JPS61224254A - Charged particle beam device - Google Patents

Charged particle beam device

Info

Publication number
JPS61224254A
JPS61224254A JP60064852A JP6485285A JPS61224254A JP S61224254 A JPS61224254 A JP S61224254A JP 60064852 A JP60064852 A JP 60064852A JP 6485285 A JP6485285 A JP 6485285A JP S61224254 A JPS61224254 A JP S61224254A
Authority
JP
Japan
Prior art keywords
sample
charged particle
particle beam
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60064852A
Other languages
Japanese (ja)
Inventor
Masashi Ataka
正志 安宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP60064852A priority Critical patent/JPS61224254A/en
Publication of JPS61224254A publication Critical patent/JPS61224254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve the collecting efficiency of ions, electrons, etc. thus to focus the primary beam accurately onto a sample even upon application of voltage onto the sample by providing a charged particle source, an acceleration electrode, an acceleration power source, a focus lens, means for applying high voltage onto a sample and a correction lens. CONSTITUTION:Two electrodes 17, 18 constituting a correction lens are arranged in front of a sample 7 then lower voltage than the sample voltage is applied across said electrodes to release the field near the sample. Consequently, the ion beam is decelerated gradually to prevent abrupt divergence thus to prevent deteriorated focusing of ion beam to decelerated field. While the diameter of primary ion beam pass port 17a in the electrode 17 is made shorter than that of the electrode 18 to form a conical field near said primary ion beam pass port. Consequently, the primary ion beam diverged through lens action produced by the high voltage applied onto the sample is focused through the conical field onto the sample quite finely.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、荷電粒子を試料上に正確にフォーカスさせる
ことができるイオンマイクロアナライザ等の如き荷電粒
子線装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a charged particle beam device such as an ion microanalyzer that can accurately focus charged particles onto a sample.

[従来の技術] イオンマイクロアナライザ等においては、イオン源から
のイオンを加速し、アインツエル型等の静電レンズによ
って該イオンビームを試料上に細く収束するようにして
いる。該静電レンズに印加される電圧はイオンビームの
加速電圧にリンクしており、該加速電圧を変化させた場
合にもイオンビームが正確に試料に収束されるように構
成している。該試料へのイオンビームの照射に基づいて
該試料から発生した2次イオンは質量分析計に導かれて
分析される。
[Prior Art] In an ion microanalyzer or the like, ions from an ion source are accelerated and the ion beam is narrowly focused onto a sample using an electrostatic lens such as an Einzel type. The voltage applied to the electrostatic lens is linked to the acceleration voltage of the ion beam, and the ion beam is configured to be accurately focused on the sample even when the acceleration voltage is changed. Secondary ions generated from the sample upon irradiation of the sample with the ion beam are guided to a mass spectrometer and analyzed.

[発明が解決しようとする問題点] 通常、該質量分析計の前部には、イオン収集電極が配置
され、該試料からの2次イオンを該分析側内に導くよう
にしているが、該試料の電位は通常接地電位であり、該
試料表面から飛び出ず2次イオンのエネルギは比較的弱
く効率的に該分析計に導くことができない。このことは
イオンマイクロアナライザのみならず、走査電子顕微鏡
においても同様であり、試料への電子線の照射に基づい
て発生する2次電子を効率的に成る方向に収集すること
はなかなか困難である。
[Problems to be Solved by the Invention] Usually, an ion collection electrode is placed at the front of the mass spectrometer to guide secondary ions from the sample into the analysis side. The potential of the sample is usually ground potential, and the energy of secondary ions that do not jump out of the sample surface is relatively weak and cannot be efficiently guided to the analyzer. This is true not only for ion microanalyzers but also for scanning electron microscopes, and it is quite difficult to efficiently collect secondary electrons generated when a sample is irradiated with an electron beam.

このため、該試料に電圧を印加し、該試料から発生する
2次イオン、2次電子等のエネルギを高くし、効率的に
イオ゛ン分析系、イオン検出器あるいは2次電子検出器
にイオン、電子を導くことが考えられる。しかしながら
、試料に電圧を印加するとビームポテンシャル(加速電
圧−試料電圧)が変動し、1次ビームはもはや正確に試
料上でフォーカスされなくなる。
Therefore, by applying a voltage to the sample and increasing the energy of secondary ions, secondary electrons, etc. generated from the sample, ions can be efficiently transferred to the ion analysis system, ion detector, or secondary electron detector. , it is possible to guide electrons. However, applying a voltage to the sample changes the beam potential (acceleration voltage - sample voltage) and the primary beam is no longer accurately focused on the sample.

このため、試料に印加する電圧と荷電粒子線の加速電圧
の差電圧に応じて荷電粒子線の収束レンズを制御し、試
料上に荷電粒子線をフォーカスさせることも行われてい
るが、その場合でも、接地電圧で加速された荷電粒子線
は試料に印加された高電圧によって減速されるため、レ
ンズアクションを受け、収束性が損われてしまう。
For this reason, the charged particle beam is focused on the sample by controlling the converging lens of the charged particle beam according to the voltage difference between the voltage applied to the sample and the accelerating voltage of the charged particle beam. However, since the charged particle beam accelerated by the ground voltage is decelerated by the high voltage applied to the sample, it is subject to lens action and convergence is impaired.

本発明は上述した点に鑑みてなされたもので、試料に電
圧を印加して試料からのイオン、電子のエネルギを高く
してイオン、電子等の収集効率を良くすることを基本と
し、試料に電圧を印加した際にも正確に試料上に1次ビ
ームを正確にフォーカスすることのできる荷電粒子線装
置を提供することを目的としている。
The present invention has been made in view of the above points, and is based on applying a voltage to the sample to increase the energy of ions and electrons from the sample to improve the collection efficiency of ions and electrons. It is an object of the present invention to provide a charged particle beam device that can accurately focus a primary beam onto a sample even when a voltage is applied.

[問題点を解決するための手段] 本発明に基づく荷電粒子線装置は、荷電粒子源と、該荷
電粒子源から発生した荷電粒子を加速するための加速電
極と、該荷電粒子源と加速電極との間に高電圧を印加す
るだめの加速電源と、該加速された荷電粒子線を試料上
に細く収束するための収束レンズと、該試料に高電圧を
印加するための手段と、該収束レンズと該試料との間に
設けられ、該試料への高電圧の印加に基づく荷電粒子線
の収束の乱れを補正するための補正レンズとを備えたこ
とを特徴としている。
[Means for Solving the Problems] A charged particle beam device based on the present invention includes a charged particle source, an accelerating electrode for accelerating charged particles generated from the charged particle source, and the charged particle source and the accelerating electrode. an accelerating power source for applying a high voltage between the two, a converging lens for converging the accelerated charged particle beam onto a sample, a means for applying a high voltage to the sample, and a converging lens for narrowly converging the accelerated charged particle beam onto the sample; The present invention is characterized by comprising a correction lens provided between the lens and the sample for correcting disturbances in convergence of the charged particle beam due to application of high voltage to the sample.

[作用] 荷電粒子線が照射される試料には電圧が印加され、試料
からのイオンあるいは電子のエネルギは高くされてそれ
らの収集効率の向上がはかられる。
[Function] A voltage is applied to the sample to which the charged particle beam is irradiated, and the energy of ions or electrons from the sample is increased to improve their collection efficiency.

該荷電粒子線を収束する収束レンズと試料の間には、補
正レンズが設けられ、この補正レンズに該試料への印加
電圧より低い電圧が印加される。この結果、試料近傍の
電界が緩和され、荷電粒子線は徐々に減速され、試料の
極く近傍で急速に減速されることがないため、1次荷電
粒子線の収束性が高められる。
A correction lens is provided between the converging lens that converges the charged particle beam and the sample, and a voltage lower than the voltage applied to the sample is applied to the correction lens. As a result, the electric field in the vicinity of the sample is relaxed, the charged particle beam is gradually decelerated, and the convergence of the primary charged particle beam is improved because it is not rapidly decelerated in the very vicinity of the sample.

[実施例] 以下本発明の一実施例を添附図面に基づいて詳述する。[Example] An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

添付図面は本発明に基づくイオンマイクロアナライザを
示しており、1はイオン発生エミッタ。
The accompanying drawings show an ion microanalyzer based on the present invention, in which 1 is an ion generating emitter.

2はイオン引出し電極、3は引出されたイオンを加速す
るための接地電位の加速電極であり、該エミッタ1と加
速型tti3との間には、加速電源4から例えば、10
0kVの電圧が印加されている。該加速されたイオンは
収束レンズ5.最終段収束レンズ(対物レンズ)6によ
って、光軸に対し456傾けて配置された分析試料7上
に細く収束される。
2 is an ion extraction electrode; 3 is an acceleration electrode at a ground potential for accelerating the extracted ions; for example, 10
A voltage of 0 kV is applied. The accelerated ions pass through a converging lens 5. The final stage converging lens (objective lens) 6 narrowly converges the light onto the analysis sample 7 arranged at an angle of 456 with respect to the optical axis.

該収束レンズ5.対物レンズ6は共にアインツエル型の
静電レンズであり、該収束レンズ6には収束レンズ電源
8から電圧が印加され、該対物レンズ6には対物レンズ
電+1i9から電圧が印加されている。該試料7へのイ
オンビームの照射に基づいて発生した2次イオンは、イ
オン収集電極10によって質量分析計11に導かれる。
The converging lens5. Both objective lenses 6 are Einzel-type electrostatic lenses, and a voltage is applied to the convergent lens 6 from a convergent lens power supply 8, and a voltage is applied to the objective lens 6 from an objective lens power supply +1i9. Secondary ions generated upon irradiation of the sample 7 with the ion beam are guided to a mass spectrometer 11 by an ion collection electrode 10.

該試料7には高圧電It!12から、例えば30kVの
電圧が印加されており、該試料から発生した2次イオン
は高いエネルギを有することになり、質量分析計の方向
に勢い良く進行する。該加速電極4からの加速電圧に対
応した信号と、高圧電源12からの試#1電圧に対応し
た信号は演算回路13に供給され、該演算回路13によ
ってその差電圧が求められる。
The sample 7 has a high voltage electric It! 12, a voltage of 30 kV, for example, is applied, and the secondary ions generated from the sample have high energy and move vigorously toward the mass spectrometer. The signal corresponding to the accelerating voltage from the accelerating electrode 4 and the signal corresponding to the test #1 voltage from the high-voltage power supply 12 are supplied to an arithmetic circuit 13, and the arithmetic circuit 13 determines the difference voltage between them.

該差電圧は制御回路14に供給されるが、該制御回路1
4は供給される差電圧に応じて収束レンズ電8!8と対
物レンズ雷?1iii9を制御する。尚、試料7上のイ
オンビームの照射、位置は静電偏向板15に印加される
偏向電源16がらの電圧に応じて変えられる。
The differential voltage is supplied to the control circuit 14, but the control circuit 1
4 is a converging lens electric 8!8 and an objective lens lightning depending on the supplied voltage difference? Control 1iii9. Note that the irradiation and position of the ion beam on the sample 7 can be changed according to the voltage from the deflection power source 16 applied to the electrostatic deflection plate 15.

更に、該試料7の周囲には、補正レンズを構成する2枚
の電極17.18が設けられている。該電極17には電
源12から試料7への印加電圧と等しい電圧が印加され
、又、該電極18には該電源12からの電圧を抵抗19
.20によって分割された電圧、例えば、15kVが印
加されている。
Furthermore, two electrodes 17 and 18 constituting a correction lens are provided around the sample 7. A voltage equal to the voltage applied to the sample 7 from the power source 12 is applied to the electrode 17, and the voltage from the power source 12 is applied to the electrode 18 through a resistor 19.
.. A voltage divided by 20, for example 15 kV, is applied.

該電極17.18は光軸Oに沿って荷電粒子線の通過口
17a、18aを有しているが、該通過口17aの径は
、通過口18aの径に比べて小さくされている。更に、
該電極17.18は、質M分析計11に向う2次イオン
の光路に沿って2次イオンの通過口17b、18bを有
しているが、該通過口17bの径は、通過口18bの径
に比べて大きくされている。
The electrodes 17, 18 have passage holes 17a, 18a for the charged particle beam along the optical axis O, and the diameter of the passage holes 17a is smaller than the diameter of the passage hole 18a. Furthermore,
The electrodes 17 and 18 have secondary ion passage ports 17b and 18b along the secondary ion optical path toward the quality M analyzer 11, and the diameter of the passage hole 17b is equal to that of the passage hole 18b. It is larger than the diameter.

上述した如き構成において、エミッタ1から発生し、加
速電圧100kVによって加速されたイオンビームは、
収束レンズ5と対物レンズ6によって収束される。該試
料7には30kVの高電圧が印加されており、該試料へ
のイオンビームの照射に基づいて該試料から発生した2
次イオンは、勢い良く質量分析計11の方向に進行する
ことから、効率良く該分析計内にイオンを導くことがで
きる。
In the configuration as described above, the ion beam generated from the emitter 1 and accelerated by an acceleration voltage of 100 kV is
It is converged by a converging lens 5 and an objective lens 6. A high voltage of 30 kV is applied to the sample 7, and 2
Since the next ions move vigorously toward the mass spectrometer 11, the ions can be efficiently guided into the spectrometer.

ここで、加速電源4からの加速電圧に応じた信号と電源
12からの試料電圧に応じた信号とは、演算回路13に
供給され、両信号の差信号が求められる。該差信号は制
御回路14に供給されるが、該制御回路内には、加速電
圧と試料電圧との間の各差電圧に応じた最適な収束レン
ズ電圧、対物レンズ電圧がテーブルの形で記憶されてお
り、該制御回路は、該供給される差信号に基づいて該チ
ープルから両レンズの電圧信号を読み出し、この電圧信
号に基づいて収束レンズ電源8と対物レンズ電源9を制
tillする。その結果、該収束レンズ5と対物レンズ
6には、イオンビームの加速電圧と試料7に印加される
高電圧の値に応じた、イオンビームを該試料上に正確に
フォーカスさせ得る最適な電圧が印加される。
Here, the signal corresponding to the accelerating voltage from the accelerating power supply 4 and the signal corresponding to the sample voltage from the power supply 12 are supplied to an arithmetic circuit 13, and a difference signal between the two signals is obtained. The difference signal is supplied to the control circuit 14, in which the optimum converging lens voltage and objective lens voltage corresponding to each difference voltage between the accelerating voltage and the sample voltage are stored in the form of a table. The control circuit reads voltage signals of both lenses from the temple based on the supplied difference signal, and controls the converging lens power source 8 and the objective lens power source 9 until based on this voltage signal. As a result, the converging lens 5 and the objective lens 6 are provided with an optimal voltage that can accurately focus the ion beam onto the sample, depending on the acceleration voltage of the ion beam and the high voltage applied to the sample 7. applied.

さて、収束レンズ5と対物レンズ6に最適な電圧が印加
されても、荷電粒子線は高電圧が印加された試料に接近
する従って急速に減速され、この減速電場にJ:るレン
ズアクションによって収束性が損われることは前に述べ
た。そのため、この実施例では、試料7の前面に補正レ
ンズを構成する2枚の電極17.18を設け、該電極に
試料電圧より低い電圧を印加することによって試料近傍
の電界を緩和し、イオンビームを徐々に減速して急激な
発散を防止し、減速電場によるイオンビームの収束性の
悪化を防止している。更に、該電極17の1次イオンビ
ーム通過ロ17aの径は電極18の1次イオンビーム通
過口18aの径に比べて小さくされており、この1次イ
オンビーム通過口の近傍には、図中点線で示す如きすり
ばち状の電界が形成される。この結果、該1次イオンビ
ームは、試料に印加された高電圧によってレンズアクシ
ョンを受けて発散する分、該すりばち状電界によって収
束され、該イオンビームは極めて細く試料上にフォーカ
スされる。更に、該2枚の電極17.18の2次イオン
通過口17b、18bの近傍には、該通過口17bの径
が通過口18bの径より大きいために、図中点線で示す
すりばち状電界が形成されることから、試料7から発生
した2次イオンは該電界によって収束され、効率良く質
量分析計11に導かれる。
Now, even if an optimal voltage is applied to the converging lens 5 and the objective lens 6, the charged particle beam is rapidly decelerated as it approaches the sample to which a high voltage is applied, and is converged by the lens action caused by this decelerating electric field. I mentioned earlier that sexuality is impaired. Therefore, in this embodiment, two electrodes 17 and 18 constituting a correction lens are provided in front of the sample 7, and by applying a voltage lower than the sample voltage to the electrodes, the electric field near the sample is relaxed, and the ion beam is The ion beam is gradually decelerated to prevent sudden divergence, thereby preventing deterioration of the convergence of the ion beam due to the deceleration electric field. Further, the diameter of the primary ion beam passage hole 17a of the electrode 17 is made smaller than the diameter of the primary ion beam passage hole 18a of the electrode 18, and in the vicinity of this primary ion beam passage hole there is a A cone-shaped electric field is formed as shown by the dotted line. As a result, the primary ion beam is diverged by the lens action due to the high voltage applied to the sample, and is focused by the cone-like electric field, so that the ion beam is focused very narrowly onto the sample. Furthermore, near the secondary ion passage ports 17b and 18b of the two electrodes 17 and 18, a cone-shaped electric field is generated as shown by the dotted line in the figure because the diameter of the passage hole 17b is larger than the diameter of the passage hole 18b. Because of this formation, secondary ions generated from the sample 7 are focused by the electric field and efficiently guided to the mass spectrometer 11.

尚、上述した補正レンズを構成する電極は2枚である必
要はなく、1枚あるいは3枚以上であっても良い。又、
各電極に印加する電圧値は、上述した値に限定されず、
加速電圧や試料との間の距離等に応じて任意に変えても
良く、むしろ、イオンビームを最適にフォーカスさせる
ために、該電圧値を調整し得るように構成することは望
ましい。
Note that the number of electrodes constituting the above-mentioned correction lens does not need to be two, and may be one or three or more. or,
The voltage value applied to each electrode is not limited to the above values,
It may be arbitrarily changed depending on the accelerating voltage, the distance to the sample, etc., but it is preferable to configure the voltage value so that it can be adjusted in order to optimally focus the ion beam.

更に、補正レンズの形状は図示の形状に限定されない。Furthermore, the shape of the correction lens is not limited to the illustrated shape.

例えば、2次イオンの取出し方向に、2次イオン通過口
を有した電極17.18を設けることは必ずしも必要で
はなく、2次イオンは試料に印加した電圧のみ、あるい
は収集電極等の補助的手段とによって分析計あるいは検
出器に導くようにしても良い。
For example, it is not necessarily necessary to provide an electrode 17, 18 with a secondary ion passage port in the direction in which the secondary ions are taken out, and the secondary ions can be collected only by the voltage applied to the sample, or by auxiliary means such as a collecting electrode. It may also be guided to an analyzer or detector by

このように、上述した実施例では、試料への高電圧の印
加にもかかわらず、試料へ正確にイオンビームをフA−
カスさせることができ、試料の微細部分の分析を行うこ
とができる。尚、本発明は上述し実施例に限定されるこ
となく幾多の変形が可能である。例えば、イオンを質量
分析計に導く場合を例に本発明を説明したが、2次イオ
ンをマイクロチャンネルプレートによって検出すると共
に、試料上のイオンビームの照射位置を走査し、走査イ
オン像を表示する装置に本発明を適用することができる
。又、試料にイオンを照射し、試料からの2次電子を検
出して2次電子像を表示する装置にも本発明を適用する
ことができるが、その場合、試料へは負の高電圧が印加
される。更に、走査電子顕微鏡等の電子線を電磁レンズ
によって収束するタイプの荷電粒子線装置に本発明を適
用しても良い。更に又、本発明は、単に2次イオンや2
次電子の収集効率を向上させる目的で試料に電圧を印加
する場合にのみ適用されるものではなく、各種電圧を印
加させた状態での試料の観察。
In this way, in the embodiment described above, the ion beam can be accurately focused on the sample despite the application of a high voltage to the sample.
This allows analysis of minute parts of the sample. Note that the present invention is not limited to the embodiments described above, and can be modified in many ways. For example, the present invention has been explained using a case in which ions are guided to a mass spectrometer, but secondary ions are detected by a microchannel plate, and the irradiation position of the ion beam on the sample is scanned to display a scanned ion image. The present invention can be applied to devices. The present invention can also be applied to a device that irradiates a sample with ions, detects secondary electrons from the sample, and displays a secondary electron image, but in that case, a high negative voltage is applied to the sample. applied. Furthermore, the present invention may be applied to a type of charged particle beam device such as a scanning electron microscope in which an electron beam is focused by an electromagnetic lens. Furthermore, the present invention simply uses secondary ions and secondary ions.
It is not only applied when voltage is applied to the sample for the purpose of improving the collection efficiency of secondary electrons, but also observation of the sample with various voltages applied.

分析を行うために試料に電圧を印加する場合にも本発明
を適用することができる。
The present invention can also be applied to the case where a voltage is applied to a sample for analysis.

[効果] 以上詳述した如く、本発明によれば、試料への高電圧の
印加にもかかわらず、正確に試料上に荷電粒子線をフォ
ーカスさせることができる。又、2次荷電粒子線を特定
の方向に導く事が出来る。
[Effects] As described in detail above, according to the present invention, a charged particle beam can be accurately focused on a sample despite the application of a high voltage to the sample. Furthermore, the secondary charged particle beam can be guided in a specific direction.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の一実施例であるイオンマイクロアナ
ライザを示す図である。 1・・・イオン発生エミッタ 2・・・イオン引出し電極 3・・・加速電極    4・・・加速電源5・・・収
束レンズ   6・・・対物レンズ7・・・試料 8・・・収束レンズ電源 9・・・対物レンズ電源 10・・・イオン収集電極 11・・・質量分析計  12・・・高電圧電源13・
・・演算回路   14・・・制御回路15・・・静電
偏向板  16・・・偏向電源17、’18・・・電極
The accompanying drawing is a diagram showing an ion microanalyzer that is an embodiment of the present invention. 1... Ion generation emitter 2... Ion extraction electrode 3... Accelerating electrode 4... Acceleration power source 5... Converging lens 6... Objective lens 7... Sample 8... Converging lens power source 9...Objective lens power supply 10...Ion collection electrode 11...Mass spectrometer 12...High voltage power supply 13.
... Arithmetic circuit 14 ... Control circuit 15 ... Electrostatic deflection plate 16 ... Deflection power supply 17, '18 ... Electrode

Claims (4)

【特許請求の範囲】[Claims] (1)荷電粒子源と、該荷電粒子源から発生した荷電粒
子を加速するための加速電極と、該荷電粒子源と加速電
極との間に高電圧を印加するための加速電源と、該加速
された荷電粒子線を試料上に細く収束するための収束レ
ンズと、該試料に高電圧を印加するための手段と、該収
束レンズと該試料との間に設けられ、該試料への高電圧
の印加に基づく荷電粒子線の収束の乱れを補正するため
の補正レンズとを備えた荷電粒子線装置。
(1) A charged particle source, an acceleration electrode for accelerating charged particles generated from the charged particle source, an acceleration power supply for applying a high voltage between the charged particle source and the acceleration electrode, and the acceleration a converging lens for finely converging the charged particle beam onto the sample; a means for applying a high voltage to the sample; and a means provided between the converging lens and the sample to apply the high voltage to the sample. A charged particle beam device comprising a correction lens for correcting disturbance in convergence of a charged particle beam due to application of the charged particle beam.
(2)該補正レンズは、荷電粒子線通過口を有した少な
くとも2枚の電極より成り、収束レンズ側の電極の荷電
粒子線通過口の大きさは、試料側のそれに比べて大きく
されている特許請求の範囲第1項記載の荷電粒子線装置
(2) The correction lens consists of at least two electrodes each having a charged particle beam passage opening, and the size of the charged particle beam passage opening of the electrode on the converging lens side is larger than that on the sample side. A charged particle beam device according to claim 1.
(3)該補正レンズは、該試料から発生した2次荷電粒
子線の収束作用も兼ねている特許請求の範囲第1〜2項
記載の荷電粒子線装置。
(3) The charged particle beam device according to any one of claims 1 to 2, wherein the correction lens also functions to converge the secondary charged particle beam generated from the sample.
(4)該補正レンズは、2次荷電粒子線通過口を有した
少なくとも2枚の電極より成り、試料側の電極の2次荷
電粒子線通過口の大きさは、その外側の電極の2次荷電
粒子線通過口の大きさに比べて大きくされている特許請
求の範囲第3項記載の荷電粒子線装置。
(4) The correction lens is composed of at least two electrodes each having a secondary charged particle beam passage opening, and the size of the secondary charged particle beam passage opening of the electrode on the sample side is the same as that of the secondary charged particle beam passage of the outer electrode. The charged particle beam device according to claim 3, which is larger than the size of the charged particle beam passage opening.
JP60064852A 1985-03-28 1985-03-28 Charged particle beam device Pending JPS61224254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60064852A JPS61224254A (en) 1985-03-28 1985-03-28 Charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60064852A JPS61224254A (en) 1985-03-28 1985-03-28 Charged particle beam device

Publications (1)

Publication Number Publication Date
JPS61224254A true JPS61224254A (en) 1986-10-04

Family

ID=13270136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60064852A Pending JPS61224254A (en) 1985-03-28 1985-03-28 Charged particle beam device

Country Status (1)

Country Link
JP (1) JPS61224254A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216257A (en) * 1987-03-04 1988-09-08 Jeol Ltd Ion beam device
JPH0218848A (en) * 1988-07-06 1990-01-23 Jeol Ltd Charged particle beam device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216257A (en) * 1987-03-04 1988-09-08 Jeol Ltd Ion beam device
JPH0582695B2 (en) * 1987-03-04 1993-11-22 Nippon Electron Optics Lab
JPH0218848A (en) * 1988-07-06 1990-01-23 Jeol Ltd Charged particle beam device

Similar Documents

Publication Publication Date Title
US11562881B2 (en) Charged particle beam system
US6043491A (en) Scanning electron microscope
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
JP2000133194A5 (en)
JP2810797B2 (en) Reflection electron microscope
US9443696B2 (en) Electron beam imaging with dual Wien-filter monochromator
US7135677B2 (en) Beam guiding arrangement, imaging method, electron microscopy system and electron lithography system
JPH02142045A (en) Scan type electron microscope and similar device thereof
US7919749B2 (en) Energy filter for cold field emission electron beam apparatus
US4835399A (en) Charged particle beam apparatus
JPH1064464A (en) Detection element objective lens device
US4922097A (en) Potential measurement device
JP2008198471A (en) Charged particle beam device
US20030006377A1 (en) Tandem acceleration electrostatic lens
US7394069B1 (en) Large-field scanning of charged particles
JP2000228162A (en) Electron beam device
JPH08138611A (en) Charged particle beam device
JPS61224254A (en) Charged particle beam device
JP3649008B2 (en) Electron beam equipment
US6407388B1 (en) Corpuscular beam device
WO2016121226A1 (en) Charged particle beam device and scanning electron microscope
JPS61114453A (en) Charged particle ray device
JPH0773841A (en) Scanning electron microscope and secondary electron sensing system
JPH0864163A (en) Charged particle beam device
JP2001167725A (en) Spectrometer object lens of particle beam measuring apparatus