JPS61223524A - Load converter - Google Patents

Load converter

Info

Publication number
JPS61223524A
JPS61223524A JP6549885A JP6549885A JPS61223524A JP S61223524 A JPS61223524 A JP S61223524A JP 6549885 A JP6549885 A JP 6549885A JP 6549885 A JP6549885 A JP 6549885A JP S61223524 A JPS61223524 A JP S61223524A
Authority
JP
Japan
Prior art keywords
thin film
load
strain
substance
load transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6549885A
Other languages
Japanese (ja)
Other versions
JP2506064B2 (en
Inventor
Masaaki Matsuno
松野 正明
Kazufumi Naito
和文 内藤
Michito Utsunomiya
宇都宮 道人
Toshinori Takagi
俊宜 高木
Hiroshi Takaoka
寛 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishida Scales Manufacturing Co Ltd
Original Assignee
Ishida Scales Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishida Scales Manufacturing Co Ltd filed Critical Ishida Scales Manufacturing Co Ltd
Priority to JP60065498A priority Critical patent/JP2506064B2/en
Publication of JPS61223524A publication Critical patent/JPS61223524A/en
Application granted granted Critical
Publication of JP2506064B2 publication Critical patent/JP2506064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01L1/2243Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being parallelogram-shaped

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain a load converter with a better stability, a higher gauge rate, a better linearity and the like, by controlling physical properties by a ionization treatment to form material into a thin film on a substrate as strain gauge. CONSTITUTION:A thin film of a Cu-Ni intermetallic compound is formed at strain parts 6 and 6 of a strain gauge body 1 which is produced, for example, by ionization treatment of a strain gauge material employing a cluster ion beam method ICB method. The thin film thus obtained further undergoes a photolithography or the like to form a strain gauge in a specified shape. Thus, single or multiple materials can be controlled freely in the physical properties such as crystalizing property, orientation, composition ratio by ionization treatment thereof thereby producing a thin film with a high gauge rate by controlling at least one of the physical properties.

Description

【発明の詳細な説明】 【産業上の利用分野〕 この発明は基材上に形成した薄膜をひずみゲージとして
用い、該基材に負荷された力、荷重等に応じて基材に生
じるひずみを上記薄膜の電気抵抗変化の形で検出するこ
とによって力、荷重等を検出するようにした荷重変換器
に関するものである。
Detailed Description of the Invention [Field of Industrial Application] This invention uses a thin film formed on a base material as a strain gauge to measure the strain generated on the base material in response to the force, load, etc. applied to the base material. The present invention relates to a load transducer that detects force, load, etc. by detecting changes in electrical resistance of the thin film.

〔従来の技術〕[Conventional technology]

従来の荷重変換器に利用されているひずみゲージは、バ
ルク形の箔ゲージが一般的であり、これら従来の箔ゲー
ジは、Cu−Ni、Ni−Cr等の金属間化合物で構成
されているものが大部分である。
Strain gauges used in conventional load transducers are generally bulk-type foil gauges, and these conventional foil gauges are made of intermetallic compounds such as Cu-Ni and Ni-Cr. is the majority.

そして従来のこの種ひずみゲージは抵抗温度特性に対す
る安定性は良いもののゲージ率が低い(Cu−Ni合金
で約2.0〜2.1)という欠点がある。
Although conventional strain gauges of this type have good stability with respect to resistance-temperature characteristics, they have the disadvantage of a low gauge factor (approximately 2.0 to 2.1 for Cu--Ni alloys).

また、接着形ひずみゲージの場合、使用温度条−件や湿
度条件等による接着剤の選定、接着力の経時変化および
ひずみゲージに対する拘束力、つまりひずみゲージの感
度に及ぼす影響等、種々の問題を検討しなければならな
いと言う欠点がある。
In addition, in the case of adhesive strain gauges, there are various issues such as the selection of adhesive depending on the operating temperature and humidity conditions, changes in adhesive strength over time, and the effect of binding force on the strain gauge, that is, the sensitivity of the strain gauge. There are drawbacks that must be considered.

一方、ゲージ率の高いものとして半導体ひずみゲージが
荷重変換器に利用されつつあるが、抵抗の温度特性やひ
ずみに対する抵抗値変化の直線性等、安定性に問題があ
ると言う欠点がある。
On the other hand, semiconductor strain gauges with a high gauge factor are being used in load transducers, but they have drawbacks such as stability problems such as temperature characteristics of resistance and linearity of resistance change with respect to strain.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、前記従来のひずみゲージの欠点であるゲー
ジ率の低さ、抵抗温度特性及び抵抗値変化の直線性等の
問題点を解決することを技術的課題としたもので、安定
性が良くてゲージ率が高(、直線性等も良いひずみゲー
ジを用いた荷重変換器を得ることを目的としたものであ
る。
This invention aims to solve the problems of the conventional strain gauges, such as low gauge factor, resistance temperature characteristics, and linearity of resistance change. The purpose is to obtain a load transducer using a strain gauge with a high gauge factor (and good linearity, etc.).

〔発明の構成〕[Structure of the invention]

この発明は、ひずみゲージの材料であるCu、Ni+−
Cr等の物質をひとつだけイオン化処理により、或いは
複数の物質の内、少なく共そのひとつをイオン化処理に
よりその結晶性、配向性及び組成比等の物性の内、少な
く共ひとつを制御して起歪体としての基材上に上記物質
のひとつまたは複数の物質を薄膜形成し、この薄膜をひ
ずみ検知部として更には論理回路部として用いることに
より性能の良い荷重変換器を得るように構成したもので
ある〔実施例〕 この発明の一実施例を図面に基づいて説明する、第1図
は、電子秤の荷重変換器として一般に用いられているロ
ードセルを示したもので、(l)は起歪体、(2)及び
(3)は各々固定剛体部及び可動剛体部であって、両割
体部(2)、(3)の各上下端部は互いに長さが等しく
且つ平行な上ビーム(4)及び下ビーム(5)でもって
連結されている。上ビーム(4)及び下ビーム(5)に
は各々2個所ずつ薄肉部のひずみ部(6)、(6)及び
(7)、(7)が設けられ、このひずみ部(6)、(6
)に各々ひずみ検知部としてのひずみゲージ(8)、(
8)及び(9)、(9)が設けられている。
This invention is based on Cu, Ni+-, which is the material of the strain gauge.
By ionizing only one substance such as Cr, or by ionizing at least one of multiple substances, at least one of its physical properties such as crystallinity, orientation, and composition ratio can be controlled to generate strain. A load transducer with good performance is obtained by forming a thin film of one or more of the above substances on a base material as a body and using this thin film as a strain detection section and furthermore as a logic circuit section. [Embodiment] An embodiment of the present invention will be explained based on the drawings. Fig. 1 shows a load cell that is generally used as a load converter for electronic scales, and (l) is a strain-generating body. , (2) and (3) are a fixed rigid body part and a movable rigid body part, respectively, and the upper and lower ends of both split body parts (2) and (3) are parallel to each other and have the same length as the upper beam (4). ) and a lower beam (5). The upper beam (4) and the lower beam (5) are each provided with strained portions (6), (6) and (7), (7) at two thin-walled portions.
), strain gauges (8) and (
8), (9), and (9) are provided.

これらのひずみゲージがホイーストンブリフジに接続さ
れて可動剛体部(3)に負荷された荷重Pによる起歪体
(1)のひずみを電気抵抗値の変化により検出して荷重
を検出するようにされている。
These strain gauges are connected to the Wheatstone Bridge to detect the strain of the strain body (1) due to the load P applied to the movable rigid body part (3) by detecting the change in electrical resistance value, thereby detecting the load. has been done.

ひずみゲージとしては、前記のように一般に接着型のC
u−Ni合金が用いられているが、この発明、  では
、例えばクラスタ・イオン・ビーム法(以下ICB法と
称す)でもってひずみゲージ材料をイオン化処理して起
歪体(1)のひずみ部(6)、(6)に例えばCu−N
i金属間化合物の薄膜を形成し、この薄膜を更にフォト
リソグラフィー等でもって所定形状のひずみゲージを形
成させるようにしたものである。
As a strain gauge, as mentioned above, adhesive type C is generally used.
Although a u-Ni alloy is used, in the present invention, the strain gauge material is ionized by, for example, a cluster ion beam method (hereinafter referred to as ICB method) to form the strained portion ( 6), (6), for example, Cu-N
A thin film of an intermetallic compound is formed, and a strain gauge of a predetermined shape is formed on this thin film by photolithography or the like.

ICB法とは、物質を密閉型るつぼ内に入れ、加熱して
噴射ノズルから高真空中にその蒸気を噴出させ、断熱膨
張によってクラスター(塊伏原子集団)を形成させそれ
をイオン化して負電圧を印加して加速し、基材に射突さ
せ、マイグレーシラン効果でもって基材上に薄膜を形成
させる方法であつて、この方法と装置の一例は高木らに
よってProc、 2nd Int、 Conf、 o
n ton 5ources。
In the ICB method, a substance is placed in a closed crucible, heated, and its vapor is ejected into a high vacuum from an injection nozzle. Through adiabatic expansion, clusters (agglomerated atoms) are formed, which are then ionized and applied to a negative voltage. This is a method in which a thin film is formed on a substrate by applying and accelerating it, causing it to collide with a substrate, and having a migration silane effect, and an example of this method and apparatus is described by Takagi et al. in Proc, 2nd Int, Conf, o.
n ton 5 sources.

(Viena、 Au5tria、 1972) 、7
90頁に発表されているので詳細な方法と装置の説明は
省略する。
(Vienna, Au5tria, 1972), 7
Since it is published on page 90, a detailed explanation of the method and apparatus will be omitted.

以下、この発明の一実施例をひずみゲージを形成する物
質としてCuとNiを用い、これら物質の内、いずれか
一方または両方を上記ICB法によりイオン化させ、絶
縁性を有する基材或いは絶縁被膜を施した基材にCu−
Ni金属間化合物の薄膜を形成させ、この薄膜をひずみ
ゲージとして、更には論理回路として適用した荷重変換
器について説明する。
Hereinafter, an embodiment of the present invention will be described in which Cu and Ni are used as materials for forming a strain gauge, and one or both of these materials is ionized by the above-mentioned ICB method to form an insulating base material or an insulating coating. Cu-
A load transducer in which a thin film of Ni intermetallic compound is formed and this thin film is used as a strain gauge and further as a logic circuit will be described.

最初、CuおよびNiを各々のるつぼに入れてCuを1
530℃〜1580℃、Niを2180℃に夫々加熱し
、そして各ノズルから高真空中に噴射させてCuクラス
タ及びNiクラスタを形成させる。そして、両クラスタ
の内いずれか一方または両方のクラスタをイオン化電子
電流1e−0〜300mAでイオン化し、更に加速電圧
Va= 0〜5kVで加速した上、基材の同一面上部分
に両クラスタを所定時間だけ射突させる、そして射突し
たCuクラスタ及びNiクラスタはマイグレーシラン効
果により薄膜のGo−Ni金属間化合物に形成される。
First, put Cu and Ni in each crucible and add 1 part of Cu.
They are heated to 530° C. to 1580° C. and Ni to 2180° C. and injected into a high vacuum from each nozzle to form Cu clusters and Ni clusters. Then, one or both clusters were ionized with an ionizing electron current of 1e-0 to 300 mA, further accelerated with an acceleration voltage Va of 0 to 5 kV, and both clusters were placed on the same surface of the base material. The impact is made for a predetermined period of time, and the impact Cu clusters and Ni clusters are formed into a thin film of Go--Ni intermetallic compound due to the migration silane effect.

このようにして基材に形成した薄膜を次にフォトリソグ
ラフィー等でもって所定形状のひずみゲージに形成して
荷重変換器を得る。
The thin film thus formed on the base material is then formed into a strain gauge of a predetermined shape by photolithography or the like to obtain a load transducer.

上記ICB法によりカバーグラス上に形成した幅1.5
園麺、長さ30m+−の薄膜のひずみに対する電気抵抗
変化率の試験結果を第2図乃至第5図に示す。
Width 1.5 formed on the cover glass by the above ICB method
The test results of the rate of change in electrical resistance with respect to strain of a thin film of 30 m+- length of Sonomen are shown in FIGS. 2 to 5.

第2図はCuクラスタのみイオン化しくイオン化電子電
流1e= 300mA ) 、加速電圧Va= OkV
で作製したCu−Ni薄膜のひずみ一電気抵抗効果を示
したもので、この場合、従来のバルクのCu−Niや中
性クラスタで作製したCu−Ni vIt膜よりもゲー
ジ率が大きい、また、第3図はCuクラスタのみイオン
化しく Ie= 300a+A ) 、加速電圧Vaを
OkVから5kVまで変えて作製したCu−Ni薄膜の
ひずみ一電気抵抗効果を示したもので、加速電圧Va=
 OkVでゲージ率は最大で約25となる。さらに加速
電圧を増していくと、ゲージ率は低下する。
Figure 2 shows that only Cu clusters are ionized, ionization electron current 1e = 300mA), acceleration voltage Va = OkV
This figure shows the strain-electrical resistance effect of the Cu-Ni thin film fabricated by the method. Figure 3 shows the strain-electrical resistance effect of a Cu-Ni thin film prepared by changing the accelerating voltage Va from OkV to 5 kV, where only the Cu clusters are ionized (Ie=300a+A), and the accelerating voltage Va=
At OkV, the maximum gauge factor is about 25. As the accelerating voltage is further increased, the gauge factor decreases.

第4図はNiクラスタのみイオン化しく Ie= 30
抛A)、加速電圧VaをOkVから5kVまで変えて作
製したCu−Ni薄膜のびずみ一電気抵抗効果を示した
もので、この場合、加速電圧Vaに対するゲージ率の変
化はVa= 1kVの時で約12である。
In Figure 4, only Ni clusters are ionized, Ie = 30
抛A) shows the strain-electrical resistance effect of a Cu-Ni thin film prepared by changing the acceleration voltage Va from OkV to 5kV. In this case, the change in gauge factor with respect to the acceleration voltage Va is when Va = 1kV. It is about 12.

尚、第3図及び第4図のCu−Niの組成比はいずれも
約80:20である。
Incidentally, the Cu--Ni composition ratio in both FIGS. 3 and 4 is about 80:20.

更に第5図はCuクラスタのみイオン化しく Ie=3
00mA ) 、Va= 5kVで作製したCu−Ni
薄膜のひずみ一電気抵抗効果を組成をパラメータとして
示したもので、Niの量が少なくなるほどゲージ率が大
きくなっている。
Furthermore, in Figure 5, only Cu clusters are ionized, Ie=3
00mA), Cu-Ni fabricated at Va=5kV
This graph shows the strain-electrical resistance effect of a thin film using the composition as a parameter, and the gauge factor increases as the amount of Ni decreases.

一方、第6図及び第7図は、ガラス基材上にICB法に
より作製したCu−Ni薄膜の結晶性をX線反射回折測
定によって調べたX線回折パターンの一例であって、い
ずれもイオン化電子電流 Iew300d 、加速電圧
Va= OkV及び5kV s Cu−Nt組成比が約
80:20である。
On the other hand, FIGS. 6 and 7 are examples of X-ray diffraction patterns obtained by examining the crystallinity of a Cu-Ni thin film produced by the ICB method on a glass substrate by X-ray reflection diffraction measurement. Electron current Iew300d, accelerating voltage Va=OkV and 5kVs Cu-Nt composition ratio is about 80:20.

そして第6図はCuクラスタのみイオン化した場合、第
7図はNiクラスタをイオン化した場合を示しており、
各々 2θ−43,50”付近に回折ピークを持ち(1
11)面が優先配向し、更に加速電圧Vaの増加により
回折ピーク強度が増大している。
Figure 6 shows the case where only Cu clusters are ionized, and Figure 7 shows the case where Ni clusters are ionized.
Each has a diffraction peak near 2θ-43,50” (1
11) The plane is preferentially oriented, and the diffraction peak intensity increases as the accelerating voltage Va increases.

このことはイオン化することによって結晶性や配向性を
制御出来ることを示している。
This shows that crystallinity and orientation can be controlled by ionization.

以上のように、ICB法で作製したCu−Ni薄膜は、
最大25位のゲージ率をもつが、イオン化電子電流の大
きさ、加速電圧の大きさ、いずれのクラスタをイオン化
するか等により、薄膜の結晶性、配向性及び組成を自由
に制御して任意のゲージ率を有する薄膜をイオン化処理
によって得ることができ、基材としての起歪体に所定の
ゲージ率を有する薄膜を形成させ、更にこれをフォトリ
ソグラフィー等でもってひずみゲージを形成させること
によってゲージ率が高く、直線性等の性能の良い荷重変
換器を得ることができる。
As mentioned above, the Cu-Ni thin film produced by the ICB method is
Although it has a maximum gauge factor of about 25, the crystallinity, orientation, and composition of the thin film can be freely controlled by adjusting the magnitude of the ionizing electron current, the magnitude of the accelerating voltage, which clusters are ionized, etc. A thin film having a predetermined gauge factor can be obtained by ionization treatment, and the gauge factor can be obtained by forming a thin film having a predetermined gauge factor on a strain-generating body as a base material, and then forming a strain gauge using photolithography or the like. It is possible to obtain a load transducer with high performance such as high linearity.

尚、上記実施例ではICB法によりCuクラスタまたは
Niクラスタのいずれかをイオン化処理してCu−Ni
 ii膜を形成させたが、両りラスタ共イオン化処理し
ても良いし、ICB法以外の方法、例えばイオンビーム
スパッタ法でイオン化処理して薄膜を形成させても良い
In the above example, either the Cu cluster or the Ni cluster is ionized by the ICB method to form a Cu-Ni cluster.
ii film was formed, but both rasters may be subjected to ionization treatment, or a thin film may be formed by ionization treatment by a method other than the ICB method, for example, an ion beam sputtering method.

また、Cu及びNi以外にNi及びCr’を用いたり、
アモルファスシリコン等を用いて薄膜を形成させても良
い。
In addition, Ni and Cr' may be used in addition to Cu and Ni,
A thin film may be formed using amorphous silicon or the like.

更に、薄膜を形成させる物質は上記のように二種類以外
に一種類でも良く、また三種類以上でも良い。
Furthermore, the number of substances forming the thin film may be one type in addition to the two types described above, or three or more types may be used.

また、薄膜は一層のみならず複層でもよく以下これにつ
いて説明する。
Further, the thin film may be not only a single layer but also a multilayer, which will be explained below.

第8図は基材としての金属製起歪体(1)に、絶縁層(
10)を介して一層の薄膜(11)を形成させた例であ
って、この薄膜(11)は単一物質の場合、イオン化処
理により形成させる。また複数の物質で形成させる場合
は、少なく共ひとつの物質をイオン化処理する。そして
この薄膜(11)を例えばフォトリソグラフィー等でも
ってひずみゲージを形成させてひずみ検知部(12)を
構成する。
Figure 8 shows a metal strain body (1) as a base material, an insulating layer (
This is an example in which a single layer of thin film (11) is formed through a thin film (10), and if this thin film (11) is made of a single substance, it is formed by ionization treatment. Further, in the case of forming a plurality of substances, at least one substance is ionized. Then, a strain gauge is formed from this thin film (11) by, for example, photolithography, thereby configuring a strain sensing section (12).

また第9図に示すようにひずみ検知部(12)と論理回
路部(13)とを並設した一層の薄膜を形成することも
可能である。
Furthermore, as shown in FIG. 9, it is also possible to form a single layer thin film in which the strain detection section (12) and the logic circuit section (13) are arranged side by side.

この場合、各々を同種または異種の単一物質をイオン化
処理により形成してもよいし、或いは複数の物質の内、
少なく共ひとつの物質をイオン化処理して同−又は異種
の物質の薄膜を形成しても良い。
In this case, each may be formed by ionizing a single substance of the same or different types, or one of a plurality of substances,
At least one substance may be ionized to form a thin film of the same or different substances.

更に、ひずみ検知部(12)及び論理回路部(13)の
一方を単一物質により他方を複数の物質により、各々イ
オン化処理によつて薄膜を形成させることもできる。
Furthermore, it is also possible to form a thin film in one of the strain sensing section (12) and the logic circuit section (13) by using a single material and the other by using a plurality of materials through ionization treatment.

一方、薄膜を複層に形成することも可能であって、例え
ば二層にする場合は第10図に示すように、最初にひず
み検知部(12)を構成するひずみ検知層を形成し、フ
ォトリソグラフィー等でもってひずみゲージを形成した
後、絶縁層(lo)を介して論理回路部(13)を構成
する論理回路層を形成し、同様にフォトリソグラフィー
等でもって論理回路を形成する。
On the other hand, it is also possible to form a thin film in multiple layers. For example, in the case of two layers, as shown in FIG. After forming a strain gauge by lithography or the like, a logic circuit layer constituting a logic circuit section (13) is formed via an insulating layer (lo), and a logic circuit is similarly formed by photolithography or the like.

この場合に於いても第9図に示した実施例と同、様に、
ひずみ検知層及び論理回路層は各々同−又は異種で且つ
単−物質又は複数の物質を任意に選択してイオン化処理
により形成することができる。
In this case, similarly to the embodiment shown in FIG.
The strain sensing layer and the logic circuit layer can be formed of the same or different types of materials, and can be formed by arbitrarily selecting a single material or a plurality of materials and performing an ionization process.

また、最初に論理回路部(13)を構成する論理回路層
を形成し、次にひずみ検知部(12)を構成するひずみ
検知層を形成することもできる。
Alternatively, the logic circuit layer constituting the logic circuit section (13) can be formed first, and then the strain detection layer constituting the strain detection section (12) can be formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、単一または、
複数の物質をイオン化処理によってその結晶性、配向性
及び組成比等の物性を自由に制御でき、従ってその物性
の内、少なく共ひとつを制御することによって高いゲー
ジ率を有する薄膜が得られ、この薄膜をひずみ検知部と
して用いることによって、バルク形のひずみゲージに比
べてゲージ率が格段に高く、また、半導体ひずみゲージ
に比べて直線性が良い等の性能の良い荷重変換器が得ら
れる。
As explained above, according to the present invention, a single or
By ionizing multiple substances, it is possible to freely control their physical properties such as crystallinity, orientation, and composition ratio.Thus, by controlling at least one of these physical properties, a thin film with a high gauge factor can be obtained. By using a thin film as a strain sensing section, a load transducer with good performance such as a much higher gauge factor than a bulk type strain gauge and better linearity than a semiconductor strain gauge can be obtained.

また、イオン化処理条件を種々選択し、或いは複数の物
質の内、どの物質をイオン化処理するかにより種々のゲ
ージ率を有し、且つ直線性等、性能の良い荷重変換器が
得られる。
Further, by selecting various ionization processing conditions or by selecting which substance out of a plurality of substances is ionized, load transducers with various gauge factors and good performance such as linearity can be obtained.

また、イオン化処理によって直接、起歪体としての基材
上に薄膜を作製し、これをひずみゲージとして用いるか
ら従来の接着形ひずみゲージのような接着剤は不要であ
り、正確にひずみがひずみゲージに伝達されると共に使
用温度、湿度等の影響をほとんど受けない性能の良い荷
重変換器が得られる。
In addition, since a thin film is created directly on the base material as a strain-generating body by ionization treatment and used as a strain gauge, there is no need for an adhesive like in conventional adhesive strain gauges, and the strain can be accurately measured. This results in a load transducer with good performance that is almost unaffected by operating temperature, humidity, etc.

更にまた、ひずみ検知部や論理回路部等をイオン化処理
によって作製した薄膜にて一層に並設し或いは複層に設
けることができ、誤配線が皆無で且つひずみ検出回路が
コンパクトな荷重変換器を得ることができ、総じてひず
み検出精度が高く且つ安定性の高い荷重変換器が得られ
る等、諸種の多大な効果が得られる。
Furthermore, the strain detection section, logic circuit section, etc. can be arranged in a single layer or in multiple layers using thin films made by ionization processing, and a load transducer with no wiring errors and a compact strain detection circuit can be created. In general, various great effects can be obtained, such as a load transducer with high strain detection accuracy and high stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子秤に用いられる荷重変換器の一例の斜視図
、第2図乃至第7図は、この発明においてICB法によ
りイオン化処理して作製したCu−Ni薄膜の特性を示
す図であって、第2図はCu−Ni薄膜のびずみ一電気
抵抗効果を示す図であり、バルク形Cu−Ni及び中性
Cu−Niの特性を併記しである、第3図はCu−Ni
薄膜のひずみ一電気抵抗効果を加速電圧をパラメータと
して示す図、第4図はCuす −Ni薄膜のひずみ一電気抵抗効果を加速電圧をパラメ
ータとして示す図、第5図はCu−Ni薄膜のひずみ一
電気抵抗効果をNiの組成比をパラメータとして示す図
である。また、第6図はCu−Ni薄膜のX線回折パタ
ーンを示す図、第7図はCu−Ni薄膜のX線回折パタ
ーンを示す図である。第8図乃至第10図は、この発明
の詳細な説明する為の図であり、第8図は薄膜をひずみ
検知部として用いる図、第9図はひずみ検知部と論理回
路部とを一層の薄膜にした場合の図、第10図はひずみ
検知部と論理回路部とを二層の膜にした場合の図である
。 1・・・基材(起歪体)、6.7・・・ひずみ部、8,
9・・・ひずみゲージ、10.10・・・眸縁層、11
・・・薄膜、12・・・ひずみ検知部、13・・・論理
回路部。
FIG. 1 is a perspective view of an example of a load transducer used in an electronic scale, and FIGS. 2 to 7 are diagrams showing the characteristics of a Cu-Ni thin film produced by ionization using the ICB method in this invention. Figure 2 is a diagram showing the distortion-electrical resistance effect of a Cu-Ni thin film, and also shows the characteristics of bulk Cu-Ni and neutral Cu-Ni.
Figure 4 shows the strain-electrical resistance effect of a thin film using accelerating voltage as a parameter. Figure 4 shows the strain-electrical resistance effect of a Cu-Ni thin film using accelerating voltage as a parameter. Figure 5 shows the strain-electrical resistance effect of a Cu-Ni thin film. FIG. 3 is a diagram showing the electrical resistance effect using the Ni composition ratio as a parameter. Further, FIG. 6 is a diagram showing an X-ray diffraction pattern of a Cu--Ni thin film, and FIG. 7 is a diagram showing an X-ray diffraction pattern of a Cu--Ni thin film. 8 to 10 are diagrams for explaining the present invention in detail. FIG. 8 is a diagram in which a thin film is used as a strain detection section, and FIG. 9 is a diagram in which a strain detection section and a logic circuit section are integrated FIG. 10 is a diagram showing a case where a thin film is used, and FIG. 10 is a diagram when a two-layer film is used for the strain detection section and the logic circuit section. 1... Base material (flexible body), 6.7... Strain part, 8,
9...Strain gauge, 10.10...Edge layer, 11
. . . thin film, 12 . . . strain detection section, 13 . . . logic circuit section.

Claims (22)

【特許請求の範囲】[Claims] (1)物質をイオン化処理により、その物性を制御して
基材上に上記物質を薄膜形成したことを特徴とする荷重
変換器。
(1) A load transducer characterized in that a thin film of the substance is formed on a base material by controlling the physical properties of the substance by ionizing the substance.
(2)上記物質を、イオン化処理により加速エネルギー
を与え、イオンのもつ電荷効果を併用して附着力よく直
接、基材に装着したことを特徴とする特許請求の範囲第
1項記載の荷重変換器。
(2) Load conversion according to claim 1, characterized in that the above substance is directly attached to the base material with good adhesion force by applying acceleration energy through ionization treatment and also using the charge effect of ions. vessel.
(3)上記物性が物質の結晶性、配向性及び組成比であ
り、これらの物性の内、少なく共ひとつをイオン化処理
により制御することを特徴とする特許請求の範囲第1項
記載の荷重変換器。
(3) The load conversion according to claim 1, wherein the physical properties are the crystallinity, orientation, and composition ratio of the substance, and at least one of these physical properties is controlled by ionization treatment. vessel.
(4)上記薄膜がひずみ検知部であることを特徴とする
特許請求の範囲第1項記載の荷重変換器。
(4) The load transducer according to claim 1, wherein the thin film is a strain sensing section.
(5)上記薄膜がひずみ検知部と論理回路部とを並設し
た一層の膜であることを特徴とする特許請求の範囲第1
項記載の荷重変換器。
(5) Claim 1, characterized in that the thin film is a single layer film in which a strain detection section and a logic circuit section are arranged side by side.
Load transducer as described in section.
(6)上記薄膜が複層の膜であることを特徴とする特許
請求の範囲第1項記載の荷重変換器。
(6) The load converter according to claim 1, wherein the thin film is a multilayer film.
(7)上記複層の膜が二層であって、その一方の層が論
理回路層であり、他方の層がひずみ検知層であることを
特徴とする特許請求の範囲第6項記載の荷重変換器。
(7) The load according to claim 6, wherein the multilayer film is two layers, one of which is a logic circuit layer and the other layer is a strain detection layer. converter.
(8)上記薄膜が単一金属であることを特徴とする特許
請求の範囲第1項、第4項、第5項又は第6項記載の荷
重変換器。
(8) The load transducer according to claim 1, 4, 5, or 6, wherein the thin film is made of a single metal.
(9)上記複層の膜の全部又は一部が異種の単一金属で
あることを特徴とする特許請求の範囲第6項又は第7項
記載の荷重変換器。
(9) The load transducer according to claim 6 or 7, wherein all or part of the multilayer membrane is made of a single metal of a different type.
(10)上記ひずみ検知部と論理回路部とが異種の単一
金属であることを特徴とする特許請求の範囲第5項記載
の荷重変換器。
(10) The load converter according to claim 5, wherein the strain detection section and the logic circuit section are made of different types of single metal.
(11)複数の物質の内、少なく共ひとつの物質をイオ
ン化処理によりその物性を制御し、且つ残りの物質と共
に基材上に薄膜形成したことを特徴とする荷重変換器。
(11) A load transducer characterized in that the physical properties of at least one substance among a plurality of substances are controlled by ionization treatment, and a thin film is formed on a base material together with the remaining substances.
(12)上記イオン化処理する物質を、イオン化処理に
より加速エネルギーを与え、イオンのもつ電荷効果を併
用して附着力よく直接、基材に装着したことを特徴とす
る特許請求の範囲第11項記載の荷重変換器。
(12) The substance to be ionized is directly attached to a base material with good adhesion force by applying acceleration energy through ionization treatment and also using the charge effect of ions. load transducer.
(13)上記物性が物質の結晶性、配向性及び組成比で
あり、これら物性の内、少なく共ひとつをイオン化処理
により制御することを特徴とする特許請求の範囲第11
項記載の荷重変換器。
(13) Claim 11, wherein the physical properties are the crystallinity, orientation, and composition ratio of the substance, and at least one of these physical properties is controlled by ionization treatment.
Load transducer as described in section.
(14)上記薄膜がひずみ検知部であることを特徴とす
る特許請求の範囲第11項記載の荷重変換器。
(14) The load transducer according to claim 11, wherein the thin film is a strain sensing section.
(15)上記薄膜がひずみ検知部と論理回路部とを並設
した一層の膜であることを特徴とする特許請求の範囲第
11項記載の荷重変換器。
(15) The load transducer according to claim 11, wherein the thin film is a single layer film in which a strain detection section and a logic circuit section are arranged side by side.
(16)上記薄膜が複層の膜であることを特徴とする特
許請求の範囲第11項記載の荷重変換器。
(16) The load transducer according to claim 11, wherein the thin film is a multilayer film.
(17)上記複層の膜が二層であって、その一方の層が
論理回路層であり、他方の層がひずみ検知層であること
を特徴とする特許請求の範囲第16項記載の荷重変換器
(17) The load according to claim 16, wherein the multilayer film is two layers, one of which is a logic circuit layer and the other layer is a strain detection layer. converter.
(18)上記薄膜が金属間化合物であることを特徴とす
る特許請求の範囲第11項、第14項又は第15項記載
の荷重変換器。
(18) The load transducer according to claim 11, 14, or 15, wherein the thin film is an intermetallic compound.
(19)上記複層の膜の各々が金属間化合物であること
を特徴とする特許請求の範囲第16項又は第17項記載
の荷重変換器。
(19) The load transducer according to claim 16 or 17, wherein each of the multilayer films is an intermetallic compound.
(20)上記複層の膜が金属間化合物の膜とイオン化処
理された単一金属の膜とで形成されていることを特徴と
する特許請求の範囲第16項又は第17項記載の荷重変
換器。
(20) Load conversion according to claim 16 or 17, wherein the multilayer film is formed of an intermetallic compound film and an ionized single metal film. vessel.
(21)上記複層の膜の各々がイオン化処理された異種
物質の膜であることを特徴とする特許請求の範囲第16
項又は第17項記載の荷重変換器。
(21) Claim 16, characterized in that each of the multilayer membranes is a membrane of a different substance that has been ionized.
The load converter according to item 1 or item 17.
(22)上記ひずみ検知部と論理回路部とが、その一方
は金属間化合物であり、他方がイオン化処理された単一
金属であることを特徴とする特許請求の範囲第15項記
載の荷重変換器。
(22) Load conversion according to claim 15, wherein the strain detection section and the logic circuit section are one of which is an intermetallic compound and the other is an ionized single metal. vessel.
JP60065498A 1985-03-28 1985-03-28 Load transducer Expired - Lifetime JP2506064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065498A JP2506064B2 (en) 1985-03-28 1985-03-28 Load transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065498A JP2506064B2 (en) 1985-03-28 1985-03-28 Load transducer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP29330695A Division JP2619849B2 (en) 1995-10-17 1995-10-17 Load transducer

Publications (2)

Publication Number Publication Date
JPS61223524A true JPS61223524A (en) 1986-10-04
JP2506064B2 JP2506064B2 (en) 1996-06-12

Family

ID=13288812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065498A Expired - Lifetime JP2506064B2 (en) 1985-03-28 1985-03-28 Load transducer

Country Status (1)

Country Link
JP (1) JP2506064B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005416A1 (en) * 1990-09-26 1992-04-02 Ishida Scales Mfg. Co., Ltd. Load cell
CN101813536A (en) * 2010-04-19 2010-08-25 南京航空航天大学 Two-component large-load force sensor
JP2014025755A (en) * 2012-07-25 2014-02-06 Honda Motor Co Ltd Test piece for electron microscope, and manufacturing method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842941A (en) * 1981-09-07 1983-03-12 Toshiba Corp Load cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842941A (en) * 1981-09-07 1983-03-12 Toshiba Corp Load cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005416A1 (en) * 1990-09-26 1992-04-02 Ishida Scales Mfg. Co., Ltd. Load cell
US5306873A (en) * 1990-09-26 1994-04-26 Ishida Scales Mfg. Co., Ltd. Load cell with strain gauges having low temperature dependent coefficient of resistance
CN101813536A (en) * 2010-04-19 2010-08-25 南京航空航天大学 Two-component large-load force sensor
JP2014025755A (en) * 2012-07-25 2014-02-06 Honda Motor Co Ltd Test piece for electron microscope, and manufacturing method of the same

Also Published As

Publication number Publication date
JP2506064B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
EP0035351B1 (en) Deformable flexure element for strain gage transducer and method of manufacture
US4299130A (en) Thin film strain gage apparatus with unstrained temperature compensation resistances
US4620365A (en) Method of making a thin-film strain gauge
Rajanna et al. Pressure transducer with Au-Ni thin-film strain gauges
WO2001004594A1 (en) Strain gauge
WO2007002241A2 (en) Strain gage with off axis creep compensation feature
JPH04501759A (en) Equipment for measuring thermal properties of material samples
EP0917652A1 (en) Tunneling sensor with linear force rebalance
JPS61223524A (en) Load converter
CA1168059A (en) Semiconductor strain gauge
US3479739A (en) Method of making a transducer beam
US3898359A (en) Thin film magneto-resistors and methods of making same
JPS62185102A (en) Strain gage with thin discontinuous metallic layer
JP2001221696A (en) Temperature-sensitive and strain-sensitive composite sensor
CA1178083A (en) Measuring device using a strain gauge
JP2619849B2 (en) Load transducer
Rajanna et al. Studies on meandering path thin-film strain gauge
JPH01202601A (en) Metal thin film resistance strain gauge
JPS58118930A (en) Load cell
White An Assessment of Thick‐Film Piezoresistors on Insulated Steel Substrates
JP2001110602A (en) Thin-film resistor forming method and sensor
JPS6311672Y2 (en)
Rissing et al. Inductive microtransformer exploiting the magnetoelastic effect
CN111174687A (en) Flexible strain sensor chip with temperature compensation element and preparation method thereof
JPH0777552A (en) Method and apparatus for measuring piezo-electricity

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term