JPS61226642A - Density measuring method for suspended pump - Google Patents

Density measuring method for suspended pump

Info

Publication number
JPS61226642A
JPS61226642A JP6755385A JP6755385A JPS61226642A JP S61226642 A JPS61226642 A JP S61226642A JP 6755385 A JP6755385 A JP 6755385A JP 6755385 A JP6755385 A JP 6755385A JP S61226642 A JPS61226642 A JP S61226642A
Authority
JP
Japan
Prior art keywords
pulp
pulp density
difference
gamma
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6755385A
Other languages
Japanese (ja)
Other versions
JPH0461301B2 (en
Inventor
Taku Kadoya
門屋 卓
Kojiro Nakada
中田 幸次郎
Toshitaka Yokoyama
横山 寿孝
Teruo Makita
牧田 輝夫
Tomoyuki Kaneko
兼子 知行
Akitoshi Suzuki
鈴木 明利
Senzou Shinohara
篠原 占三
Takanori Morita
森田 孝則
Gunji Kawashima
川嶋 軍司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZUOKA PREF GOV
Shizuoka Prefecture
Takagi Sangyo KK
Original Assignee
SHIZUOKA PREF GOV
Shizuoka Prefecture
Takagi Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZUOKA PREF GOV, Shizuoka Prefecture, Takagi Sangyo KK filed Critical SHIZUOKA PREF GOV
Priority to JP6755385A priority Critical patent/JPS61226642A/en
Publication of JPS61226642A publication Critical patent/JPS61226642A/en
Publication of JPH0461301B2 publication Critical patent/JPH0461301B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To measure pulp density in a non-contact manner by calculating the pulp density by the corresponding relation of a scattered luminous intensity and the density in the forward and backward position. CONSTITUTION:By a luminous intensity sensor 3, the measured luminous intensity in plural positions of positions (a) and (b) is measured. A ratio gamma of the measured luminous intensity in the forward position (a) and the backward position (b) is calculated, the relation of this and the pulp density is obtained, and then, gamma and the pulp density have an almost straight line-shaped corresponding relation and the pulp density can be obtained from gamma. When the difference of the pulp density due to the difference of the beating degree corresponding to the same gamma value is obtained, even in case of the maximum difference in the scope of CSF 340-580(ml), the difference is about 0.15% and when a gammavalue goes to be small, the difference goes to be smaller and the scope of the beating extent is narrow and then the difference goes to be smaller. Judging from these, by measuring and obtaining the corresponding relation of gamma and the pulp density beforehand in respective types of the pulp suspension, the pulp density can be calculated from gamma obtained by the measurement with a considerable accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は紙パルプ工業に於ける@濁状パルプの濃度測定
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the concentration of cloudy pulp in the pulp and paper industry.

(従来の技術及び発明の目的) 紙の原料であるパルプは、通常幅10〜50P。(Prior art and purpose of the invention) Pulp, the raw material for paper, is usually 10 to 50 pages wide.

長さ0.5〜3−の木材繊維であり、かかるパルプは抄
紙工程でシートにする前に種々の処理が施こされる0そ
の代表的な処理は、叩解と称される機械処理であって、
繊維は叩解機によって圧潰、切断、膨潤等の処理を受け
ると共に、外部フィブリル化と称される繊維の開裂が行
なわれる。
These pulps are wood fibers with a length of 0.5 to 3 mm, and these pulps are subjected to various treatments before being made into sheets in the papermaking process.The typical treatment is a mechanical treatment called beating. hand,
The fibers are subjected to treatments such as crushing, cutting, and swelling by a beating machine, and the fibers are cleaved, which is called external fibrillation.

叩解とはこのような処理を繊維に施すものであるが、そ
の程度によって、得られ九紙の性質は極度に変化する。
Beating is a process in which fibers are subjected to such treatment, and the properties of the resulting paper vary dramatically depending on the degree of beating.

即ち、紙の性質を決める重要な因子は叩解処理であり、
この処理を夫々どの程度施こすかによって同じ原料のパ
ルプでも異なった性質の紙が出来、その80%以上が叩
解処理によって決まるとされている0 次に、紙の性質を変化させる、他の重要な因子としては
前記処理工程あるいは抄紙工程等に於けるパルプ濃度が
ある0従来パルプ濃度の測定方法としては、懸t@液の
流体抵抗が#度に依存するという原理を用いたQ1懸濁
液の濃度とその光透過特性とが相関関係を有するという
原理を用い次もの等があるが、これらは様々な外乱因子
も同時に測定してしまい易く、真のパルプ濃度を得るこ
とが雌かしい。こうして従来はパルプ濃度を監視するた
めの適切な測定方法がなかつ九ので、前記処理工程に於
いて一定の品質の処理パルプを得たり、抄紙工程に於い
て一定の品質の紙を抄紙するのが難かしかった0 本発明の目的は、かかるパルプ濃度を光学的に非接触に
測定し得る測定方法を提供することにある。
In other words, the important factor that determines the properties of paper is the beating process.
Depending on the extent to which each of these treatments is applied, paper with different properties can be produced even from pulp made from the same raw material, and it is said that more than 80% of this is determined by the beating process.Next, there are other important factors that change the properties of paper. The main factor is the pulp concentration in the treatment process or papermaking process, etc. 0 Conventional methods for measuring pulp concentration include Q1 suspension using the principle that the fluid resistance of the suspension depends on # degrees. The following methods use the principle that there is a correlation between the concentration of pulp and its light transmission characteristics, but these methods tend to measure various disturbance factors at the same time, making it difficult to obtain the true pulp concentration. Thus, in the past, there was no suitable measuring method for monitoring pulp density, so it was difficult to obtain treated pulp of a constant quality in the treatment process or to make paper of a constant quality in the papermaking process. Difficult 0 An object of the present invention is to provide a measuring method that can optically and non-contactly measure the pulp density.

(発明の構成及び作用) 本発明は前述の目的を達成する九めに、被測定パルプ@
濁液に測定光を照射する測定光照射装置と、該懸濁液か
らの散乱光強度を、その前方及び後方位置に於いて測定
する散乱光強度測定装置とから光学的測定部t−構成し
、該光学的測定部に於いて前方及び後方位置に於ける散
乱光強度の比を演算して、この比と濃度との対応関係に
よりパルプ濃度を算出することを要旨とするものである
0以下実施例に基づいて詳細に説明すると次の通りであ
る。
(Structure and operation of the invention) In order to achieve the above-mentioned object, the present invention has the following features:
The optical measurement section t-consists of a measurement light irradiation device that irradiates measurement light onto the suspension, and a scattered light intensity measurement device that measures the intensity of scattered light from the suspension at positions in front and behind the suspension. , the gist of which is to calculate the ratio of scattered light intensities at the front and rear positions in the optical measuring section, and calculate the pulp density based on the correspondence between this ratio and the density. A detailed explanation based on an example is as follows.

符号1は被測定パルプ懸濁g、Lにレーザ光等の測定光
を照射する測定光照射装置であり、2は照射されて懸濁
液Lt?経之測定光の強度を測定する測定光強度測定装
置である。これら装置1.2から光学的測定部Aを構成
する0前記測定装置2は測定光の照射方向に対して、懸
濁液りの前方位置a及び後方位置すに於いて測定し得る
ように構成する。この測定装置2の具体例を説明すると
、第1図に示すものは、懸濁液りから適宜距離隔てた円
周上に於いて、該懸濁液りの前方位置aから後方位置す
に至る複数位置に光強度センナ3ft配設して、夫々の
光強度センサ3により前記位+ta+bの複数位置に於
ける測定光強度を測定するものである。この具体例のよ
うに複数位置に於ける測定光強度を測定する他の例とし
て、図示はしていないが、単一の光強度センサを移動さ
せて前記前方位置aから後方位rltbに至る連続位置
あるいは複数位置に於いて測定するようにすることもで
きる。尚、測定光強度の測定位置は、前方位置a及び後
方位置すに於ける適宜各1点ずつを最少構成とするが、
多くの点に於いて測定し得るように構成することにより
後述の測定の自由度を大きくすることかできる。符号4
は前記被測定懸濁液を収容する透明な収容部であるが、
この収容部4は独立し次容器として構成しても良いし、
第2図に示すように配管系の一部に構成して、流動して
いる懸濁液を測定するようにして本良い0 しかして広葉樹晒クラフトパルプを叩解し、C8Fが3
4 o 、 412 、580 (−)の夫々に対して
、パル7’ m IEが2.1,0.5(%)のパルプ
懸濁液に対する前述した測定光強度の分布を測定すると
、第3図(a) 、 (b) 、 (e)に示す如くな
る0かかる測定結果から、一定のパルプ懸濁液に於いて
は、C8Fの変化により測定光強度に差が生じ、例えば
C8Fが少なくなり、即ち叩解が進むにつれて後方位置
すに於いては測定光強度が大となり、前方位置aに於い
ては逆に小となることがわかる。更に注目すべきことと
して、パルプ濃度が変化することにより、前方位fla
の測定光強度と後方位置すの測定光強度が互いに逆方向
に大幅に変化することがわかる。即ち、パルプ濃度が低
くなると前方位置aの測定光強度が大きくなり、逆に後
方位置すに於いては小さくなる0そこでいま、以上の測
定結果につき、前方位#a及び後方位置すに於ける測定
光強度の比γを演算し、これとノくルプ績度との関係を
求めてみると、第4図(a) 、 (b) 、 (c)
に示す如くなる。γは、即ち、 で示され、第4図(a) 、 (b) 、 (c)は夫
々前方位置aとして150’ 、1000.100’並
びに夫々後方位置すとして10°、 60’、 800
t−用い友ものである。
Reference numeral 1 denotes a measurement light irradiation device that irradiates measurement light such as a laser beam onto the pulp suspensions g and L to be measured, and 2 indicates a measurement light irradiation device that irradiates the suspension Lt? This is a measurement light intensity measuring device that measures the intensity of measurement light. These devices 1.2 constitute an optical measuring section A. The measuring device 2 is configured to be able to measure at the front position a and the rear position of the suspension with respect to the irradiation direction of the measurement light. do. To explain a specific example of this measuring device 2, the one shown in FIG. A 3-ft light intensity sensor is disposed at a plurality of positions, and each light intensity sensor 3 measures the measured light intensity at the plurality of positions +ta+b. As another example of measuring the measurement light intensity at multiple positions as in this specific example, although not shown, a single light intensity sensor is moved continuously from the front position a to the rear position rltb. Measurements can also be made at one or more locations. Note that the minimum measurement position for the measurement light intensity is one point each at the front position a and the rear position.
By configuring the device so that measurements can be taken at many points, the degree of freedom in the measurements described later can be increased. code 4
is a transparent storage part that stores the suspension to be measured,
This storage section 4 may be configured as an independent container, or
As shown in Figure 2, it is configured as a part of the piping system to measure the flowing suspension.
4 o, 412, and 580 (-), respectively, when measuring the distribution of the measurement light intensity for pulp suspensions with Pal7'm IE of 2.1 and 0.5 (%), the third From the measurement results shown in Figures (a), (b), and (e), it can be seen that in a certain pulp suspension, changes in C8F cause differences in the measured light intensity, for example, as C8F decreases. That is, it can be seen that as the beating progresses, the measurement light intensity increases at the rear position and decreases at the front position a. It is also noteworthy that by changing the pulp concentration, the forward position fla
It can be seen that the measured light intensity at the rear position and the measured light intensity at the rear position significantly change in opposite directions. That is, as the pulp density decreases, the measured light intensity at the front position #a increases, and conversely it decreases at the rear position 0. Therefore, regarding the above measurement results, When we calculate the ratio γ of the measured light intensity and find the relationship between this and the Norklup score, we get the results shown in Figure 4 (a), (b), and (c).
The result will be as shown below. γ is shown as follows, and in FIGS. 4(a), (b), and (c), the front position a is 150', 1000.100', and the rear position a is 10°, 60', and 800, respectively.
t - It's a friend.

このように前方位置a、後方位置すは適宜に選択して良
く、例えば(a)は前方位teas後方位置す共に測定
光強度が大きい位置として選択したものである。
In this way, the front position a and the rear position may be selected as appropriate. For example, (a) is selected as the front position and the rear position where the measuring light intensity is high.

かかる第4図(a) 、 (b) 、 (e)に示すよ
うに、γとパルプ濃度とは略直線状の対応関係がるり、
γからパルプ濃度が求め得ることがわかる0そして同−
r値に対応する、叩解程度の差によるパルプ濃度のMを
求めると、C3F340〜580 (d)の範囲に於い
て最大でも約0.15%(例えば第4図(a)のγ値2
に対応するパルプ濃度差)程度であって、γ値が小さく
なればより小さくなり、ま九叩解程度の範囲が狭くなっ
てもより小さくなる。これらのことより、rとパルプ濃
度との対応関係を予め各種のパルプ懸濁液について測定
して求めておくことにより、測定によって求められたγ
からパルプ濃度が、かなりの精度で算出し得ることがわ
かる。以上の演算は、マイクロコンピュータ等に於ける
記憶装置に前記対応関係をデータテーブル等として記憶
させておくことにより容易に行なうことができる。
As shown in FIGS. 4(a), (b), and (e), there is a substantially linear correspondence between γ and pulp density.
It can be seen that the pulp density can be determined from γ.
When determining the pulp density M due to the difference in the degree of beating, which corresponds to the r value, in the range of C3F340 to 580 (d), the maximum is about 0.15% (for example, the γ value 2 in Figure 4 (a)
The difference in pulp density corresponding to the difference in pulp concentration) becomes smaller as the γ value becomes smaller, and becomes smaller even as the range of beating becomes narrower. From these facts, by determining the correspondence between r and pulp concentration by measuring various pulp suspensions in advance, the γ determined by measurement can be
It can be seen that the pulp density can be calculated with considerable accuracy. The above calculations can be easily performed by storing the correspondence relationship as a data table or the like in a storage device in a microcomputer or the like.

ところで光学的測定部Aに於ける測定光強度測定に際し
て、例えば測定光の光量が変化したり、あるいは光強度
センサ3の感度が変化したりすると、測定光強度が、前
方位置aから後方位置すにわたって全体的に同一方向に
変化する。しかしながら本発明は前述し友通り、前方位
置a及び後方位置すに於ける測定光強度の比rt−演算
して、このγとパルプ濃度との対応関係を用いるもので
あるので、前述した変化はrの演算に際して分母と分子
に夫々加わることになり、従ってかかる変化による影響
が少ない。
By the way, when measuring the measurement light intensity in the optical measuring section A, for example, if the light intensity of the measurement light changes or the sensitivity of the light intensity sensor 3 changes, the measurement light intensity changes from the front position a to the rear position. changes in the same direction throughout. However, as mentioned above, the present invention calculates the ratio rt of the measured light intensities at the front position a and the rear position a, and uses the correspondence between this γ and the pulp concentration, so the above-mentioned change is When calculating r, it is added to the denominator and numerator, respectively, and therefore the influence of such changes is small.

(発明の効果) 本発明は以上の通り、被測定パルプ懸濁液に測定光を照
射する測定光照射装置と、該懸濁液を経危測定光強度を
、その前方及び後方位置に於いて測定する測定光強度測
定装置とを設けた光学的測定部を構成し、かかる光学的
測定部に於いて測定した、前方位置及び後方位置に於け
る測定光強度の比と、パルプ1!に度との対応関係によ
り、パルプ濃度を算出するようにしたので、かかるパル
プ濃度を非接触式に、従って回分式な測定は固より連続
式にも測定することができ、製紙工程の各種処理工程に
於ける制御並びに品質の管理等に使用し得るという効果
がある。殊に本発明は前述した通り、パルプ#度に対し
て、前記前方位置と後方位置に於ける測定光強度の比を
対応させているので、例えば測定光の光量が変化したり
、光強度センサの感度が変化したりする等の、測定光強
度を1前方位置から後方位置にわたって全体的に同一方
向に変化させるような外乱に対する影響が少ないという
効果がある。
(Effects of the Invention) As described above, the present invention includes a measurement light irradiation device that irradiates a measurement light onto a pulp suspension to be measured, and a measurement light irradiation device that irradiates a pulp suspension to be measured with a measurement light intensity at its front and rear positions. The ratio of the measured light intensities at the front position and the rear position measured by the optical measuring part and the pulp 1! Since the pulp density is calculated based on the correspondence with the degree of dryness, the pulp density can be measured in a non-contact manner, and therefore a batch method can also be measured in a continuous manner rather than a solid method. It has the advantage that it can be used for process control and quality control. In particular, as described above, in the present invention, the ratio of the measurement light intensity at the front position and the rear position corresponds to the pulp # degree, so that, for example, the light intensity of the measurement light may change, or the light intensity sensor may This has the effect that it is less affected by disturbances that cause the measurement light intensity to change in the same direction as a whole from one front position to the rear position, such as a change in the sensitivity of the sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図並びに第2図は本発明方法の測定系を示す説明図
、第3図(a) 、 (b) 、 (c)は本発明の測
定系を用い7!j LBKPの光学特性実測図、第4図
(a) 、 (b) 。 (c)は第3図(荀、 (b) 、 (e)に基づくγ
値とパルプ濃度との関係説明図である。 符号A・・・光学的測定部、B・・・音響的測定部、L
・・・パルプ懸濁液、1・・・測定光照射装置、2・・
・散乱光強度測定装置、3・・・光強度センサ、4・・
・収容部。
FIGS. 1 and 2 are explanatory diagrams showing the measurement system of the method of the present invention, and FIGS. 3(a), (b), and (c) show the measurement system of the present invention. j Measured optical characteristics of LBKP, Figures 4 (a) and (b). (c) is γ based on Figure 3 (Xun, (b), (e))
FIG. 3 is an explanatory diagram of the relationship between value and pulp density. Symbol A: Optical measurement section, B: Acoustic measurement section, L
...Pulp suspension, 1...Measuring light irradiation device, 2...
・Scattered light intensity measuring device, 3...Light intensity sensor, 4...
・Accommodation department.

Claims (1)

【特許請求の範囲】[Claims] 被測定パルプ懸濁液に測定光を照射する測定光照射装置
と、該懸濁液を経た測定光強度を、その前方及び後方位
置に於いて測定する測定光強度測定装置とから光学的測
定部を構成し、該光学的測定部に於いて前方及び後方位
置に於ける測定光強度の比を演算して、この比と濃度と
の対応関係によりパルプ濃度を算出することを特徴とす
る懸濁状パルプの濃度測定方法。
An optical measurement section consisting of a measurement light irradiation device that irradiates measurement light onto the pulp suspension to be measured, and a measurement light intensity measurement device that measures the measurement light intensity that has passed through the suspension at positions in front and rear of the measurement light irradiation device. A suspension characterized in that the optical measuring section calculates the ratio of the measured light intensities at the front and rear positions, and calculates the pulp concentration based on the correspondence between this ratio and the concentration. Method for measuring the density of pulp.
JP6755385A 1985-03-30 1985-03-30 Density measuring method for suspended pump Granted JPS61226642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6755385A JPS61226642A (en) 1985-03-30 1985-03-30 Density measuring method for suspended pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6755385A JPS61226642A (en) 1985-03-30 1985-03-30 Density measuring method for suspended pump

Publications (2)

Publication Number Publication Date
JPS61226642A true JPS61226642A (en) 1986-10-08
JPH0461301B2 JPH0461301B2 (en) 1992-09-30

Family

ID=13348267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6755385A Granted JPS61226642A (en) 1985-03-30 1985-03-30 Density measuring method for suspended pump

Country Status (1)

Country Link
JP (1) JPS61226642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057516A (en) * 2005-07-28 2007-03-08 Kurita Water Ind Ltd Monitor and method for monitoring effect of chemical for manufacturing paper, and feeder and method for supplying chemical for manufacturing paper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758787A (en) * 1971-03-29 1973-09-11 W Sigrist Apparatus for determining the amount of the dispersed phase in a suspension
JPS59150326A (en) * 1982-12-08 1984-08-28 チャンピオン・インタ−ナショナル・コ−ポレ−ション Method and device for measuring pulp stock concentration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758787A (en) * 1971-03-29 1973-09-11 W Sigrist Apparatus for determining the amount of the dispersed phase in a suspension
JPS59150326A (en) * 1982-12-08 1984-08-28 チャンピオン・インタ−ナショナル・コ−ポレ−ション Method and device for measuring pulp stock concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057516A (en) * 2005-07-28 2007-03-08 Kurita Water Ind Ltd Monitor and method for monitoring effect of chemical for manufacturing paper, and feeder and method for supplying chemical for manufacturing paper

Also Published As

Publication number Publication date
JPH0461301B2 (en) 1992-09-30

Similar Documents

Publication Publication Date Title
FI71430B (en) FOERFARANDE FOER MAETNING AV FINMATERIAL I PAPPERSMASSA
DE2848552C2 (en) Device for determining the coagulation time of blood plasma
JPS5877608A (en) Method of measuring mean radius and mean length of grain in fluid
JPH07500660A (en) Electro-optical device for measuring single entities of fibers or other samples
US4276119A (en) Method and apparatus for on-line monitoring of specific surface of mechanical pulps
NO162169B (en) DEVICE AND PROCEDURE FOR DETERMINING THE MIXTURE CONSISTENCY
SE441217B (en) PROCEDURE FOR SOIL-FREE Saturation of the ABSOLUTE CONTENT OF A SUBSTANCE IN A MULTIPLE SUBSTANCE
JPH08254492A (en) Method and equipment for recording state of moving suspension
US4213708A (en) Graininess sensor
EP1252502A1 (en) Method and measurement device for measuring suspension
JPS61226642A (en) Density measuring method for suspended pump
EP3023737B1 (en) Method for contactless surface measurement with measurement correction
JPH07280722A (en) Paper surface fiber orientation measuring method
JPS61237041A (en) Measurement of concentration of suspended pulp
EP0174946B1 (en) Measurement of particle contents
JPS6057242A (en) Method of observing mechanical stripe in paper web
JPS61148349A (en) Measurement for condition of suspended pulp
US5264917A (en) Monitoring of film formers
CA1123626A (en) On-line monitoring of specific surface of mechanical pulps
CA1199813A (en) Optical method and apparatus for measuring the consistency of pulp slurry
JPH0465334B2 (en)
JPH0114359B2 (en)
CN110243774B (en) Method and measuring device for measuring a suspension
FI106890B (en) Measuring method
SU983452A1 (en) Device for measuring moving thread

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees