JPS61224266A - Manufacture of carbon-zinc combined electrode - Google Patents

Manufacture of carbon-zinc combined electrode

Info

Publication number
JPS61224266A
JPS61224266A JP6334385A JP6334385A JPS61224266A JP S61224266 A JPS61224266 A JP S61224266A JP 6334385 A JP6334385 A JP 6334385A JP 6334385 A JP6334385 A JP 6334385A JP S61224266 A JPS61224266 A JP S61224266A
Authority
JP
Japan
Prior art keywords
zinc
carbon film
conductive carbon
electrode
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6334385A
Other languages
Japanese (ja)
Inventor
Akira Hayashi
彰 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP6334385A priority Critical patent/JPS61224266A/en
Publication of JPS61224266A publication Critical patent/JPS61224266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins

Abstract

PURPOSE:To control electrode resistance and its change with the passage of time remarkably, by placing a coverage metal layer consisting of tin, lead, or a tin-lead alloy between a zinc sheet and an electric conductive carbon film, and exercising sandblasting process on the zinc sheet surface facing the coverage metal and on the coverage metal surface facing the conductive carbon film. CONSTITUTION:As a preliminary process, a zinc sheet 1 is washed in a solvent such as acetone, thinner, or Trichlene (trichloroethylene) and dried up. Over one side of the zinc sheet, after the preliminary process is over, a grinding agent powder is sprayed pneumatically to exercise an even sandblasting to form a ground coarse surface 4. Then, while a wire of tin, zinc, or tin-zinc alloy is applied with an AC voltage to melt at about 400 deg. to 1000 deg.C, its metallic mist is sprayed pneumatically over the sandblasted surface of the zinc sheet to form a thin and even coverage metal layer 2. Furthermore, the coverage metal layer surface is sandblast processed in the same manner, to form a coarse surface 5, and then a conductive carbon paint is spread, or a conductive carbon film is attached or heatpressed to form a carbon film 3.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は負極として板状乃至箔状の亜鉛または亜鉛合金
(以下亜鉛シートと略称す)を用いた扁平状乃至渦巻状
の電極構造を有する電池、もしくは扁平形素電池を複数
個積重しで得られる積層型電池等に用いる炭素・亜鉛結
合電極(Carbon−7iTic dupleX e
lectrode :以下結合電極と略称ず)の製造方
法の改良に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention has a flat or spiral electrode structure using plate-like or foil-like zinc or zinc alloy (hereinafter abbreviated as zinc sheet) as a negative electrode. Carbon-zinc bonded electrode (Carbon-7iTic duplex electrode) used in batteries or stacked batteries obtained by stacking multiple flat cells.
This invention relates to an improvement in the manufacturing method of an electrode (hereinafter abbreviated as a coupling electrode).

[従来の技術] 従来この種の結合電極の製造方法としては亜鉛シートの
表面に有機溶剤で脱脂したるのち、その片面に直接導電
性塗料を塗装するか導電性カーボン・フィルムを接着乃
至熱圧着する等の方法が普通である。また、従来公知の
他の製造方法として亜鉛シートの片面に予め銀、銅、ニ
ッケル等の重金属の薄いメッキ層を形成させておき、こ
の鍍金層の上に導電性カーボン膜を形成させることも行
われている。
[Prior art] Conventionally, the method for manufacturing this type of bonding electrode is to degrease the surface of a zinc sheet with an organic solvent, and then directly apply a conductive paint to one side, or adhere or thermocompress a conductive carbon film to one side. The usual method is to do this. Another conventional manufacturing method is to form a thin plating layer of heavy metals such as silver, copper, or nickel on one side of a zinc sheet in advance, and then form a conductive carbon film on top of this plating layer. It is being said.

更に他の製造方法として亜鉛シー1〜の片面にサンド・
ブラスト処理を施し、その機械的に研削された粗面に導
電性カーボン膜を形成させる方法も行われている。
Furthermore, as another manufacturing method, one side of the zinc sheet 1~ is sanded.
Another method is to perform blasting and form a conductive carbon film on the mechanically ground rough surface.

[発明が解決しようとなる問題点コ しかし上述した導電性カーボン・フィルムを接着ないし
熱圧着する等の方法では、得られた結合電極の電極抵抗
が大きく、導電性カーボン膜の接着力が充分でなく且つ
それらの値にバラツギを生じ易いことおよび該結合電極
乃至該結合電極を用いた電池を長期貯蔵したときの電極
抵抗や膜接着力の経時変化が大きいこと等の問題があっ
た。即ち亜鉛シートは普通4N(純度99゜99%)の
電気亜鉛をベースとして、これに水素過電圧や展性、剛
性等を調整する目的で鉛、カドミウム、アルミニウム等
の金属性元素の微量を添加した亜鉛合金をロール圧延、
冷間押出等の機械的加工によってシート化していたので
ある。この加工時に使用する潤滑油等の種類や量、加工
温度、圧力その他の製造条件によって亜鉛シー1へ表面
の物理的。
[Problems to be solved by the invention] However, with the above-mentioned method of bonding or thermocompression bonding the conductive carbon film, the electrode resistance of the resulting bonded electrode is large, and the adhesive force of the conductive carbon film is insufficient. There have been problems such as the fact that these values tend to vary, and that electrode resistance and membrane adhesion strength change significantly over time when the bonding electrode or a battery using the bonding electrode is stored for a long period of time. That is, zinc sheets are usually based on 4N (purity 99°99%) electrolytic zinc, to which trace amounts of metallic elements such as lead, cadmium, and aluminum are added for the purpose of adjusting hydrogen overvoltage, malleability, rigidity, etc. roll rolled zinc alloy,
It was made into sheets through mechanical processing such as cold extrusion. The physical appearance of the surface of the zinc sheet 1 depends on the type and amount of lubricating oil used during this processing, processing temperature, pressure, and other manufacturing conditions.

科学的性状は相異し、特に亜鉛シートの片面と他面とで
大きく相異することがある。また亜鉛シートの製造から
使用までの履歴によって表面酸化の状態も変化する。一
般に亜鉛シートの酸化程度が低い場合には、得られた結
合電極の抵抗は相対的に低いが導電性カーボン膜の接着
力も小さく、叶鉛シートの酸化程度が高い場合には、j
qられた結合電極の接着力は相対的に大きいが電極抵抗
も高くなる傾向がある。上述したような諸影響によって
得られる結合電極の抵抗や導電性カーボン膜の接着力は
一定し難く、管理状態の製品をうるのに難があった。ま
た、亜鉛は比較的反応性に冨むから亜鉛面に直接接触し
ている導電性カーボン膜の成分であるビヒクル、可塑剤
、安定剤、その他の添加物や残留溶剤等と反応して徐々
に酸化をうける場合がある。生成した酸化亜鉛層は非連
続性の比較的粗な組織からなり、それ自体分子間凝集力
に欠けるので、強い衝撃をうけると亜鉛極とカーボン膜
とは両者界面の亜鉛酸化層の部分で破断される。このよ
うにして導電性カーボン膜の接着力を更に低下せしめる
と共に、電極抵抗の経時的増大を一層促進させる傾向が
あった。
The chemical properties can vary, especially on one side of the zinc sheet and the other side. Furthermore, the state of surface oxidation changes depending on the history of the zinc sheet from manufacture to use. Generally, when the degree of oxidation of the zinc sheet is low, the resistance of the resulting bonded electrode is relatively low, but the adhesive strength of the conductive carbon film is also low, and when the degree of oxidation of the lead sheet is high,
Although the adhesion force of the q bonded electrode is relatively large, the electrode resistance also tends to be high. Due to the above-mentioned effects, the resistance of the bonding electrode and the adhesive strength of the conductive carbon film are difficult to maintain, making it difficult to obtain a product in a controlled state. In addition, since zinc is relatively reactive, it gradually reacts with the components of the conductive carbon film that are in direct contact with the zinc surface, such as vehicles, plasticizers, stabilizers, other additives, and residual solvents. May be subject to oxidation. The formed zinc oxide layer has a discontinuous and relatively coarse structure and itself lacks intermolecular cohesion, so when subjected to a strong impact, the zinc electrode and carbon film will break at the zinc oxide layer at the interface between the two. be done. In this way, the adhesive force of the conductive carbon film was further reduced, and the electrode resistance tended to further increase over time.

また、亜鉛シートの片面に予め銀、銅、ニッケル等の重
金属の薄いメッキ層を形成させておき、この鍍金層の上
に導電性カーボン膜を形成させる方法によれば長期貯蔵
中においても導電性カーボン膜による重金属メッキ層表
面の酸化は比較的小さいから、電極抵抗の増大を成る程
度抑えることができる。然しながら該結合電極を用いて
電池を構成する際、結合電極端部が電解液で濡れると−
り配車金属が結合電極縁端部に位置する亜鉛の水素過電
圧を下げで水素ガス発生を促進するとともに端部亜鉛の
腐蝕損耗を惹起する傾向があった。
In addition, by forming a thin plating layer of heavy metals such as silver, copper, nickel, etc. on one side of a zinc sheet in advance, and forming a conductive carbon film on top of this plating layer, it is possible to maintain conductivity even during long-term storage. Since oxidation of the surface of the heavy metal plating layer by the carbon film is relatively small, an increase in electrode resistance can be suppressed to a certain extent. However, when constructing a battery using the bonding electrode, if the end of the bonding electrode gets wet with the electrolyte, -
However, the metal used in the bonding electrode tends to reduce the hydrogen overvoltage of the zinc located at the edge of the coupling electrode, promoting hydrogen gas generation, and causing corrosion and wear of the zinc at the edge.

更にまた、亜鉛シートの片面にサンド・ブラスト処理を
施し、その機械的に研削された粗面に導電性カーボン膜
を形成させる方法の場合には、導電性カーボン膜を構成
する成分が適切なものであれば、導電性カーボン膜の接
着力もよく、電極抵抗も小さく且つそれらの貯蔵中にお
ける経時変化も効果的に抑制することができる。黙しな
がら導電性カーボン膜の構成成分によっては、上記効果
が充分得られずビヒクル、各種添加剤等、導電性カーボ
ン膜の構成成分が実用上極めて限定されていた。
Furthermore, in the case of a method in which one side of a zinc sheet is sand-blasted and a conductive carbon film is formed on the mechanically ground rough surface, the components constituting the conductive carbon film are appropriate. If so, the adhesive strength of the conductive carbon film is good, the electrode resistance is low, and changes over time during storage can be effectively suppressed. However, depending on the constituent components of the conductive carbon film, the above-mentioned effects may not be sufficiently obtained, and the constituent components of the conductive carbon film, such as vehicles and various additives, are extremely limited in practical use.

本発明は上記の問題点を解決するため負極亜鉛シートと
導電性カーボン膜の中間にスズ、鉛乃至スズおよび鉛を
主成分とする含金にりなる被覆金属薄層を介在せしめる
とともに、負極亜鉛シートの被覆金属対向面および被覆
金属層の導電性カーボン膜対向面にそれぞれサンド・ブ
ラスト処理を施すことにより、それらの相乗効果によっ
て前記従来法における技術上の問題点も改良することを
目的としたものである。
In order to solve the above-mentioned problems, the present invention interposes a thin coated metal layer made of tin, lead or a metal containing mainly tin and lead between the negative electrode zinc sheet and the conductive carbon film, and also By applying sand blasting to the surface of the sheet facing the coated metal and the surface of the coated metal layer facing the conductive carbon film, the objective was to improve the technical problems of the conventional method through their synergistic effect. It is something.

[問題を解決するための手段] 本発明による炭素・亜鉛結合電極を図面により説明する
。図は本発明による結合電極板の一部欠截斜視図で、図
中の1は亜鉛または亜鉛合金からなる負極亜鉛シート、
2は負極亜鉛シートの片面にホット・スプレイ法で溶射
され亜鉛面に薄く密着形成されたスズないし鉛またはス
ズ−鉛合金からなる被覆金属層、3は被覆金属層表面に
密着形成された導電性カーボン膜、4,5は亜鉛シート
面および溶射された被覆金属面にそれぞれサンド・ブラ
スト処理を施したことにより形成された粗面である。即
ち、まず前処理として亜鉛シート1をアセトン、シンナ
ー、トククレン等の溶剤で洗滌したのち乾燥する。前処
理を終った亜鉛シートの片面に研削剤粉末を圧縮空気で
吹付け、均一な4」ンド・プラスト処理を行い研削され
た粗面4を形成させる。次にスズ乃至鉛もしくはスズ−
鉛合金よりなるI!J14Aを交流電圧を印加して約/
100°C乃至1000℃に溶解しながら圧縮空気で金
属筋として亜鉛シー1〜のサンド・プラス1−面へ溶射
し、薄く均一な被覆金属層2を形成させる。この被覆金
属層表面に先と同様にしてサンド・ブラスト処理を施し
て粗面5を形成せしめたのち、導電性カーボン塗料を塗
装J−るか導電性カーボン・フィルムを接着または熱圧
着する等の方法でカーボン膜3を形成さlる。
[Means for solving the problem] A carbon-zinc bonded electrode according to the present invention will be explained with reference to the drawings. The figure is a partially cutaway perspective view of a combined electrode plate according to the present invention, and 1 in the figure is a negative electrode zinc sheet made of zinc or zinc alloy;
2 is a coating metal layer made of tin or lead or a tin-lead alloy that is thermally sprayed on one side of the negative electrode zinc sheet by hot spraying and formed in close contact with the zinc surface; 3 is a conductive metal layer that is formed in close contact with the surface of the coating metal layer. The carbon films 4 and 5 are rough surfaces formed by sand blasting the zinc sheet surface and the sprayed coating metal surface, respectively. That is, first, as a pretreatment, the zinc sheet 1 is washed with a solvent such as acetone, thinner, and Tokuren, and then dried. An abrasive powder is sprayed with compressed air onto one side of the pretreated zinc sheet, and a uniform 4-inch blasting process is performed to form a roughened surface 4. Next, tin or lead or tin.
I made of lead alloy! Approximately / by applying AC voltage to J14A
While melting at 100 DEG C. to 1000 DEG C., it is thermally sprayed as a metal strip onto the sand plus 1 surface of the zinc sheet 1 to form a thin and uniform coating metal layer 2 using compressed air. The surface of this coated metal layer is sand-blasted in the same manner as before to form a rough surface 5, and then a conductive carbon paint is applied or a conductive carbon film is bonded or thermocompressed. A carbon film 3 is formed by a method.

[作 用コ 前述したように亜鉛シー1〜の表面部分にはその製造過
程で固着された有機物質や製造から使用までの履歴に応
じて生成した酸化物を含む薄い汚染層が存在1)、これ
が結合電極の抵抗や膜接着力を再環性に欠ける主要とな
っていた。本発明では亜鉛シート面に先づサンド・ブラ
スト処理を施づことにより表面汚染層を機械的に研削除
去すると共に均一で微細な粗面を形成せしめることによ
って後工程で溶射により形成される被覆金属層との密着
性が向上するとともに、亜鉛・被覆金属間の接触抵抗を
低減したものである。研削剤としては反覆使用によって
著しい壊砕ロスを生じない程度の硬度を有し、また亜鉛
面への微陽の耐着残留が結合電極乃至該結合電極を用い
て製造した電池の特性に無害なものであれば、炭化物、
窒化物、酸化物等を任意に選択使用することができる。
[Function] As mentioned above, there is a thin contamination layer on the surface of the zinc sheet 1 containing organic substances fixed during the manufacturing process and oxides generated depending on the history from manufacture to use. This was the main reason for the resistance of the bonding electrode and the film adhesion force, which lacked recircularity. In the present invention, the surface of the zinc sheet is first subjected to sand blasting to mechanically remove the surface contamination layer and form a uniform, finely roughened surface. This improves the adhesion with the layer and reduces the contact resistance between zinc and the coating metal. As an abrasive, it has a hardness that does not cause significant crushing loss when used repeatedly, and the residual adhesion of micro-yang on the zinc surface is harmless to the properties of the bonding electrode or the battery manufactured using the bonding electrode. If it is a carbide,
Nitride, oxide, etc. can be arbitrarily selected and used.

研削剤は目的に応じ任意の粒度のものを使用できるが、
粒径約50μm以上の粗粒では均−且つ微細な粗面形成
が困難となり、亜鉛シートが薄い場合には実用上問題と
なるような深い圧痕を生ずることがあるから好ましくな
い。また約70μm以下の微細粒子では研削に時間を要
し、研削深さが浅くなりすぎて必要な投錨効果が期待で
きなくなるから100〜150μm程度の粒度範囲のも
のが実用上好ましい。
Abrasives of any particle size can be used depending on the purpose, but
Coarse particles with a particle size of about 50 μm or more are not preferred because it becomes difficult to form a uniform and finely roughened surface, and when the zinc sheet is thin, deep impressions may be formed which may pose a practical problem. Further, fine particles of about 70 .mu.m or less require time to grind and the grinding depth becomes too shallow, making it impossible to expect the necessary anchoring effect, so particles in the particle size range of about 100 to 150 .mu.m are practically preferred.

次に本発明においてサンド・ブラスト処理した亜鉛面に
スズ、鉛、スズ−鉛合金等よりなる被覆金属層を形成さ
せることの効果は、密接する導電性力−ボン膜と下地金
属との反応の進行及び反応に起因して派生する障害を抑
制することである。
Next, in the present invention, the effect of forming a coating metal layer made of tin, lead, tin-lead alloy, etc. on the sand-blasted zinc surface is due to the close conductive force - the reaction between the Bon film and the underlying metal. The aim is to suppress the disorders that arise due to progression and reactions.

このような目的の被覆金属材′I31としては、金属亜
鉛との親和性のよいこと、抗酸化性のあること、生成酸
化膜がバリヤー性でトンネル効果の期待できない程度に
まで成長しないこと、亜鉛の水素過電圧を下げたり、局
部腐蝕の原因とならないこと等が要求される。このよう
な被覆金属材料として、例えば銀、銅、ニッケル等およ
びそれらの合金類を用いる場合、抗酸化性の面で寄与す
るが、このような結合電極を用いた電池は、結合電極端
部の亜鉛が自己放電を起し、水素発生を促進する傾向が
あることによって、またチタン、タンタル等およびそれ
らの合金類を用いることは酸化膜のインピーダンスが著
しく大きいことによって、何れもよい効果が得られてい
ない。電極抵抗、導電性カーボン膜の接着力及びこれら
特性のバラツキ、経時性変化9局部腐蝕等の何れも満足
する結果は、スズ、鉛およびスズ−鉛合金系で得られた
。特にスズ−鉛合金では、調査した広範囲の組成領域(
Sn2〜65重量%、Pb98〜35重量%)全般に亘
ってよい結果を得た。またスズおよび鉛を主成分とし、
これに伯の金属性元素の少量、例えば周期律表(長周期
型)の第2A族に属するカルシウム、バリウム、第1B
族の銅、銀等、第2B族の亜鉛、カドミウム等、第3B
族のアルミニウム、インジウム等、第5B族のビスマス
等、及び第6B族に属するセレン、テルル等の非金属性
元素などの少量を含む合金の場合にも略々類似の効果を
示した。
The coated metal material 'I31 for this purpose should have good affinity with metallic zinc, have anti-oxidation properties, the formed oxide film has barrier properties and will not grow to the extent that a tunnel effect cannot be expected, and zinc It is required that the hydrogen overvoltage of the hydrogen overvoltage is reduced and that it does not cause local corrosion. For example, when silver, copper, nickel, etc. and their alloys are used as such coated metal materials, they contribute to anti-oxidation properties, but batteries using such bonding electrodes are Zinc has a tendency to self-discharge and promote hydrogen generation, and the use of titanium, tantalum, etc. and their alloys has a significantly large oxide film impedance, so good effects cannot be obtained. Not yet. Satisfactory results in terms of electrode resistance, adhesive strength of the conductive carbon film, variations in these properties, changes over time, localized corrosion, etc. were obtained with tin, lead, and tin-lead alloy systems. Especially for tin-lead alloys, the wide compositional range investigated (
(Sn: 2 to 65% by weight, Pb: 98 to 35% by weight) Overall, good results were obtained. Also, the main ingredients are tin and lead,
In addition, small amounts of metal elements such as calcium, barium, and barium, which belong to Group 2A of the periodic table (long period type),
Group 2B copper, silver, etc., Group 2B zinc, cadmium, etc., Group 3B
Substantially similar effects were also shown in the case of alloys containing small amounts of non-metallic elements such as aluminum and indium belonging to Group 5B, bismuth etc. belonging to Group 6B, and non-metallic elements such as selenium and tellurium belonging to Group 6B.

これら被覆金属の形成方法としては、真空蒸着法その他
多くの乾式法があり、また化学鍍金その他多くの湿式法
や、両者の中間的な摩擦鍍金法等の何れを採用してもよ
い。然し処理能率、効果。
Methods for forming these coated metals include vacuum evaporation and many other dry methods, chemical plating and many other wet methods, and an intermediate method between the two, such as friction plating. However, processing efficiency and effectiveness.

設備償却負担等を考慮するとホット・スプレイ法が本発
明の目的に最も適しているといえる。即ち、ホット・ス
プレイ法は比較的簡単な設備で以て所要厚さく20〜1
00μm)の被覆金属層の形成を極めて短時間内に連続
操作で行うことができるから技術的、経済的に有利であ
る。
Considering the cost of depreciation of equipment, etc., it can be said that the hot spray method is most suitable for the purpose of the present invention. That is, the hot spray method uses relatively simple equipment to achieve a required thickness of 20 to 1
This method is technically and economically advantageous because it is possible to form a coated metal layer of 0.00 μm in a continuous operation within an extremely short period of time.

次に1−述の溶射によって形成された被覆金属面を再び
サンド・ブラスト処理することの効果は、溶射時に生成
する被覆金属面の酸化物を研削除去するとともに、均一
口つ微細な粗面を形成づることにより、卯鉛シーj〜の
児Ift面積当りの真表面積、即ち導電性カーボン膜と
の有効接触面積を大きくすることによって、電極抵抗を
低くすると共に、投錨効果による導電性カーボン膜の接
着を強化したものである。メタリコンされた被覆金属面
へサンド・ブラスト処理を施さない場合でも、得られた
結合電極が比較的低い抵抗値を示す場合があるが、著し
く高い抵抗値もあってホラ1〜・スプレィ条件の若干の
変動が電極抵抗値のバラツキを大きくするので、特性の
管理された結合電極をつるには被覆金属層へのプラス1
〜処理は必要である。
Next, the effect of sandblasting the coated metal surface formed by the thermal spraying described in 1-1 is that it not only removes the oxides generated on the coated metal surface during thermal spraying, but also creates a uniform and finely roughened surface. By increasing the true surface area per area of the conductive carbon film, that is, the effective contact area with the conductive carbon film, the electrode resistance can be lowered, and the conductive carbon film can be reduced due to the anchoring effect. It has reinforced adhesion. Even if the metallicon coated metal surface is not sand-blasted, the resulting bonded electrode may exhibit a relatively low resistance value, but some of the resistance values may be extremely high. Fluctuations in electrode resistance increase the variation in electrode resistance, so in order to create a bonded electrode with controlled characteristics, it is necessary to add +1 to the coating metal layer.
~Processing is necessary.

次にサンド・ブラスト処理を施した被覆金属層表面に導
電性カーボン皮膜を密着形成させて結合電極を完成させ
る。
Next, a conductive carbon film is closely formed on the surface of the sand-blasted coated metal layer to complete a bonding electrode.

導電性カーボン膜形成法としては、公知の任意の方法を
用いることかできる。即ちカーボンブラック、黒鉛微粉
末等を導電性フィラーとする溶剤型塗料をエアレス・ス
プレィ、リバース・ロール・コーター、カーテン・フロ
ー・]−ター、ドクター・ヨー1〜等任意の手段を用い
て粗面化された被覆金属面へ塗装し、導電性カーボン皮
膜を形成させることができる。黒鉛粉末とポリイソブチ
レン等の可塑性樹脂を混練して得た無溶剤型の導電性可
塑性物質を粗面化された被覆金属面へ熱圧着して導電性
カーボン層を形成させる方法、PVC等の親溶媒型ビヒ
クルとカーボン末の混合フィルムを適当な接着剤または
溶剤を用いて粗面化された被覆金属面に貼着する方法等
の何れの方法にも適用でき且つ効果的である。
Any known method can be used to form the conductive carbon film. That is, a solvent-based paint containing carbon black, fine graphite powder, etc. as a conductive filler is applied to a rough surface using any method such as airless spray, reverse roll coater, curtain flow coater, or doctor yaw 1~. A conductive carbon film can be formed by coating the coated metal surface. A method of forming a conductive carbon layer by thermocompression bonding a solvent-free conductive plastic material obtained by kneading graphite powder and a plastic resin such as polyisobutylene onto a roughened coated metal surface, and a method of forming a conductive carbon layer using PVC, etc. It is applicable and effective to any method, such as a method in which a mixed film of a solvent-based vehicle and carbon powder is adhered to a roughened coated metal surface using a suitable adhesive or solvent.

上)ホしたように本発明の製造方法ににって得られる結
合N極は、導電性炭素膜が負極亜鉛面に直接接触するこ
とがなく、被覆金属であるスズ、鉛乃至スズ及び鉛を主
成分とする合金と接しており、S電性カーボン膜との反
応によって被覆金属面に生成する酸化物の組織は比較的
密なバリヤー型で進行性がなく、また極めて薄層なので
トンネル効−11= 果によって必要な導電性を維持することができると共に
、酸化層の分子間凝集力が比較的大きいので、粗面によ
る投錨効果と相撲て、強い衝撃力が加えられた揚台にも
酸化物層の破壊に基づくカーボン膜の剥離は起き難いも
のである。
As mentioned above, the bonded N-electrode obtained by the manufacturing method of the present invention has a conductive carbon film that does not come into direct contact with the zinc surface of the negative electrode, and the coating metals such as tin, lead, tin, and lead can be removed. The structure of the oxide formed on the coated metal surface by reaction with the S-conductive carbon film is relatively dense and barrier-type, and is non-progressive, and is extremely thin, so it has no tunneling effect. 11= In addition to being able to maintain the necessary conductivity due to the effect, the intermolecular cohesive force of the oxidized layer is relatively large, so it combines with the anchoring effect of the rough surface to prevent oxidation even on the platform that is subjected to strong impact. Peeling of the carbon film due to destruction of the material layer is unlikely to occur.

[実施例] 本発明の実施例を第1表により説明する。[Example] Examples of the present invention will be explained with reference to Table 1.

第1表中、本発明Aとは本発明の製造方法により中間層
にスズを主成分とづ−るスズ−鉛合金の薄層を介在せし
めてなる結合電極である。即ち純度4N(7)電気亜鉛
をベースどし有効添加元素として鉛、アルミニウム、カ
ドミウムの少量を含む厚さ0.3’2111mの亜鉛シ
ートをアセトン処理により脱脂したのち、その片面に4
ko/am2の圧縮空気で粒経35〜100μmの乾燥
した炭化硅素粉末を吹付け、均一な研削粗面を形成させ
る。次にスズ63重■%、鉛重石%の共融合金(同相点
・液化点共361°C)よりなる線径4..5mmの線
材を25■の交流電圧を印加して約800 ’Cに溶融
したるのち、高圧空気で金属層とし、亜鉛シートの号ン
ド・ブラスト処理面へ溶射して厚さ23μmの均一な被
覆金属層を形成さける。次にスズ−鉛被覆金属面に先と
同様の条件で再びサンド・ブラスト処理を施したのち、
導電性フィラーとしてアセヂレンブラック及び鱗状黒鉛
微粉、pcvを主とするビヒクル、可塑剤、安定剤及び
親溶媒と非溶媒を含む混合溶剤からなる導電性塗料をカ
ーテン・フロー・コーターを用いて塗装・常温乾燥・加
熱乾燥を6回反覆し、厚さ150μmの導電性カーボン
膜を形成させたものである。また同様に本発明Bは、中
間層に鉛を主成分とする鉛−スズ合金の薄層を形成せし
めてなる結合電極である。即ち中間層に用いる被覆金属
材料として鉛90重量%、スズ10重量%(固相点58
1℃、液化点594℃)の組成のものを用いており、溶
射温度は約900℃である。
In Table 1, the present invention A is a coupling electrode formed by interposing a thin layer of a tin-lead alloy containing tin as a main component in the intermediate layer by the manufacturing method of the present invention. That is, after degreasing a zinc sheet with a thickness of 0.3'2111 m based on pure 4N (7) electrolytic zinc and containing small amounts of lead, aluminum, and cadmium as effective additive elements, a
Dry silicon carbide powder with a grain size of 35 to 100 μm is sprayed with compressed air of ko/am2 to form a uniformly ground rough surface. Next, a wire with a diameter of 4.5% is made of a eutectic alloy of 63% tin and % lead (in-phase point and liquefaction point both 361°C). .. A 5mm wire is melted at approximately 800'C by applying an AC voltage of 25cm, then made into a metal layer with high pressure air, and sprayed onto the numbered and blasted surface of the zinc sheet to form a uniform coating with a thickness of 23μm. Avoid forming a metal layer. Next, the tin-lead coated metal surface was sand-blasted again under the same conditions as before.
A conductive paint consisting of acetylene black and flaky graphite fine powder as a conductive filler, a vehicle mainly composed of PCV, a plasticizer, a stabilizer, and a mixed solvent containing a parent solvent and a non-solvent is applied using a curtain flow coater. - Drying at room temperature and drying with heat were repeated six times to form a conductive carbon film with a thickness of 150 μm. Similarly, the present invention B is a coupling electrode in which a thin layer of a lead-tin alloy containing lead as a main component is formed in the intermediate layer. That is, the coating metal material used for the intermediate layer is 90% by weight lead and 10% by weight tin (solidus point 58%).
The spraying temperature is approximately 900°C.

その他の製造条件は、上記本発明の場合と略々同様であ
る。
Other manufacturing conditions are substantially the same as in the case of the present invention described above.

次に第1表中、従来品Cとは亜鉛シート表面をアセトン
処理したのち、その片面に直接本発明品Aと同一条件で
厚さ約150μmの導電性カーボン膜を形成けしめて得
た結合電極である。また第1表中りどは亜鉛シー1〜表
面をアセl−ン処理したのち、その片面を銀の可溶性鉗
イオン溶液で処理して厚さ1.5乃至2.0μmの銀被
覆層を形成せしめ、純水洗滌−エタノール洗滌−アセ1
−ン洗滌−加熱乾燥を行ったのち、その表面に上記本発
明Δと同一条件で約150I1mの導電性カーボン膜を
形成させて得た結合電極である。
Next, in Table 1, conventional product C is a bonding electrode obtained by treating the surface of a zinc sheet with acetone and then directly forming a conductive carbon film with a thickness of about 150 μm on one side under the same conditions as product A of the present invention. It is. In addition, for the middle layer in Table 1, the surface of the zinc sheet 1 is treated with acetone, and then one side of the surface is treated with a soluble silver ion solution to form a silver coating layer with a thickness of 1.5 to 2.0 μm. Seshime, pure water washing - ethanol washing - ace 1
This is a bonding electrode obtained by heating and drying the electrode, and then forming a conductive carbon film of about 150 Ilm on the surface under the same conditions as the above-described Δ of the present invention.

第1表中従来品Fどは、亜鉛シー1〜表面をアセ1−ン
処理したのち、その片面に本発明品Aと同一条件で炭化
硅素粉末ににるサンド・プラス1−処理を施し、該サン
ド・ブラスト処理面に上記本発明品へと同一条件で約1
50μmの導電性カーボン膜を形成させて得た結合電極
である。
For conventional products F in Table 1, the surface of the zinc sheet 1 was treated with acetone, and then one side was treated with sand plus 1 using silicon carbide powder under the same conditions as the product A of the present invention. The above-mentioned product of the present invention was applied to the sand blasted surface under the same conditions for about 1 hour.
This is a bonding electrode obtained by forming a 50 μm conductive carbon film.

次に第1表中の塗膜の密着1k[とは、結合電極をパワ
ープレスを用いて直径32mmの円板状に打抜き、得ら
れた円板状結合電極の縁端部塗膜の打抜き時の衝撃によ
って浮上った部分を除去し、密着残留しているカーボン
膜の面積のテスト・ピースの総面積との比(%)で示し
たものである。
Next, the adhesion of the coating film in Table 1 1k [means the time when the coupling electrode is punched into a disc shape with a diameter of 32 mm using a power press, and the edge coating film of the disc-shaped coupling electrode is punched out. This is the ratio (%) of the area of the carbon film remaining in close contact with the total area of the test piece after removing the part that floated up due to the impact of the test piece.

また第1表中の電極抵抗とは、表面平滑な水平金属板上
に10 Qcmx 5 Qcmの結合電極シートを亜鉛
面を下、カーボン膜を上にして載冒し、カーボン膜面の
中央部に荷重2kOで児111・接触面積100m2で
接触面に7 Q mesh銀鍍黄銅製スクリーン2枚を
かぶせた測定電極をのせて試料の亜鉛シートと測定電極
間の電気抵抗を20℃、恒温室内で測定したときのもの
である。また(R)は各結合電極に就いて20枚測定し
たときの抵抗値の最大値及び最小値の巾を示す。
In addition, the electrode resistance in Table 1 means that a bonded electrode sheet of 10 Qcm x 5 Qcm is placed on a horizontal metal plate with a smooth surface, with the zinc side facing down and the carbon film facing up, and a load is applied to the center of the carbon film surface. The electrical resistance between the sample zinc sheet and the measuring electrode was measured in a thermostatic chamber at 20°C by placing a measuring electrode covered with two 7Q mesh silver-plated brass screens on the contact surface with a contact area of 100 m2 at 2 kO. It is from the time. Further, (R) indicates the width of the maximum value and minimum value of the resistance value when 20 pieces of each coupling electrode were measured.

更に第1表中の局部腐蝕とは、直径32IIl[Ilの
結合電極試料円板を塩化亜鉛10%で塩化アンモニウム
飽和させた三成分系電解液中へ45°Cで1ケ月浸漬し
たときの結合電極縁端部の腐蝕の有無を検査したもので
ある。
Furthermore, the local corrosion in Table 1 refers to the bonding when a bonded electrode sample disk with a diameter of 32II [Il] is immersed for one month at 45°C in a ternary electrolyte solution saturated with ammonium chloride and 10% zinc chloride. The presence or absence of corrosion at the edge of the electrode was inspected.

(以下余白) 第1表 第1表に示したように、従来製造方法による結合電極で
は、塗膜の接着力、電極抵抗ともに充分でない。またバ
ラツキおよび経時変化が大きもX。
(The following is a blank space) Table 1 As shown in Table 1, the bonded electrode produced by the conventional manufacturing method is insufficient in both the adhesive strength of the coating film and the electrode resistance. Also, the variation and changes over time are large.

また従来品りでは、結合電極縁端部の亜鉛が使用した重
金属に起因した局部腐蝕を起している。
In addition, in the conventional product, the zinc at the edge of the coupling electrode has localized corrosion caused by the heavy metal used.

これに対して本発明の製造法で得られた結合電極ではカ
ーボン膜の接着力が大きく、電極抵抗カー小さく、これ
ら特性値のバラツキ、経時変化とも極めて小さく、結合
電極縁端部での自己放電もなく、従来製造方法に比べて
改善されていることが判る。
On the other hand, in the bonded electrode obtained by the manufacturing method of the present invention, the adhesion force of the carbon film is large, the electrode resistance is small, the variation in these characteristic values and the change over time are extremely small, and the self-discharge at the edge of the bonding electrode is small. It can be seen that this is an improvement over the conventional manufacturing method.

[発明の効果] 叙述のように本発明による炭素・亜鉛結合電極製造方法
では、亜鉛シートと導電性カーボン膜との中間にスズ、
鉛もしくはスズ−鉛合金からなる被覆合金層を介在せし
め、且つ亜鉛シートの被覆金属対向面および被覆金属層
の導電性カーボン膜対向面にそれぞれサンド・ブラスト
処理を施J′如くして一体化した結合電極を構成するこ
とによって、電極抵抗およびその経時変化を顕著に抑制
し、導電性カーボン膜の接着力を強化し、これら特性値
のバラツキを少なくすると共に、電池に用いたときに負
極亜鉛縁端部に局部腐蝕を起すこともない等工業的効果
の大きいものである。
[Effects of the Invention] As described above, in the carbon-zinc bonded electrode manufacturing method according to the present invention, tin is placed between the zinc sheet and the conductive carbon film.
A coating alloy layer made of lead or tin-lead alloy is interposed, and the surface of the zinc sheet facing the coating metal and the surface of the coating metal layer facing the conductive carbon film are each subjected to sand blasting treatment to be integrated as shown in J'. By configuring the bonded electrode, electrode resistance and its change over time are significantly suppressed, the adhesive strength of the conductive carbon film is strengthened, and variations in these characteristic values are reduced. When used in a battery, the negative electrode zinc edge It has great industrial effects as it does not cause local corrosion at the edges.

本発明の製造方法でよる炭素・亜鉛結合電極は、扁平形
電池、コイン形電池、可撓性超薄型電池及び扁平型素電
池を複数個積重して得られる積層乾電池、渦巻状電極構
造を有する筒型電池、ならびに正極活物質として金属の
酸化物、ハロゲン化物。
The carbon-zinc bonded electrode produced by the manufacturing method of the present invention has a flat battery, a coin battery, a flexible ultra-thin battery, a stacked dry battery obtained by stacking a plurality of flat unit cells, and a spiral electrode structure. cylindrical batteries, and metal oxides and halides as positive electrode active materials.

オキシ酸塩等を用いる各種注液及び注水電池等、負極材
料として亜鉛シー1〜を用いる各種電池の電極として使
用できるものである。
It can be used as an electrode for various types of batteries that use zinc sheets 1 to 1 as negative electrode materials, such as various types of liquid injection and water injection batteries that use oxyacid salts and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の製造方法による炭素・亜鉛結合電極板の一
部欠截斜視図である。 1・・・負極亜鉛シート  2・・・被覆金属層3・・
・導電性カーボン膜 4.5・・・粗面
The figure is a partially cutaway perspective view of a carbon-zinc bonded electrode plate manufactured by the manufacturing method of the present invention. 1...Negative electrode zinc sheet 2...Coating metal layer 3...
・Conductive carbon film 4.5...Rough surface

Claims (1)

【特許請求の範囲】[Claims] 亜鉛または亜鉛合金よりなる負極亜鉛シートの片面にサ
ンド・ブラスト処理を施したのち、サンド・ブラスト処
理面へホット・スプレイ法によってスズ、鉛もしくは鉛
を主成分とする合金からなる被覆金属層を形成せしめ、
該被覆金属形成面にふたたびサンド・ブラスト処理を施
したのち導電性カーボン膜を形成せしめることを特徴と
する炭素・亜鉛結合電極の製造方法。
After applying sand blasting to one side of a negative electrode zinc sheet made of zinc or zinc alloy, a coating metal layer made of tin, lead, or an alloy mainly composed of lead is formed on the sand blasted surface by hot spraying. Seshime,
A method for manufacturing a carbon-zinc bonded electrode, which comprises sand-blasting the coated metal surface again and then forming a conductive carbon film.
JP6334385A 1985-03-29 1985-03-29 Manufacture of carbon-zinc combined electrode Pending JPS61224266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6334385A JPS61224266A (en) 1985-03-29 1985-03-29 Manufacture of carbon-zinc combined electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6334385A JPS61224266A (en) 1985-03-29 1985-03-29 Manufacture of carbon-zinc combined electrode

Publications (1)

Publication Number Publication Date
JPS61224266A true JPS61224266A (en) 1986-10-04

Family

ID=13226498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6334385A Pending JPS61224266A (en) 1985-03-29 1985-03-29 Manufacture of carbon-zinc combined electrode

Country Status (1)

Country Link
JP (1) JPS61224266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162591A1 (en) * 2019-02-08 2020-08-13 マクセルホールディングス株式会社 Negative electrode for aqueous electrolytic solution batteries, and sheet-like battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162591A1 (en) * 2019-02-08 2020-08-13 マクセルホールディングス株式会社 Negative electrode for aqueous electrolytic solution batteries, and sheet-like battery
CN113474925A (en) * 2019-02-08 2021-10-01 麦克赛尔控股株式会社 Negative electrode for aqueous electrolyte battery and sheet-like battery

Similar Documents

Publication Publication Date Title
EP2332201B1 (en) Electrode including current collector with nano-scale coating and method of making the same
TWI249868B (en) Anode and battery
KR101624432B1 (en) Electrode material, electrode material manufacturing method, electrode, and secondary battery
TWI596827B (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
US3751301A (en) Reserve battery electrodes using bonded active materials
WO1994022174A1 (en) Coated metal plate for positive electrode can of dry cell and positive electrode can made thereof
JP2000200610A (en) Copper foil for lithium battery, lithium secondary battery, its manufacture, and manufacturing device for negative electrode material for lithium battery
JP2003518558A (en) Resin-coated steel sheet for automobile fuel tank and method of manufacturing the same
JP5144821B1 (en) Method for producing electrode material
JP3534031B2 (en) Method for manufacturing electrode for battery / capacitor
US3629007A (en) Reserve battery electrodes using bonded active materials
JP2000294251A (en) COPPER MATERIAL FOR NEGATIVE ELECTRODE CURRENT COLLECTOR OF Li ION BATTERY AND MANUFACTURE THEREFOR
JP2003036840A (en) Lithium cell negative electrode and its manufacturing method
US6087045A (en) Primer with electrochemically inert particulate and process for fabricating same
JPS61224266A (en) Manufacture of carbon-zinc combined electrode
WO2001091205A2 (en) Surface treatment of metallic components of electrochemical cells for improved adhesion and corrosion resistance
WO2013061890A1 (en) Electrode material, electrode, secondary cell, and method for producing electrode material
EP0028922A2 (en) Improved inexpensive electrode for metal-air cells and method of making same
JP6878239B2 (en) Manufacturing method of separator for fuel cell
US8709648B2 (en) Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
JPH11144710A (en) Electrode structure for electrochemical element
JP5140779B1 (en) Electrode material
JPH05234596A (en) Grid for lead storage battery
JPS6311698A (en) Powder-incorporated zinc plated steel sheet
JPH0225326A (en) Weldable resin composite steel plate