JPS6122257B2 - - Google Patents

Info

Publication number
JPS6122257B2
JPS6122257B2 JP5427680A JP5427680A JPS6122257B2 JP S6122257 B2 JPS6122257 B2 JP S6122257B2 JP 5427680 A JP5427680 A JP 5427680A JP 5427680 A JP5427680 A JP 5427680A JP S6122257 B2 JPS6122257 B2 JP S6122257B2
Authority
JP
Japan
Prior art keywords
insulating substrate
comb
shaped electrode
semiconductor
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5427680A
Other languages
Japanese (ja)
Other versions
JPS56151348A (en
Inventor
Keiji Aihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP5427680A priority Critical patent/JPS56151348A/en
Publication of JPS56151348A publication Critical patent/JPS56151348A/en
Publication of JPS6122257B2 publication Critical patent/JPS6122257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 本発明は、半導体薄膜を利用した窒素酸化物、
特に一酸化窒素酸化物を検出定量する際の検出端
センサに関している。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides nitrogen oxide using a semiconductor thin film,
In particular, it relates to a detection end sensor for detecting and quantifying nitric oxide.

近時、半導体検出材料によつて直接窒素酸化物
NOxを抵抗値の変化として感知する窒素酸化物
NOx検出センサの研究および開発が進められて
いる。通常この窒素酸化物NOx濃度とは、一酸
化窒素NO(以下単にNOという)の濃度と、二酸
化窒素NO2(以下単にNO2という。)の濃度との
和を意味するが、従来、NO2のみに感応する半導
体材料は既に銀および五酸化バナジウム(V2O5
+Ag)あるいはAg0.04V2O5として知られている
ものの、NOのみに感応する半導体材料は今だ見
い出されていない。このため従来、窒素酸化物の
検出方法としては、日本工業規格(JIS)に定め
るような化学分折法あるいは光学的分折法などに
たよつていた。
Recently, semiconductor detection materials have been used to directly detect nitrogen oxides.
Nitrogen oxide that senses NOx as a change in resistance value
Research and development of NOx detection sensors is progressing. Normally, this nitrogen oxide NOx concentration means the sum of the concentration of nitric oxide NO (hereinafter simply referred to as NO) and the concentration of nitrogen dioxide NO 2 (hereinafter simply referred to as NO 2 ) . Semiconductor materials sensitive only to silver and vanadium pentoxide (V 2 O 5
+Ag) or Ag 0 . 04 V 2 O 5 , but no semiconductor material that is sensitive only to NO has yet been found. For this reason, conventional methods for detecting nitrogen oxides have relied on chemical spectrometry or optical spectroscopy as specified in the Japanese Industrial Standards (JIS).

これに対して、本出願人は、この様な半導体検
出素子によつて直接NOを定量するものでは無
く、NO2ガスのみに応答する従来の半導体検出材
と、NO2およびNOガスの双方のガスに応答する
新規な半導体検出材との両者からNOガスのみの
濃度を間接的に検出ないし定量する一酸化窒素検
出装置を提案している。しかし、これ等の半導体
検出材料は、いずれも材料自体を所定温度で保温
しておかないと、検出ガスに対して安定した抵抗
値変化を再現できない不便さがあり、しかも面状
に付設した半導体材料の温度分布が常時均一化し
ていることが望まれる。
In contrast, the present applicant does not directly quantify NO with such a semiconductor detection element, but uses a conventional semiconductor detection material that responds only to NO 2 gas and a method that responds to both NO 2 and NO gas. We are proposing a nitrogen monoxide detection device that indirectly detects or quantifies the concentration of NO gas using both a new semiconductor detection material that responds to gases. However, all of these semiconductor detection materials have the inconvenience of being unable to reproduce stable resistance changes with respect to the detection gas unless the material itself is kept at a predetermined temperature. It is desirable that the temperature distribution of the material is always uniform.

本発明は、このような窒素酸化物ガスの種類に
応じて感度の異なる二つの半導体材料を利用し
て、安定した計量を確保し得る窒素酸化物検出端
を提供するものである。
The present invention provides a nitrogen oxide detection end that can ensure stable measurement by using two semiconductor materials that have different sensitivities depending on the type of nitrogen oxide gas.

第1図は、この第1および第2半導体検出素子
10および20一体に形成されたセンサ本体の様
子を示している。同図中、11は共通基板であ
り、ここでは酸化アルミニウムA2O3の基板を
用い、その上面には、相対抗して交互に配列され
た櫛型の金電極12aおよび13a並びに12b
および13bがスクリーン印刷によつて塗布さ
れ、それぞれの集電部18,17,18′,1
7′には、金または白金のリード線16が金ペー
ストで固定され更に約800〜1000℃好ましくは950
℃前後の温度で焼き付け固着されている。なお、
通常この種の検出器に利用される電極は、真空蒸
着、スパツタリングあるいは化学蒸着法などの方
法で約0.5mμ以下の膜厚を形成するが、この方
法による電極は、一般に初めから電極抵抗が高
く、加熱などの影響により電極破断を招き易いた
め、ここではスクリーン印刷によつて比較的厚目
の電極すなわち約20mμ程度の電極を形成し、電
極抵抗を小さくしさらに約800〜900℃で焼付形成
し、検出半導体自体が固有に持つ抵抗値を考慮し
て設計される。
FIG. 1 shows the sensor body formed integrally with the first and second semiconductor detection elements 10 and 20. In the figure, reference numeral 11 denotes a common substrate, in which an aluminum oxide A 2 O 3 substrate is used, and on its upper surface are comb-shaped gold electrodes 12a, 13a, and 12b arranged alternately in opposition to each other.
and 13b are applied by screen printing, and the respective current collectors 18, 17, 18', 1
7', a gold or platinum lead wire 16 is fixed with gold paste and further heated to approximately 800 to 1000°C, preferably 950°C.
It is baked and fixed at a temperature around ℃. In addition,
The electrodes used in this type of detector are usually formed to a film thickness of approximately 0.5 mμ or less using methods such as vacuum evaporation, sputtering, or chemical vapor deposition, but electrodes made using this method generally have high electrode resistance from the beginning. Since electrodes are easily broken due to the effects of heating, etc., we used screen printing to form relatively thick electrodes, that is, about 20 mμ, to reduce the electrode resistance, and then baked them at about 800 to 900°C. However, it is designed in consideration of the resistance value inherent to the detection semiconductor itself.

また、第1の半導体検出素子10の櫛型の金電
極12a,13a間若しくはこの上に形成される
第1半導体材料15aは、NO2ガス検出材として
既に公知のn型半導体AgxV2O5(X=0.01〜
0.5)であり、気中にNO2が混入すると、NO2
陰イオン化吸着の活性が大きいため、電極間抵抗
値が変化する。第2の、半導体検出素子20の櫛
型の金電極12b,13b間若しくはこの上に形
成される第2半導体材料15bは、NO2ガスおよ
びNO2の双方に感応する新規なn型半導体であつ
て、第1半導体材料AgxV2O5にさらに増感剤とし
て酸化サマリウムSm2O3を10%混入し、硝酸銀を
水で溶かし、乾燥後に塩化アンモンを融剤として
加え、約700〜800℃にて焼成し、粉末半導体とし
たものである。この検出材によると、メタン、ブ
タンなど可燃性ガスには全く感度が無いが、NO
ならびにNO2ガスの双方に感知し、この感度割合
は、酸化サマリウムSm2O3の混入割合によつて変
化する。
Further, the first semiconductor material 15a formed between or on the comb-shaped gold electrodes 12a and 13a of the first semiconductor detection element 10 is an n-type semiconductor Ag x V 2 O, which is already known as a NO 2 gas detection material. 5 (X=0.01~
0.5), and when NO 2 is mixed into the air, the interelectrode resistance value changes because NO 2 has a large anionization adsorption activity. The second semiconductor material 15b formed between or on the comb-shaped gold electrodes 12b and 13b of the second semiconductor detection element 20 is a novel n-type semiconductor that is sensitive to both NO 2 gas and NO 2 . Then, add 10% samarium oxide Sm 2 O 3 as a sensitizer to the first semiconductor material Ag It was fired at ℃ to form a powder semiconductor. According to this detection material, it has no sensitivity to flammable gases such as methane and butane, but NO
and NO 2 gas, and the sensitivity ratio changes depending on the mixing ratio of samarium oxide Sm 2 O 3 .

第1および第2半導体検出材は、いずれも約
300℃以上の高温状態で窒素酸化物の検出が安定
して行われるため、これ等の各部材10および2
0には加熱部19が施されている。この加熱部は
基板11と分離し別体に設け、例えばコイルヒー
タ内に基板11を設置することによつて、外部か
ら加熱してもも良いが、ここでは、基板の裏面に
電気抵抗材、例えばニツケル・クロムNi―Cr、
または白金Ptの薄膜がスパツタリングなどにより
膜状に形成し、リード線8および9間に加熱電流
が供給される。。また、この抵抗加熱体19は、
第2図に示すように、ニツケル・クロムNi・Cr
の平板から面状抵抗ヒータを形成しても良い。
The first and second semiconductor detection materials are both approximately
These members 10 and 2 are used because nitrogen oxides can be detected stably at high temperatures of 300°C or higher.
0 is provided with a heating section 19. This heating section may be separated from the substrate 11 and provided separately, for example, by placing the substrate 11 inside a coil heater to heat it from the outside. For example, nickel chromium Ni-Cr,
Alternatively, a thin film of platinum (Pt) is formed into a film shape by sputtering or the like, and a heating current is supplied between the lead wires 8 and 9. . Moreover, this resistance heating body 19 is
As shown in Figure 2, nickel, chromium, Ni, Cr
A sheet resistance heater may be formed from a flat plate.

また、第3図は、本発明の他の実施例を示すも
ので、酸化アルミニウム絶縁基板11aおよび1
1bの一面に、櫛型電極12a,13a,12b
および13bと第1および第2半導体材料15a
および15bとをそれぞれ予じめ形成しておき、
第2図に示す如き面抵抗ヒータ19を各基板11
aおよび11bの裏面でサンドイツチ状に保持し
ている。面状抵抗19に形成された間隙はアルミ
ナ・セメント21が充填されている。
Further, FIG. 3 shows another embodiment of the present invention, in which aluminum oxide insulating substrates 11a and 1
On one surface of 1b, comb-shaped electrodes 12a, 13a, 12b
and 13b and first and second semiconductor materials 15a
and 15b are formed in advance,
A sheet resistance heater 19 as shown in FIG.
It is held in a sandwich shape on the back surfaces of a and 11b. The gap formed in the sheet resistor 19 is filled with alumina cement 21.

述上の様に本発明の如く構成した窒素酸化物セ
ンサによれば、二つのNO2のみに感応する第1検
出体と、NOおよびNO2の双方に感応する第2検
出体と二つの信号によつて演算回路(図示せず)
によつて最終的にNOのみの濃度を計算するもの
であり、この際に、両半導体材料を加熱するヒー
タ加熱体が共通しているため、両者の熱平衡状態
が安定して確保でき、熱分布を均一化できるの
で、回路的な温度補償機構も不用となる。
As described above, according to the nitrogen oxide sensor configured as in the present invention, there are two signals: a first detection body that is sensitive only to NO 2 , a second detection body that is sensitive to both NO and NO 2 , and two signals. Arithmetic circuit (not shown)
The final concentration of only NO is calculated by Since the temperature can be made uniform, there is no need for a circuit-like temperature compensation mechanism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の窒素酸化物半導
体センサの構造図で、第2図は、このセンサに使
用するヒータ加熱体の他の実施例構成図を、ま
た、第3図は、本発明の他の実施例センサの断面
構造図を示している。 図において、11…酸化アルミニウム絶縁基
板、10および20…第1および第2窒素酸化物
検出部、15aおよび15b…第1および第2半
導体検出材、12a,13aおよび12bおよび
13b…電極、19…加熱体。
FIG. 1 is a structural diagram of a nitrogen oxide semiconductor sensor according to one embodiment of the present invention, FIG. 2 is a structural diagram of another embodiment of a heater heating element used in this sensor, and FIG. , which shows a cross-sectional structural diagram of a sensor according to another embodiment of the present invention. In the figure, 11...aluminum oxide insulating substrate, 10 and 20...first and second nitrogen oxide detection parts, 15a and 15b...first and second semiconductor detection materials, 12a, 13a, 12b and 13b...electrodes, 19... heating body.

Claims (1)

【特許請求の範囲】 1 第1の絶縁基板と、この上に相対抗して設け
られる第1の櫛型電極と、この第1の櫛型電極上
に薄膜で形成され二酸化窒素ガスにのみ感応して
電気抵抗値が変化する第1の半導体検出材と、第
2の絶縁基板と、この上に相対抗して設けられる
第2の櫛型電極と、この第2の櫛型電極上に薄膜
で形成され一酸化窒素ガスと二酸化窒素ガスの双
方に感応して電気抵抗値が変化する第2の半導体
検出材とを具備するとともに、上記第1および第
2の半導体検出材の両者をほぼ300℃以上の温度
に均一に加熱するための共通の抵抗加熱体を有し
てなる窒素酸化物センサ。 2 上記第1の絶縁基板と上記第2の絶縁基板と
を単一の絶縁基板で構成して、上記第1の櫛型電
極と上記第2の櫛型電極をこの単一の絶縁基板の
片面に分離して配置させるとともに、上記抵抗加
熱体をこの単一の絶縁基板の裏面に形成させてな
ることを特徴とする特許請求の範囲第1項に記載
の窒素酸化物センサ。 3 上記第1の絶縁基板と上記第2の絶縁基板と
を、上記第1及び第2の半導体検出材が形成され
ていない面を介して接合部材をもつて接合すると
ともに、上記抵抗加熱体をこの接合部材中に配置
させてなることを特徴とする特許請求の範囲第1
項に記載の窒素酸化物センサ。
[Scope of Claims] 1. A first insulating substrate, a first comb-shaped electrode provided oppositely thereon, and a thin film formed on the first comb-shaped electrode and sensitive only to nitrogen dioxide gas. a first semiconductor detection material whose electrical resistance value changes by changing the electrical resistance; a second insulating substrate; a second comb-shaped electrode provided oppositely thereon; and a thin film on the second comb-shaped electrode. a second semiconductor detection material whose electrical resistance value changes in response to both nitrogen monoxide gas and nitrogen dioxide gas; A nitrogen oxide sensor comprising a common resistance heating element for uniform heating to a temperature of 0.degree. C. or higher. 2 The first insulating substrate and the second insulating substrate are formed of a single insulating substrate, and the first comb-shaped electrode and the second comb-shaped electrode are formed on one side of the single insulating substrate. 2. The nitrogen oxide sensor according to claim 1, wherein the resistance heating body is formed on the back surface of this single insulating substrate. 3. Joining the first insulating substrate and the second insulating substrate with a joining member through the surfaces on which the first and second semiconductor detection materials are not formed, and connecting the resistance heating body to the first insulating substrate and the second insulating substrate. Claim 1 characterized in that it is arranged in this joining member.
Nitrogen oxide sensor described in Section.
JP5427680A 1980-04-25 1980-04-25 Nitrogen oxide compound sensor Granted JPS56151348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5427680A JPS56151348A (en) 1980-04-25 1980-04-25 Nitrogen oxide compound sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5427680A JPS56151348A (en) 1980-04-25 1980-04-25 Nitrogen oxide compound sensor

Publications (2)

Publication Number Publication Date
JPS56151348A JPS56151348A (en) 1981-11-24
JPS6122257B2 true JPS6122257B2 (en) 1986-05-30

Family

ID=12966042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5427680A Granted JPS56151348A (en) 1980-04-25 1980-04-25 Nitrogen oxide compound sensor

Country Status (1)

Country Link
JP (1) JPS56151348A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201052A (en) * 1982-05-20 1983-11-22 Matsushita Electric Ind Co Ltd Gas sensor
JPS6486052A (en) * 1987-09-29 1989-03-30 Osaka Gas Co Ltd Gas sensor
KR20030021612A (en) * 2001-09-07 2003-03-15 박진성 Manufactory Technology for Hetero-contact Thick film Sensor

Also Published As

Publication number Publication date
JPS56151348A (en) 1981-11-24

Similar Documents

Publication Publication Date Title
JP3128114B2 (en) Nitrogen oxide detector
JPS6228422B2 (en)
US5824271A (en) Gas sensor
JPH04216452A (en) Sensor for simultaneously detecting composition of mixed gas and speed of gas
JP2811976B2 (en) Oxide semiconductor gas sensor
JPS6122257B2 (en)
JPS6122256B2 (en)
JP2615138B2 (en) Composite gas sensor
USH427H (en) Air/fuel ratio detector
JPH01201149A (en) Composite gas sensor
JP2004325218A (en) Temperature control device, temperature control method, and gas detection device using them
JPH08278273A (en) Gas detector
JPH0220681Y2 (en)
JP2849588B2 (en) Thin film gas sensor and method of manufacturing the same
JP2955583B2 (en) Detection element for gas sensor
JP3696494B2 (en) Nitrogen oxide sensor
JPS5811846A (en) Preparation of gaseous no2 detector and its detecting method
JP3395957B2 (en) Carbon monoxide detection sensor and carbon monoxide detection method using the same
JPS589052A (en) Detecting element for composition gases
RU2291417C1 (en) Gas concentration sensor
JPH01321348A (en) Hydrogen gas sensor
JPH03249555A (en) Multicomponent gas sensor
JPH053974Y2 (en)
JPH0550702B2 (en)
JPS63184049A (en) Preparation of gas sensor