JPS61221327A - Production of steel plate for pressure vessel having excellent low-temperature toughness - Google Patents

Production of steel plate for pressure vessel having excellent low-temperature toughness

Info

Publication number
JPS61221327A
JPS61221327A JP6169085A JP6169085A JPS61221327A JP S61221327 A JPS61221327 A JP S61221327A JP 6169085 A JP6169085 A JP 6169085A JP 6169085 A JP6169085 A JP 6169085A JP S61221327 A JPS61221327 A JP S61221327A
Authority
JP
Japan
Prior art keywords
steel
steel plate
low
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6169085A
Other languages
Japanese (ja)
Inventor
Jun Furusawa
古澤 遵
Seiichi Watanabe
征一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6169085A priority Critical patent/JPS61221327A/en
Publication of JPS61221327A publication Critical patent/JPS61221327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the strength, weldability and low-temp. toughness of a steel plate for a pressure vessel in the stage of producing said steel plate by adjusting the value of PCM to a suitable range and subjecting the steel to hot rolling then to a heat treatment under specific conditions. CONSTITUTION:The steel material contg. 0.12-0.195 C, 0.10-0.30% Si, 0.80-1.50% Mn, <0.015% P, 0.15-0.75% Cr, 0.10-0.30% Mo, 0.02-0.08% sol, Al and 0.0002-0.0010% B is subjected to a component adjustment so that the value of PCM as an index to indicate the sensitivity with low-temp. cracking during welding of the steel plate as expressed by the equation (1) is maintained in a 0.22-0.30% range. Such billet is heated to a 950-1,175 deg.C range and is hot-rolled to the thick plate. The plate is normalized at the temp. from 750 deg.C up to A3-10 deg.C{A3 is the value expressed by the equation (2)} and is then air- cooled. The thick steel plate having the characteristics suitable for the pressure vessel is produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧力容器用鋼板の製造方法に関し、更には、高
い強度と優れた溶接性を有すると同時に低温靭性の優れ
た圧力容器用の鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a steel plate for pressure vessels, and more particularly to a method for producing a steel plate for pressure vessels that has high strength and excellent weldability as well as excellent low-temperature toughness. Regarding the method.

従来の技術 圧力容器等に使用される厚鋼板は、熱間でのプレス加工
等の後、放冷されて常温で溶接され、その残留応力を除
去するための規準(SR処理)が施される。そのため放
冷+SRSR処理で十分な引張り強さおよび降伏強さを
確保するために、多量のCおよび焼入性向上の合金成分
を含有させねばならず、溶接時の予熱を充分に行っても
頻繁に溶接ワレが生じ、そのワレ補修溶接とその後のS
R処理に膨大な時間を労力を要している。
Conventional technology Thick steel plates used for pressure vessels, etc. are subjected to hot press processing, etc., then allowed to cool, welded at room temperature, and subjected to a standard (SR treatment) to remove residual stress. . Therefore, in order to ensure sufficient tensile strength and yield strength in the cooling + SRSR process, it is necessary to contain a large amount of C and alloy components that improve hardenability. Welding cracks occurred, and welding to repair the cracks and subsequent S
The R processing requires a huge amount of time and effort.

上記のような難点を解決するには、放冷、即ち焼準状態
、または規準後、焼きもどしした状態で高い強度をもち
、しかも溶接性のすぐれた厚鋼板が要求される。鋼の溶
接性を改善するには、Cおよび合金成分のC当量を下げ
るのが最も有効であるが、かかる鋼種は焼準状態では十
分な強度が望めないのが普通である。
In order to solve the above-mentioned problems, a thick steel plate is required that has high strength in a normalizing state after cooling, or in a tempered state after normalizing, and has excellent weldability. In order to improve the weldability of steel, it is most effective to lower the C and C equivalents of alloy components, but such steel types usually cannot be expected to have sufficient strength in a normalized state.

このような問題点を解決するため本出願人は特願昭52
−91047号(特開昭54−25211号、特公昭5
7−23739号)によりC量を0.03〜0.12%
と低くし、極微量(0,00015〜0.00070%
)のBと0.030%〜0.100%のsol、AIを
併用することによって低C且つ低PCMの鋼であって、
しかも高強度であり溶接性に優れた特に圧力容器用に好
適に用いられる鋼板を提案したものである。
In order to solve these problems, the present applicant filed a patent application filed in 1983.
-91047 (Japanese Patent Publication No. 54-25211,
7-23739), the amount of C is 0.03 to 0.12%.
and a very small amount (0,00015 to 0.00070%
) B and 0.030% to 0.100% sol and AI are used together to produce a low C and low PCM steel,
Moreover, the present invention proposes a steel plate that has high strength and excellent weldability, and is particularly suitable for use in pressure vessels.

しかしながら、圧力容器用の厚鋼板では約0.02%程
度のNbを添加していた。この結果、従来の圧力容器用
厚鋼板では、−40℃付近の低温靭性が劣り、溶接部が
高硬度となり、耐硫化物応力腐蝕割れ性が低いという欠
点があった。
However, about 0.02% of Nb has been added to thick steel plates for pressure vessels. As a result, conventional thick steel plates for pressure vessels have the drawbacks of poor low-temperature toughness near -40°C, high hardness of welded parts, and low resistance to sulfide stress corrosion cracking.

発明の解決しようとする問題点 本発明は、圧力容器用の鋼板において、高強度を維持し
ながら低温靭性を改善し、更に溶接部硬さを低減するこ
とを目的とし、このような鋼板の製造方法を提供せんと
するものである。
Problems to be Solved by the Invention The present invention aims to improve the low-temperature toughness of a steel plate for pressure vessels while maintaining high strength, and further reduce the hardness of the welded part. The purpose is to provide a method.

更に詳細には、本発明は圧力容器用の厚鋼板の製造方法
において、C量の低減、Nbの無添加、更にP C)I
の低減を行うことによって溶接性と低温靭性を改善し、
これらによる強度の低下を、微量のBの添加効果を最大
限有効に発揮せしめ且つ熱処理条件を制御することによ
り補償し、かくして高強度であり、溶接性および低温靭
性に優れた圧力容器用鋼板の製造方法を提供することを
目的とするものである。
More specifically, the present invention provides a method for manufacturing a thick steel plate for pressure vessels, which reduces the amount of C, does not add Nb, and furthermore provides P C) I
Improves weldability and low-temperature toughness by reducing
The decrease in strength caused by these factors can be compensated for by maximizing the effect of adding a small amount of B and controlling the heat treatment conditions, thereby creating a steel plate for pressure vessels that has high strength and excellent weldability and low-temperature toughness. The purpose is to provide a manufacturing method.

問題点を解決するための手段 上記の問題点を解決するため、本発明に従うと、C: 
  0.12〜0.19%、 Si:  0.10〜0.30%、 Mn :   0.80〜1.50%、p:   0.
015%以下、 Cr:   0.15〜0.75%、 Mo :   0.10〜0.30%、sol、八1:
0.02〜0.08%、B :   0.0002〜0
.0010%、を含有し、残部がFeおよび不可避的不
純物からなり、下記に定義されるPCMが0.22%〜
0.30%の範囲にある鋼材を950〜1175℃の範
囲内の温度に加熱した後、熱間圧延を行い鋼板とし、該
鋼板を780℃から(A3−10℃)の間の温度に加熱
した後に空冷を行うことを特徴とする低温靭性の優れた
圧力容器用鋼板の製造方法が提供される。
Means for Solving the Problems In order to solve the above problems, according to the present invention, C:
0.12-0.19%, Si: 0.10-0.30%, Mn: 0.80-1.50%, p: 0.
015% or less, Cr: 0.15-0.75%, Mo: 0.10-0.30%, sol, 81:
0.02-0.08%, B: 0.0002-0
.. 0.0010%, with the remainder consisting of Fe and unavoidable impurities, and PCM defined below from 0.22% to
After heating the steel material in the range of 0.30% to a temperature in the range of 950 to 1175°C, hot rolling is performed to form a steel plate, and the steel plate is heated to a temperature between 780°C and (A3-10°C). Provided is a method for producing a steel plate for a pressure vessel having excellent low-temperature toughness, which is characterized in that the steel plate is air-cooled after heating.

ただし、 Pcx=C+Si/30+(Mn+Cu+Cr) /2
0+Ma/15+ V /15+ 5 BA3  =9
10 300C+60St  30Mn+330P−3
0Cu −3Cr−30Ni −2Mo+70Vすなわ
ち、本発明の方法では、Bの添加効果を最大限有効に発
揮させるため圧延加熱温度を950〜1175℃とし、
更に780℃〜(A、−10℃)の範囲の加熱温度で規
準することにより鋼の組織をフェライト+ベイナイトの
2相組織とし、所望の強度を与えつつ低温靭性を改善す
ることに成功したものである。
However, Pcx=C+Si/30+(Mn+Cu+Cr)/2
0+Ma/15+V/15+ 5 BA3 =9
10 300C+60St 30Mn+330P-3
0Cu -3Cr-30Ni -2Mo+70V That is, in the method of the present invention, in order to maximize the effect of adding B, the rolling heating temperature is set at 950 to 1175 °C,
Furthermore, by standardizing the heating temperature in the range of 780℃ to (A, -10℃), the structure of the steel is made into a two-phase structure of ferrite + bainite, which successfully improves low-temperature toughness while providing the desired strength. It is.

発明の作用 以下、本発明の方法に於ける鋼の化学組成の限定理由お
よび圧延条件、熱処理条件の限定理由を説明する。
Effects of the Invention The reasons for limiting the chemical composition of the steel and the rolling conditions and heat treatment conditions in the method of the present invention will be explained below.

(1)鋼の化学組成の限定理由 C: Cは鋼板の強度を確保するために必要且有効な元
素であり、このため0.12%を超える含有量が必要で
ある。一方、C含有量が0,19%以上となると鋼板の
低温靭性が著しく劣化し、溶接部の最大硬さが大きくな
るのでC含有量を0.19%未満とした。
(1) Reason C for limiting the chemical composition of steel: C is a necessary and effective element for ensuring the strength of steel sheets, and therefore the content must exceed 0.12%. On the other hand, if the C content exceeds 0.19%, the low-temperature toughness of the steel plate will significantly deteriorate and the maximum hardness of the weld will increase, so the C content was set to less than 0.19%.

Si:Siは低P。0の条件下で強度を確保するため0
.10%を超える量を添加することが必要であるが、本
発明では特に低温靭性を改善するため、低温靭性を劣化
させるSlの含有量を極力抑えるため領30%未満とし
た。
Si:Si has low P. 0 to ensure strength under the condition of 0.
.. Although it is necessary to add an amount exceeding 10%, in the present invention, in order to particularly improve low temperature toughness, the content of Sl, which deteriorates low temperature toughness, is set to be less than 30% as much as possible.

Mn:Mnは鋼板の強度を確保し熱間脆性を防止するの
に有効且つ必要な元素であるので、その含有量を0.8
0%以上とした。一方、1.50%と超えてMnを含有
すると鋼板の低温靭性が著しく劣化し、且つ溶接部の最
高硬さが著しく大きくなるので、Mnの含有量の上限を
1.50%とした。
Mn: Mn is an effective and necessary element for ensuring the strength of steel sheets and preventing hot embrittlement, so its content is set to 0.8
It was set to 0% or more. On the other hand, if the Mn content exceeds 1.50%, the low-temperature toughness of the steel plate will significantly deteriorate and the maximum hardness of the welded part will increase significantly, so the upper limit of the Mn content was set at 1.50%.

P: Pは低温靭性および溶接性に極めて有害な元素で
あり、その含有量が少ないほど良好な低温靭性が得られ
、且つ溶接高温割れ感受性を低減することができる。従
ってPの含有量は低ければ低いほど圧力容器用鋼板とし
て望ましいものである。しかしながら、低P鋼の製造は
コストが高く、複雑であるので、経済性を考慮して0.
015%を本発明で許容できるP含有量の上限とした。
P: P is an element extremely harmful to low-temperature toughness and weldability, and the lower its content, the better low-temperature toughness can be obtained and the susceptibility to welding hot cracking can be reduced. Therefore, the lower the P content, the more desirable the steel sheet is for pressure vessels. However, since manufacturing low P steel is expensive and complicated, 0.
0.015% was set as the upper limit of the P content allowable in the present invention.

Cr:Crは鋼の強度、特に高温強度を向上するのに有
効な元素であるので0.15%以上の量のCrを含有さ
せることとした。しかしながら、0.75%以上のCr
を含有すると、低温靭性に悪影響を及ぼし、更に溶接部
の最高硬さも大きくなるので、Cr含有量の上限を0.
75%とした。
Cr: Since Cr is an effective element for improving the strength of steel, especially high-temperature strength, it was decided to contain 0.15% or more of Cr. However, Cr of 0.75% or more
If it contains Cr, it will have an adverse effect on the low temperature toughness and will also increase the maximum hardness of the welded part, so the upper limit of the Cr content should be set to 0.
It was set at 75%.

Mo:Moは鋼の焼入性を向上せしめ且つ焼戻し軟化抵
抗を有するので、強度上昇には極めて有効な元素であり
、更にMoは焼戻し脆化を防止するので靭性の改善にも
有効である。このため、0.10%以上のMoを含有さ
せることとした。一方、0.30%を超えてMOを含有
すると、鋼の低温靭性を劣化せしめ、鋼板溶接部の最高
硬さを大きくするので、MO含有量の上限を0.30%
とした。
Mo: Mo improves the hardenability of steel and has resistance to temper softening, so it is an extremely effective element for increasing strength.Moreover, Mo prevents temper embrittlement, so it is also effective for improving toughness. For this reason, it was decided to contain 0.10% or more of Mo. On the other hand, if MO content exceeds 0.30%, the low-temperature toughness of the steel will deteriorate and the maximum hardness of the steel plate weld will increase, so the upper limit of the MO content should be set at 0.30%.
And so.

sol、Al :  本発明は上記した如くBの添加効
果を最大限発揮せしめて低C且つ低P。X鋼の焼入性を
向上することを特徴とするものである。しかしながら、
sol、AIが不足すると、BはBNとなり、その添加
効果が失われる。従って、本発明では0.02%以上の
sol、AIを含有せしめてNをAINとして固定し、
組織を微細化して強度を上昇するとともにBの焼入性向
上効果を確保するものである。しかしながら、sol、
AIの添加量が0.08%を超えるとAINが粗大化し
て鋼の低温靭性が著しく劣化すると同時にBの添加効果
も失わる。従って、sol、 AIの添加量を0゜02
〜0,08%の範囲とした。
sol, Al: As described above, the present invention maximizes the effect of adding B to achieve low C and low P. It is characterized by improving the hardenability of X steel. however,
When sol and AI are insufficient, B becomes BN, and the effect of its addition is lost. Therefore, in the present invention, N is fixed as AIN by containing 0.02% or more of sol and AI,
The purpose is to refine the structure, increase strength, and ensure the hardenability improvement effect of B. However, sol,
When the amount of AI added exceeds 0.08%, AIN becomes coarse and the low-temperature toughness of the steel deteriorates significantly, and at the same time, the effect of B addition is also lost. Therefore, the amount of sol and AI added is 0°02
The range was 0.08%.

B: Bは本発明に於いて極めて重要な元素である。す
なわち、低C1低PCMの鋼組織において所望の強度を
達成するにはBの焼入性向上効果を最大限有効に発揮さ
せねばならず、0.0002%以上のBの含有量を必要
とする。一方、B含有量が0.0010%を超えると、
熱処理時にB析出物が粒界に形成され鋼の靭性が低下す
るばかりか、規準時に溶接部の割れが発生しやすくなる
B: B is an extremely important element in the present invention. In other words, in order to achieve the desired strength in a steel structure with low C1 and low PCM, the hardenability improving effect of B must be maximized, and a B content of 0.0002% or more is required. . On the other hand, when the B content exceeds 0.0010%,
During heat treatment, B precipitates are formed at grain boundaries, which not only reduces the toughness of the steel, but also makes it easier for cracks to occur in the weld during standardization.

従って、B含有量を0.0002〜0.0010%の範
囲とした。
Therefore, the B content was set in the range of 0.0002 to 0.0010%.

PC)l:  PCMは鋼板の溶接時の低温割れ感受性
を示す指標であり、P 0M値が低いほど溶接時の低温
割れが発生しにくい。一方、P 0M値が高いほど一般
的に鋼の強度が大きくなり、それに比例して靭性が劣化
する。従って、本発明に於いては鋼の強度を所望のレベ
ル以上に確保するためP Cal値が0.22%以上の
鋼組成とし、他方、鋼板の低温靭性の確保および溶接部
の最高硬さ低減のためにPC1L値の上限を0.30%
とした。
PC) l: PCM is an index showing the susceptibility to cold cracking during welding of steel plates, and the lower the P 0M value, the less likely cold cracking will occur during welding. On the other hand, the higher the P 0M value, the greater the strength of the steel in general, and the toughness deteriorates proportionally. Therefore, in the present invention, in order to ensure the strength of the steel at a desired level or higher, the steel composition has a P Cal value of 0.22% or more, while ensuring the low temperature toughness of the steel plate and reducing the maximum hardness of the welded part. Therefore, the upper limit of PC1L value is set to 0.30%.
And so.

(2)圧延加熱温度範囲の限定理由 上記した化学組成の鋼材を熱間圧延するに際し、圧延加
熱温度が950℃未満のときは鋼組織がオーステナイト
とならず、圧延抵抗が大きく且つ異常組織となる恐れが
ある。一方、圧延加熱温度が1175℃を超えると、鋼
中のNがAINとならず、Bと結合してBの添加による
焼入性向上効果がなくなる。
(2) Reason for limiting the rolling heating temperature range When hot rolling steel materials with the above chemical composition, if the rolling heating temperature is less than 950°C, the steel structure will not become austenite, and the rolling resistance will be large and the structure will be abnormal. There is a fear. On the other hand, when the rolling heating temperature exceeds 1175° C., N in the steel does not become AIN, but combines with B, and the hardenability improvement effect due to the addition of B disappears.

従って、本発明の方法では鋼材の圧延加熱温度を950
〜1175℃の範囲とした。
Therefore, in the method of the present invention, the rolling heating temperature of the steel material is set to 950°C.
-1175°C.

(3)規準加熱温度範囲の限定理由 上記した如く本発明の方法ではNbを添加しない低C1
低P。、4の鋼に微量のBを添加して焼入性を向上せし
め、強度を確保すると同時に低温靭性及び溶接性を改善
している。しかしながら低C1低P。0のため強度は依
然として低目であり、これを規準条件を選択することに
より鋼をフェライト+ベイナイトの2相組織とすること
゛により解決している。
(3) Reason for limiting the standard heating temperature range As mentioned above, the method of the present invention uses low C1 without adding Nb.
Low P. A small amount of B is added to the steel of No. 4 to improve hardenability, ensure strength, and at the same time improve low temperature toughness and weldability. However, low C1 and low P. 0, the strength is still low, but this problem was solved by selecting standard conditions to make the steel a two-phase structure of ferrite and bainite.

すなわち、焼準加熱が780℃未満のときはフェライト
+ベイナイトの2相組織のフェライト率が50%以上と
なり、靭性及び強度が著しく劣化する。
That is, when the normalizing temperature is lower than 780° C., the ferrite ratio of the two-phase structure of ferrite + bainite becomes 50% or more, and the toughness and strength deteriorate significantly.

一方、焼準加熱が(A3−10℃)以上の場合、フェラ
イト+ベイナイトの2相組織中のフェライト率が10%
以下となり、はぼづイナイト単相の組織となるので低温
靭性が急激に劣化する。
On the other hand, when the normalization heating is above (A3-10℃), the ferrite percentage in the two-phase structure of ferrite + bainite is 10%.
As a result, the structure becomes a single phase of habozu inite, and the low-temperature toughness rapidly deteriorates.

従って本発明の方法では焼型加熱温度を780℃〜(A
310℃)の範囲とする。
Therefore, in the method of the present invention, the heating temperature of the baking mold is 780℃~(A
310°C).

実施例 以下、本発明の方法を比較例と対照しながら実施例によ
り説明する。なお、こさらの実施例は本発明の単なる例
示であって本発明の技術的範囲を何隻制限するものでは
ない。
Examples Hereinafter, the method of the present invention will be explained by examples in comparison with comparative examples. It should be noted that these embodiments are merely illustrative of the present invention and do not limit the technical scope of the present invention.

表1に示す化学組成の鋼スラブ試片をそれぞれ表2に示
す温度まで均一加熱した後、熱間圧延を行い厚さ100
mmの厚鋼板を得た。これらの厚鋼板をそれぞれ表3に
示す温度に加熱し、30分間保持した後、空冷すること
により焼型処理を行った。
After uniformly heating the steel slab specimens with the chemical compositions shown in Table 1 to the temperatures shown in Table 2, they were hot rolled to a thickness of 100 mm.
A steel plate with a thickness of mm was obtained. These thick steel plates were heated to the temperatures shown in Table 3, held for 30 minutes, and then air-cooled to perform a baking process.

表2 鋼板の熱間圧延時の加熱温度 表3 鋼板の熱処理条件 ただし、 A3= 910−300C+ 60Si −30Mn+
 330F −30Cu −3Cr −30Ni−2M
o  +70V 得られた鋼板に第1図に示す如き開先加工を施し、下記
の条件で溶接及び溶接後熱処理を行溶接施行条件 溶接法;被覆アーク溶接法 溶接材料:被覆アーク溶接棒JISD 5016、棒径
4. Ommφ 溶接条件:電流170A、、電圧25V、溶接速度15
cm/min、溶接人熱量17000J/cm予熱温度
:100℃ 層間温度:100〜150℃ 溶接後熱処理条件二625℃×14h炉冷得られた溶接
鋼板について表4に示す項目の機械的特性の試験を行い
、それらの結果を表5および第2図〜第5図に示す。
Table 2 Heating temperature during hot rolling of steel plate Table 3 Heat treatment conditions of steel plate However, A3 = 910-300C+ 60Si -30Mn+
330F -30Cu -3Cr -30Ni-2M
o +70V The obtained steel plate was grooved as shown in Fig. 1, and welding and post-welding heat treatment were performed under the following conditions. Welding conditions Welding method: Covered arc welding method Welding material: Covered arc welding rod JISD 5016, Rod diameter 4. Ommφ Welding conditions: current 170A, voltage 25V, welding speed 15
cm/min, welder's heat amount 17000 J/cm Preheating temperature: 100°C Interlaminar temperature: 100-150°C Post-weld heat treatment conditions 2 625°C x 14h Furnace cooling The obtained welded steel plate was tested for mechanical properties on the items shown in Table 4. The results are shown in Table 5 and FIGS. 2 to 5.

表4 機械的特性の調査項目 第2図は、得られた溶接鋼板の母材部についてのPcx
値と常温引張強度及び低温衝撃値との関係を示すグラフ
である。図中・印は比較例の鋼を示し、○印は本発明の
方法により規定された化学組成の鋼を示し、これらの鋼
を1050℃の圧延加熱温度、810℃の焼準加熱温度
で熱間圧延および規準を施したものである。図示の如く
、比較例の鋼の場合は、10kgf−m以上の一40℃
に於ける低温衝撃値V E−40、及び50kgf/m
m2以上の常温における引張強さTS、アを同時に満足
する鋼はない。
Table 4 Investigation items for mechanical properties Figure 2 shows the Pcx of the base material of the obtained welded steel plate.
It is a graph showing the relationship between the tensile strength at room temperature and the low-temperature impact value. In the figure, the marks indicate steels of comparative examples, and the marks ○ indicate steels with chemical compositions specified by the method of the present invention. These steels were heated at a rolling heating temperature of 1050°C and a normalizing heating temperature of 810°C. It has been subjected to inter-rolling and standardization. As shown in the figure, in the case of the steel of the comparative example, the
Low temperature shock value V E-40 and 50kgf/m
There is no steel that simultaneously satisfies the tensile strength TS and A at room temperature of m2 or more.

これに対して本発明の規定する範囲内の化学成分を有す
る鋼板の母材部はいずれもTSR,及びWE−4゜の目
標値を同時に満足している。
On the other hand, all base metal parts of steel sheets having chemical compositions within the range prescribed by the present invention simultaneously satisfy the target values of TSR and WE-4°.

更に、第2図に示す結果より本発明の規定する化学組成
の範囲内の鋼ではP。、4値の増加とともに低温衝撃値
が低下し、引張強さが増加することが理解できる。
Furthermore, the results shown in FIG. 2 show that steel within the chemical composition range defined by the present invention has a P content. It can be seen that as the 4 value increases, the low temperature impact value decreases and the tensile strength increases.

第3図は、試片7の母材部に付いての圧延加熱温度とT
SR□およびvE−4oのの関係を示すグラフである。
Figure 3 shows the rolling heating temperature and T of the base material of specimen 7.
It is a graph showing the relationship between SR□ and vE-4o.

この試片7は、熱間圧延後、780℃(・印)、810
℃(○印)及び835℃(菱形で右半分が黒い印)でそ
れぞれ30分間加熱後、空冷することによって規準した
ものである。ただし、この鋼試片のA3は845℃であ
る。
This sample 7 was hot rolled at 780°C (・mark) and 810°C.
℃ (marked with ○) and 835°C (diamond with black right half) for 30 minutes, respectively, and then cooled in the air. However, A3 of this steel specimen is 845°C.

第3図に示す如く、鋼試片7は圧延加熱温度が950〜
1175℃の範囲でTSRTおよびWE−40の目標値
を同時に満足する。これに対して圧延加熱温度が900
℃の場合には鋼組織が細粒化して十分な焼入性が得られ
ず、TSRTおよびWE−4゜がともに低い値となる。
As shown in FIG. 3, the steel specimen 7 has a rolling heating temperature of 950 to
The target values of TSRT and WE-40 are simultaneously satisfied within the range of 1175°C. On the other hand, the rolling heating temperature is 900
℃, the steel structure becomes fine-grained and sufficient hardenability cannot be obtained, and both TSRT and WE-4° become low values.

一方、圧延加熱温度が1225℃と高い場合には、八I
Nが再固溶し、Bが固溶したNと結合してBNとなるた
め、B添加効果が失われ、焼入性が低下し、得られる鋼
板のTSRTが低くなる。
On the other hand, when the rolling heating temperature is as high as 1225°C,
Since N re-dissolves and B combines with the dissolved N to form BN, the effect of B addition is lost, the hardenability decreases, and the TSRT of the resulting steel sheet becomes low.

第4図は試片7を1050℃で加熱した後、熱間圧延し
、次いで種々の加熱温度で規準した鋼板の母材部につい
ての焼準加熱温度とv E−<。及びTSRTとの関係
を示すグラフである。
FIG. 4 shows the normalizing heating temperature and v E-< of the base material of the steel plate, which was heated at 1050° C. and then hot rolled, and then standardized at various heating temperatures. and TSRT.

第4図に示す如く、本発明で規定する化学組成の範囲内
の鋼試片7は、780〜835℃の範囲の規準加熱を行
ったときTS、、および、E−4゜の目標値を同時に満
足している。
As shown in FIG. 4, the steel specimen 7 having a chemical composition within the range specified by the present invention achieved target values of TS and E-4° when subjected to standard heating in the range of 780 to 835°C. I'm satisfied at the same time.

これに対し、焼準加熱温度が750℃と本発明で規定す
る範囲を超えて低いときは、フェライト+ベイナイト組
織中のフェライトが50%を超えてしまいTSRTおよ
びVE−4゜がともに低下する。
On the other hand, when the normalization heating temperature is 750°C, which is lower than the range defined by the present invention, the ferrite in the ferrite+bainite structure exceeds 50%, and both TSRT and VE-4° decrease.

一方、焼準加熱温度が865℃と高いときには、規準後
の鋼組織はベイナイト組織のみとなり、高強度は得られ
るものの低温衝撃値VE−40は著しく低下する。
On the other hand, when the normalizing temperature is as high as 865° C., the steel structure after normalization becomes only a bainite structure, and although high strength is obtained, the low-temperature impact value VE-40 is significantly lowered.

第5図は、本発明の規定する範囲の化学組成の!!I 
(Nb<0.01%)とNb<0.01%及びNb=0
.02%の比較鋼についてのP。+4の値と溶接部の最
高硬さとの関係を示すグラフである。
FIG. 5 shows the chemical composition within the range defined by the present invention! ! I
(Nb<0.01%) and Nb<0.01% and Nb=0
.. P for 02% comparison steel. It is a graph showing the relationship between the value of +4 and the maximum hardness of the welded part.

一般に溶接部の耐硫化物応力腐蝕割れ性は溶接部の硬さ
の上昇に従って低下し、ビッカース硬さllvが200
を超えると著しく劣化する。
In general, the resistance to sulfide stress corrosion cracking of welds decreases as the hardness of the weld increases, and the Vickers hardness llv is 200
Exceeding this will result in significant deterioration.

しかるに、第5図に示す通り、溶接部の最高硬さはP。However, as shown in Figure 5, the maximum hardness of the welded part is P.

、、値の増加およびNb添加によって上昇する。従って
、優れた耐硫化物応力腐蝕割れ性の溶接部を得るには、
溶接部の最高ビッカース硬さを200以下とすることが
必要であり、このためには第5図に示す結果よりP。、
4≦0.30%とし、且つNb<0.01%とすること
が必要である。
, , increases with increasing value and Nb addition. Therefore, to obtain a weld with excellent sulfide stress corrosion cracking resistance,
It is necessary to set the maximum Vickers hardness of the welded part to 200 or less, and for this purpose, P from the results shown in FIG. ,
It is necessary to satisfy 4≦0.30% and Nb<0.01%.

発明の効果 上記した如く、本発明は圧力容器用鋼板の製造に於いて
、該鋼板の低温靭性と溶接部の耐硫化物応力腐蝕割れ性
を改善し、同時に引張強度を高レベルに維持することを
目的とするものであり、この目的を従来この種の鋼材に
添加されていたNbを添加せず、C看及びP。X値を低
減し、更にこれらによる強度の低下をBの添加効果を最
大発揮することにより解決したものである。
Effects of the Invention As described above, the present invention improves the low-temperature toughness of the steel plate and the resistance to sulfide stress corrosion cracking of the welded part, and at the same time maintains the tensile strength at a high level in the production of steel plates for pressure vessels. This purpose was achieved by adding C and P without adding Nb, which was conventionally added to this type of steel. The X value was reduced, and the resulting decrease in strength was resolved by maximizing the effect of B addition.

このため本発明に於いては圧延加熱温度及び焼準加熱温
度を制限し、強度、低温靭性及び溶接性の優れた低合金
鋼を提供することに成功した。
For this reason, in the present invention, the rolling heating temperature and normalizing heating temperature were limited, and it was possible to provide a low-alloy steel with excellent strength, low-temperature toughness, and weldability.

本発明の方法により圧力容器用鋼板を低価格且つ簡便な
方法で提供することが可能となり、従来技術では低合金
鋼では得られなかった機械的特性のものを提供すること
ができる。
The method of the present invention makes it possible to provide a steel plate for pressure vessels at a low cost and in a simple manner, and it is possible to provide mechanical properties that could not be obtained with low alloy steel using conventional techniques.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例に於ける鋼板の開先加工を示す図であ
り、 第2図は、実施例で得られた溶接鋼板の母材邪について
のP C1l値と常温引張強度及び低温衝撃値との関係
を示すグラフであり、 第3図は、試片7の母材邪に付いての圧延加熱温度とT
SR,およびVE−40のの関係を示すグラフであり、 第4図は試片7を1050℃で加熱した後、熱間圧延し
、次いで種々の加熱温度で規準した鋼板の母材邪につい
ての焼準加熱温度とv E −40及びTSR,との関
係を示すグラフであり、第5図は、本発明め規定する範
囲の化学組成の鋼(Nb <0.01%)とNb<0.
01%及びNb=0.02%の比較鋼についてのP。0
の値と溶接部の最高硬さとの関係を示すグラフである。 115 F!R PaM (ぞ) PCM (Z) w12図 第111 改:枚N 100%%   b:r’/lt濯さ90鵠
114図
Fig. 1 is a diagram showing the bevel processing of the steel plate in the example, and Fig. 2 shows the P C1l value, room temperature tensile strength, and low temperature impact of the base material of the welded steel plate obtained in the example. FIG. 3 is a graph showing the relationship between the rolling heating temperature and the T value for the base material of specimen 7.
Fig. 4 is a graph showing the relationship between SR and VE-40, and Fig. 4 shows the relationship between the base material of the steel plate which was heated at 1050°C, hot rolled, and then standardized at various heating temperatures. FIG. 5 is a graph showing the relationship between normalization heating temperature, v E -40 and TSR, and FIG.
P for comparative steels with 0.01% and Nb=0.02%. 0
2 is a graph showing the relationship between the value of and the maximum hardness of the welded part. 115 F! R PaM (Zo) PCM (Z) w12 Figure 111 Revised: Sheet N 100%% b: r'/lt Rinse 90 Mouse Figure 114

Claims (1)

【特許請求の範囲】 C:0.12〜0.19%、 Si:0.10〜0.30%、 Mn:0.80〜1.50%、 P:0.015%以下、 Cr:0.15〜0.75%、 Mo:0.10〜0.30%、 sol.Al:0.02〜0.08%、 B:0.0002〜0.0010%、 を含有し、残部がFeおよび不可避的不純物からなり、
下記に定義されるP_C_Mが0.22%〜0.30%
の範囲にある鋼材を950〜1175℃の範囲内の温度
に加熱した後、熱間圧延を行い鋼板とし、該鋼板を78
0℃から(A_3−10℃)の間の温度に加熱した後に
空冷を行うことを特徴とする低温靭性の優れた圧力容器
用鋼板の製造方法。 ただし、 P_C_M=C+Si/30+(Mn+Cu+Cr)/
20+Mo/15+V/15+5B A_3=910−300C+60Si−30Mn+33
0P−30Cu−3Cr−30Ni−2Mo+70V
[Claims] C: 0.12 to 0.19%, Si: 0.10 to 0.30%, Mn: 0.80 to 1.50%, P: 0.015% or less, Cr: 0 .15-0.75%, Mo: 0.10-0.30%, sol. Al: 0.02 to 0.08%, B: 0.0002 to 0.0010%, the remainder consists of Fe and inevitable impurities,
P_C_M defined below is 0.22% to 0.30%
After heating the steel material in the range of 950 to 1175°C, hot rolling is performed to form a steel plate, and the steel plate is heated to a temperature of 78°C.
A method for producing a steel plate for a pressure vessel having excellent low-temperature toughness, the method comprising heating to a temperature between 0°C and (A_3-10°C) and then air cooling. However, P_C_M=C+Si/30+(Mn+Cu+Cr)/
20+Mo/15+V/15+5B A_3=910-300C+60Si-30Mn+33
0P-30Cu-3Cr-30Ni-2Mo+70V
JP6169085A 1985-03-26 1985-03-26 Production of steel plate for pressure vessel having excellent low-temperature toughness Pending JPS61221327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6169085A JPS61221327A (en) 1985-03-26 1985-03-26 Production of steel plate for pressure vessel having excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6169085A JPS61221327A (en) 1985-03-26 1985-03-26 Production of steel plate for pressure vessel having excellent low-temperature toughness

Publications (1)

Publication Number Publication Date
JPS61221327A true JPS61221327A (en) 1986-10-01

Family

ID=13178501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6169085A Pending JPS61221327A (en) 1985-03-26 1985-03-26 Production of steel plate for pressure vessel having excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JPS61221327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085684A1 (en) * 2018-10-26 2020-04-30 주식회사 포스코 Steel plate for pressure vessel with excellent cryogenic toughness and elongation resistance and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085684A1 (en) * 2018-10-26 2020-04-30 주식회사 포스코 Steel plate for pressure vessel with excellent cryogenic toughness and elongation resistance and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JPS581012A (en) Production of homogeneous steel
JPH0748621A (en) Production of steel for pressure vessel excellent in ssc resistance and hic resistance
US3463677A (en) Weldable high strength steel
US4049430A (en) Precipitation hardenable stainless steel
JPS625986B2 (en)
US4375377A (en) Steels which are useful in fabricating pressure vessels
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS61221327A (en) Production of steel plate for pressure vessel having excellent low-temperature toughness
JPS613833A (en) Manufacture of high strength steel with superior weldability
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPS6293349A (en) Steel plate for pressure vessel and its production
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JPS594487B2 (en) Manufacturing method for strong steel with excellent SR embrittlement resistance
JP3546543B2 (en) Manufacturing method for steel for medium and high temperature pressure vessels
JPH01123023A (en) Manufacture of high chromium ferritic steel
JPH10204577A (en) Ht590 class extra thick steel plate for construction use, excellent in weldability, and its production
JPH02190416A (en) Production of precipitation hardening type high tensile stainless steel excellent in welding strength and toughness
JP3114493B2 (en) Thick steel plate manufacturing method
JPS61177357A (en) Low-alloy normalized forged steel having superior toughness at low temperature
JPH0124212B2 (en)
JPH07242991A (en) High toughness chromium-molybdenum steel sheet excellent in weldability
JPS6312935B2 (en)
JPH01168812A (en) Manufacture of cr-mo steel excellent in strength and toughness