985-03-30 Method for charging raw material to blast furnace

Publications (2)

Publication Number Publication Date
JPS61227108A true JPS61227108A (en) 1986-10-09
JPS6339642B2 JPS6339642B2 (en) 1988-08-05

Family

ID=13343766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6739685A Granted JPS61227108A (en) 1985-03-30 1985-03-30 Method for charging raw material to blast furnace

Country Status (1)

Country Link
JP (1) JPS61227108A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426712A (en) * 1990-05-22 1992-01-29 Kawasaki Steel Corp Method for monitoring charging of raw material into blast furnace
WO2007048490A2 (en) * 2005-10-24 2007-05-03 Siemens Vai Metals Technologies Gmbh & Co Method and device for charging feedstock
JP2015117388A (en) * 2013-12-16 2015-06-25 新日鐵住金株式会社 Raw material charging method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923807A (en) * 1982-07-28 1984-02-07 Nippon Steel Corp Charging method of raw material into blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923807A (en) * 1982-07-28 1984-02-07 Nippon Steel Corp Charging method of raw material into blast furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426712A (en) * 1990-05-22 1992-01-29 Kawasaki Steel Corp Method for monitoring charging of raw material into blast furnace
WO2007048490A2 (en) * 2005-10-24 2007-05-03 Siemens Vai Metals Technologies Gmbh & Co Method and device for charging feedstock
WO2007048490A3 (en) * 2005-10-24 2007-07-05 Siemens Vai Metals Tech Gmbh Method and device for charging feedstock
US8034157B2 (en) 2005-10-24 2011-10-11 Siemens Vai Metals Technologies Gmbh Method and device for charging feedstock
JP2015117388A (en) * 2013-12-16 2015-06-25 新日鐵住金株式会社 Raw material charging method

Also Published As

Publication number Publication date
JPS6339642B2 (en) 1988-08-05

Similar Documents

Publication Publication Date Title
JPS61227108A (en) Method for charging raw material to blast furnace
JPH046761B2 (en)
JP7073962B2 (en) How to charge the bellless blast furnace
JPS62290809A (en) Raw material charging method for blast furnace
JPS62260010A (en) Charging method of mixed raw material for bell-less type blast furnace
JPH0225507A (en) Method and apparatus for charging raw material in bell-less type blast furnace
JP4139578B2 (en) Raw material charging method to blast furnace
JPH02305911A (en) Bell-less type raw material charging method for vertical furnace
JPS62260009A (en) Charging method for pellet-compounded raw material in bell-less type blast furnace
JPS6250402A (en) Method for charging raw material to blast furnace
JPH0421724B2 (en)
JPS6263607A (en) Method for charging raw material to blast furnace by bell-less type blast furnace raw material charger
JPH05179320A (en) Raw material charging method for bell-less blast furnace
JPH03153806A (en) Method for charging raw material into blast furnace
JP2004091801A (en) Method for charging raw material into bell-less blast furnace
JP2754617B2 (en) Raw material charging method for bell blast furnace
JPH0146791B2 (en)
JP2808344B2 (en) Blast furnace charging method
JPH05339612A (en) Raw material charging device and raw material charging method for blast furnace
JP5359670B2 (en) Raw material charging method for bell-type blast furnace
JPH03153805A (en) Method for controlling charge of raw martial into blast furnace
JPH0130886B2 (en)
JP2008095206A (en) Method for charging raw material into blast furnace
JPS6238404B2 (en)
JPS61272304A (en) Method for distributing raw material to be charged