JPS6122115A - Combustion controlling method utilizing combustion exhaust gas - Google Patents

Combustion controlling method utilizing combustion exhaust gas

Info

Publication number
JPS6122115A
JPS6122115A JP14345384A JP14345384A JPS6122115A JP S6122115 A JPS6122115 A JP S6122115A JP 14345384 A JP14345384 A JP 14345384A JP 14345384 A JP14345384 A JP 14345384A JP S6122115 A JPS6122115 A JP S6122115A
Authority
JP
Japan
Prior art keywords
combustion
zone
exhaust gas
flame
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14345384A
Other languages
Japanese (ja)
Other versions
JPH0531045B2 (en
Inventor
Norimasa Shimomura
下村 憲正
Kenji Kaketa
健二 掛田
Mineo Fukiharu
吹春 峯男
Tatsuhiro Fujii
藤井 達宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP14345384A priority Critical patent/JPS6122115A/en
Publication of JPS6122115A publication Critical patent/JPS6122115A/en
Publication of JPH0531045B2 publication Critical patent/JPH0531045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L1/00Passages or apertures for delivering primary air for combustion 
    • F23L1/02Passages or apertures for delivering primary air for combustion  by discharging the air below the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/002Incineration of waste; Incinerator constructions; Details, accessories or control therefor characterised by their grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To prevent the adhesion of clinker and damage of a hearth and furnace wall and restrain the generation of NOx by a method wherein the primary air is blown from the down side of a grate and the secondary air is blown to the downstream portion of upper space. CONSTITUTION:The primary air for combustion (c) is blown from the down side of respective grates 2, 3, 4, combustion exhaust gas (a) is blown toward the center of flame 6 from the exhaust gas nozzle 10 provided on the furnace wall of upstream side portion of above of the respective grates 2, 3, 4, futher, the secondary air (b) is blown from a plural of air nozzles 11 provided at the downstream side of a space above the grates 2, 3, 4, thus, unburnt gas is burnt perfectly. As the amount of heat, received by a drying zone, heat decomposition, gasification zone is reduced by flame radiation, the fuel is not ignited and burnt immediately after throwing. The concentration of the thermal decomposition gas and oxygen are reduced, therefore, the flame temperature drops and the space of flame is spread. As a result, adhesion of clinker to the hearth and furnace wall as well as the damage of the hearth and the furnace wall upon high calorie fuel combustion may be prevented and generation of NOx in accordance with the reduction flame temperature may be restrained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃焼排ガスを用いた燃焼制御方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a combustion control method using combustion exhaust gas.

従来例の構成とその問題点 焼却炉内に投入された含水燃料は順次、乾燥過程、熱分
解・ガス化過程、発炎燃料過程、おき燃焼過程を経て燃
焼を終了するが、含水燃料の性状(含水率、発熱量、着
火側り他)の違いにより、上記の過程に要する時間が大
きく異なる。特に廃棄物のように性状変動が檄しい含水
燃料の場合、その性状変動に応じて、焼却炉内の乾燥ゾ
ーン、熱分解・ガス化ゾーン、発炎燃焼ゾーン、おき燃
焼ゾーンの長さが変化するが、これら各ゾーンを安定し
て制御することは、焼却炉の形状、炉床面積火炉容積等
が定められた焼却炉においては不可能であった。このた
め、着火性の良い高発熱量燃料の場合は、焼却炉投入後
の急激な発炎燃焼が制御できず、炉床、炉壁の損傷や高
濃度のNOx発生といった問題があった。
Conventional structure and its problems Hydrous fuel fed into an incinerator goes through a drying process, a thermal decomposition/gasification process, a flaming fuel process, and a combustion process to complete combustion, but the properties of the water-containing fuel The time required for the above process varies greatly depending on differences in water content, calorific value, ignition speed, etc. Especially in the case of water-containing fuels, such as waste, whose properties change easily, the lengths of the drying zone, pyrolysis/gasification zone, flaming combustion zone, and stoking combustion zone in the incinerator change depending on the changes in their properties. However, it has been impossible to stably control each of these zones in an incinerator whose shape, hearth area, furnace volume, etc. are determined. For this reason, in the case of high calorific value fuels with good ignitability, rapid flaming combustion cannot be controlled after being charged into the incinerator, resulting in problems such as damage to the hearth and furnace walls and generation of high concentrations of NOx.

一ン、熱分解・ガス化ゾーンの長さが長く、かつ不安定
なため、安定した燃焼管理が困難であるという問題があ
った。これらの問題はすべて、含水燃料の乾燥過程、熱
分解・、ガス化過程に必要な熱量のほとんどが発炎燃焼
による火炎からの熱輻射に依存していること、および、
この火炎輻射の強度が通常の燃焼制御方法では制御しき
れなかったことに起因している。
One problem is that stable combustion management is difficult because the pyrolysis/gasification zone is long and unstable. All of these problems are due to the fact that most of the heat required for the drying, pyrolysis, and gasification processes of hydrous fuel depends on heat radiation from the flame caused by flaming combustion;
This is due to the fact that the intensity of this flame radiation could not be fully controlled by normal combustion control methods.

つまり、火炎輻射強度を決定する熱分解ガス濃度、I!
索濃度、燃焼反応域の温度の焼却炉内の分布状況を人為
的に制御することが可能であれば、焼却炉内の各ゾーン
の制御も可能となるわけである。
In other words, the pyrolysis gas concentration that determines the flame radiation intensity, I!
If it is possible to artificially control the distribution of the fuel concentration and the temperature of the combustion reaction zone within the incinerator, it will also be possible to control each zone within the incinerator.

従来、この種の目的で燃焼用空気の量、送入位置を変化
させる方法がとられてきたが、空気中の酸素濃度が約2
1%と高いために、空気送人後の、熱分解ガスと送入空
気の燃焼反応が制御困難であり、したがって、火炎輻射
強度の制御も不可能であった。
Conventionally, methods have been used for this type of purpose by varying the amount of combustion air and the feeding position, but when the oxygen concentration in the air is approximately 2.
Since the temperature is as high as 1%, it is difficult to control the combustion reaction between the pyrolysis gas and the injected air after the air is injected, and therefore, it is also impossible to control the flame radiation intensity.

焼却炉内における含水燃料の燃焼過程は、火格子式焼却
炉を例にとると、着火性の良い高発熱量燃料の場合は第
1図のように、着火性の悪い低発熱量燃料の場合は第2
図のようになる。図において、1は焼却炉、2はその乾
燥火格子、3は燃焼火格子、4は後燃焼火格子、5は各
火格子2.3゜4の上で燃焼せしめられる焼却物、6は
焼却物5の火炎、7は輻射板、8はガス冷却室である。
Taking a grate-type incinerator as an example, the combustion process of water-containing fuel in an incinerator is as shown in Figure 1 for high calorific value fuel with good ignitability, and as shown in Figure 1 for low calorific value fuel with poor ignitability. is the second
It will look like the figure. In the figure, 1 is the incinerator, 2 is its drying grate, 3 is the combustion grate, 4 is the post-combustion grate, 5 is the incinerated material to be burned on each grate 2.3°4, and 6 is the incineration Object 5 is a flame, 7 is a radiation plate, and 8 is a gas cooling chamber.

そして、燃焼用空気の送入方法としては、各火格子2.
3.4の下方から燃焼用一次空気が送入されるとともに
、火格子2.3.4上方の炉壁適所に設けた複数の空気
ノズル9から燃焼用二次空気が送入される。
As for the method of feeding combustion air, each grate 2.
Primary air for combustion is introduced from below the grate 2.3.4, and secondary air for combustion is introduced from a plurality of air nozzles 9 provided at appropriate locations on the furnace wall above the grate 2.3.4.

すなわち、含水燃料の乾燥、熱分解・ガス化に必要な熱
量のほとんどが発炎燃焼ゾーンからの火炎輻射によるも
のであり、第1図に示す着火性の良い高発熱量燃料の場
合は、燃料の乾燥、熱分解・ガス化に必要な熱量が小さ
いのに比較して、火炎輻射による受は熱量が大きいため
、含水燃料の乾燥ゾーン、熱分解・ガス化ゾーンが知か
くなり、燃料投入後すぐに発炎燃焼するといった現象が
みられる。
In other words, most of the heat required for drying, pyrolysis, and gasification of water-containing fuel comes from flame radiation from the flaming combustion zone. Compared to the small amount of heat required for drying, pyrolysis, and gasification, the amount of heat received by flame radiation is large. A phenomenon of immediate flaming and burning is observed.

逆に、第2図に示す着火性の悪い低発熱量燃料の場合は
、燃料の乾燥、熱分解・ガス化に必要な熱量が大ぎいの
に比較して、発炎燃焼ゾーンが乾燥ゾーン、熱分解・ガ
ス化ゾーンと離れていることおよび火炎温度が低いため
9に、火炎輻射による受熱量が小さい。このため、乾燥
ゾーン、熱分解・ガス化ゾTンが長くなり1、安定した
燃焼管理が困難であった。  、 したがって、第1図のにうな燃臀状況に対してL火炎中
1炉内水噴霧を17 (+’・発炎燃焼Y−ンにおける
発生熱間を水の蒸発潜熱鴨より減少させる等の方法がと
られてい飛。永かし、火炎温度は熱分解ガス濃度、酸素
lit磨から決まる発応生成熱社が大きな因子として、
決定杢れるため、炉内水13霧により焼却炉内の温度を
低下させるこ午は可能であっても、火炎そのものの温度
を低減させるのは輿カであり、このため、火炎輻射にに
る受熱量が制御できず、したがって焼却炉内♀斧ゾーン
の制御もできなかった。
Conversely, in the case of a low calorific value fuel with poor ignitability as shown in Figure 2, the amount of heat required for drying, thermal decomposition and gasification of the fuel is large, but the flaming combustion zone is a dry zone, 9. Because it is far from the pyrolysis/gasification zone and the flame temperature is low, the amount of heat received by flame radiation is small. As a result, the drying zone and thermal decomposition/gasification zone became long, making stable combustion management difficult. Therefore, for the burning situation shown in Figure 1, the amount of water spray inside the furnace in the L flame is 17 (+'). For a long time, the flame temperature is determined by the pyrolysis gas concentration and the oxygen concentration, and the major factor is the heat generated by the reaction.
Because of this, even though it is possible to reduce the temperature inside the incinerator by using water inside the incinerator, it is the heat that reduces the temperature of the flame itself, and for this reason, it is difficult to cause flame radiation. The amount of heat received could not be controlled, and therefore the ♀axe zone inside the incinerator could not be controlled.

一方、第2図の、、!:うな揚重、火炎輻射ににる低発
熱燃料への電熱量を増加させるたやに、輻射板7の長さ
を長くしたり、燃焼排ガス、と低発熱量燃料が向流状態
で接触するよ、うに矩形状を考慮する方法がとられてい
る。
On the other hand, in Figure 2...! : In order to increase the amount of electric heat transferred to the low calorific value fuel through eel lifting and flame radiation, the length of the radiant plate 7 is increased, and the combustion exhaust gas and the low calorific value fuel come into contact with each other in a countercurrent state. A method is used that takes into account rectangular shapes.

この場合、発炎燃焼ゾーンの火炎輻射による熱量が乾燥
ゾーン、熱分解・ガス化ゾーンに有効に利用されるので
、乾燥ゾーン、熱分解・ガス化ゾーンが第1図と比較し
て短く、かつ安定になるが、燃料の発熱ωが牛くなると
、乾燥ゾーン、熱分解・ガス化ゾーンへの輻射熱量が第
1図の場合よりもさらに大きくなるため、燃料投入後の
急激燃焼が防止できないという問題があった。
In this case, the amount of heat due to flame radiation in the flaming combustion zone is effectively used in the drying zone and pyrolysis/gasification zone, so the drying zone and pyrolysis/gasification zone are shorter than in Figure 1, and However, if the heat generation ω of the fuel increases, the amount of radiant heat to the drying zone and pyrolysis/gasification zone will become even larger than in the case shown in Figure 1, so rapid combustion after fuel injection cannot be prevented. There was a problem.

また、第2図において、後燃焼火格子4より下方の炉壁
適所に設けた空気ノズル9から、あるいは後燃焼火格子
4の下方から燃焼用二次空気を送入する方法も採られて
いるが、この場合、発炎燃焼ゾーンの火炎燃焼が激しく
なり、発炎燃焼ゾーンの炉床や炉壁を損傷するとともに
、高濃度のNOXが発生するという問題があった。
In addition, as shown in FIG. 2, a method is also adopted in which secondary air for combustion is introduced from an air nozzle 9 provided at an appropriate location on the furnace wall below the post-combustion grate 4, or from below the post-combustion grate 4. However, in this case, there was a problem in that the flame combustion in the flaming combustion zone became intense, damaging the hearth and furnace wall in the flaming combustion zone, and generating a high concentration of NOx.

発明の目的 本発明は上記従来の問題を解消する燃焼排ガスを用いた
燃焼制御方法を提供することを目的と4−る。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a combustion control method using combustion exhaust gas that solves the above-mentioned conventional problems.

発明の構成 」2目的を達成するため、本発明の燃焼排ガスを用いた
燃焼制御方法は、焼却炉内の乾燥ゾーン、熱分解・ガス
化ゾーン、発炎燃焼ゾーン、おき燃焼ゾーンを形成する
各火格子の下方から燃焼用一次空気を送入するとともに
、前記火格子上方の空間上流側部分に燃焼排ガスを送入
して焼却物の燃焼を行い、さらに前記火格子上方の空間
下流側部分に燃焼用二次空気を送入して未燃ガスの完全
燃焼を行うものであり、これにより、炉床、炉壁へのタ
リンカ付着や炉床、炉壁の損傷が防止できるとともに、
火炎温度の低下に伴いNOxの発生量を抑制することが
できるものである。
In order to achieve the second object of ``Structure of the Invention'', the combustion control method using combustion exhaust gas of the present invention provides a method for controlling combustion using combustion exhaust gas in each incinerator that forms a drying zone, a pyrolysis/gasification zone, a flaming combustion zone, and a stoking combustion zone. Primary air for combustion is fed from below the grate, and combustion exhaust gas is fed into the upstream part of the space above the grate to burn the incinerated material, and further into the downstream part of the space above the grate. This system completely burns the unburned gas by introducing secondary air for combustion, which prevents tarinka from adhering to the hearth and furnace walls and damage to the hearth and furnace walls.
The amount of NOx generated can be suppressed as the flame temperature decreases.

実施例と作用 以下、本発咀の一実施例を図面に基づいて説明する。な
お、第1図、第2図に示したものと同一構成のものには
同一番号を付して説明を省略する。
Embodiment and Function An embodiment of the present invention will be described below with reference to the drawings. Components having the same configuration as those shown in FIGS. 1 and 2 are designated by the same reference numerals and their explanations will be omitted.

第3図に高発熱燃料に対する燃焼排ガスを用いた燃焼制
御の一例を示1.1なわち、各火格子2゜3.4の下方
から燃焼用一次空気を送入するとともに、火格子2,3
.4上方の空間上流側部分に対応して焼却炉前部炉壁に
設番ノだ排ガスノズル1゜から発炎燃焼ゾーン火炎6の
中心部をめがけて燃焼排ガスを送入し、さらに火格子2
,3.4土方の空間下流側部分に対応して焼却炉側部炉
壁に設けた複数の空気ノズル11から燃焼用二次空気を
送入して未燃ガスの完全燃焼を行う。そうすると、乾燥
ゾーン、熱分解・ガス化ゾーンが火炎輻射により受ける
熱量が減少するために、乾燥ゾーン、熱分解・ガス化ゾ
ーンがともに長くなり、燃料投入後すぐに着火燃焼する
現象がなくなる。また、火炎中の熱分解ガス濃度、W1
素濃度が低下するために、第1図に比較して火炎温度が
低下し、火炎部空間が広がる。この結果、高発熱量燃料
焼却時の炉床、炉壁へのタリンカ附着および炉床炉壁の
損傷が防止できるとともに、火炎温度の低下に伴い、N
Oxの発生が抑制可能となる。
Fig. 3 shows an example of combustion control using combustion exhaust gas for high heat generating fuel.1.1 In other words, primary air for combustion is introduced from below each grate 2. 3
.. 4. Combustion exhaust gas is fed into the center of the flaming combustion zone flame 6 from a numbered exhaust gas nozzle 1° installed on the front furnace wall of the incinerator corresponding to the upstream part of the space above 4, and then into the grate 2.
, 3.4 Secondary air for combustion is introduced from a plurality of air nozzles 11 provided on the side wall of the incinerator corresponding to the downstream part of the Hijikata space to completely burn the unburned gas. In this case, the amount of heat received by the drying zone and the pyrolysis/gasification zone by flame radiation is reduced, so that both the drying zone and the pyrolysis/gasification zone become longer, eliminating the phenomenon of ignition and combustion immediately after fuel is input. In addition, the concentration of pyrolysis gas in the flame, W1
Since the elementary concentration decreases, the flame temperature decreases compared to FIG. 1, and the flame space expands. As a result, it is possible to prevent tarinka from adhering to the hearth and hearth wall and damage to the hearth hearth wall during incineration of high calorific value fuel.
Generation of Ox can be suppressed.

第4図に低発熱ω燃料に対する燃焼排ガスを用いた燃焼
制御の一例を示す。すなわち、各火格子2.3.4の下
方から燃焼用一次空気を送入づるとともに、火格子2.
3.4上方の空間上流側部分に対応して焼却炉後部炉壁
に設けた排ガスノズル10から発炎燃焼ゾーン火炎6の
中心部をめがりて燃焼排ガスを送入し、さらに火格子2
.3.4上方の空間下流側部分に対応して焼却炉側部炉
壁□に設けた複数の空気ノズル9から燃焼用二次゛空気
を送入して未燃ガスの完全燃焼を行う。そうすると、発
炎燃焼ゾーンにおける急激な火炎燃焼が防止できるとと
もに、火炎空間が乾燥ゾーン側に広がる。この結果、発
炎燃焼ゾーンにお番プる炉床や炉壁の損傷が防止できる
とともに、火炎温度の低下に伴い、NOXの発生が抑制
できることになる、さらに、火炎空間が乾燥ゾーン側に
広がることにより、乾燥ゾーン、熱分解・ガス化ゾーン
における炎輻射による受熱最が増加し、乾燥ゾーン、熱
分解・カス化ゾーンが短かくなって安定する。
FIG. 4 shows an example of combustion control using combustion exhaust gas for low heat generation ω fuel. That is, primary air for combustion is introduced from below each grate 2.3.4, and the grate 2.3.
3.4 Combustion exhaust gas is fed into the center of the flaming combustion zone flame 6 from the exhaust gas nozzle 10 provided on the rear wall of the incinerator corresponding to the upstream part of the upper space, and further into the grate 2.
.. 3.4 Secondary air for combustion is introduced from a plurality of air nozzles 9 provided on the side wall of the incinerator corresponding to the downstream part of the upper space to completely burn the unburned gas. By doing so, rapid flame combustion in the flaming combustion zone can be prevented, and the flame space expands toward the drying zone side. As a result, damage to the hearth and furnace walls in the flaming combustion zone can be prevented, and as the flame temperature decreases, NOx generation can be suppressed.Furthermore, the flame space can spread toward the drying zone side. As a result, the heat received by flame radiation in the drying zone and pyrolysis/gasification zone increases, and the drying zone and pyrolysis/gasification zone become shorter and stable.

第5図に前記燃焼制御方法を具体的に実施する方法を示
す。すなわち、炉内の乾燥・熱分解ガス化ゾーン、発炎
燃焼ゾーン、おき燃焼ゾーンの上部温度を熱電対、光温
度計等で4測し、各々のゾーンの上部温度が各ゾーンの
設定値(例:TlC−1:400℃、Tic−2:l1
100℃、Tl−C−3:′500℃他)となるように
、各ゾーン゛への燃焼排ガス飯込最を各々制御する。こ
の場合、排ガスノズル10は焼却炉前部、上部、後部の
各炉壁に設けている。そうすると、炉床上の各ゾーンは
燃料の性状変動に対しても、安定した燃焼が可能となり
、火炎温度の低下に伴って、炉床、炉壁の損傷が防止で
きることになる。また、NOXの発生量も抑制されるこ
とになる。
FIG. 5 shows a method for specifically implementing the combustion control method. That is, the upper temperature of the drying/pyrolysis gasification zone, flaming combustion zone, and stoking combustion zone in the furnace is measured four times using a thermocouple, optical thermometer, etc., and the upper temperature of each zone is determined by the set value ( Example: TIC-1: 400°C, Tic-2: l1
100°C, Tl-C-3: '500°C, etc.), the amount of combustion exhaust gas flowing into each zone is controlled respectively. In this case, the exhaust gas nozzles 10 are provided on the front, upper, and rear walls of the incinerator. In this way, each zone on the hearth can perform stable combustion even when the properties of the fuel vary, and damage to the hearth and hearth walls can be prevented as the flame temperature decreases. Furthermore, the amount of NOX generated will also be suppressed.

ところで、燃焼排ガスによる燃焼制御により、焼却炉出
口排ガス中の未燃ガス濃!衰(Co、CH4他)が増加
する場合が考えられるが、これに対しては、焼却炉出口
排ガス中の02濃度がある一定濃度(例:8%)以上と
なるように燃焼用二次空気を送入するかあるいは、焼却
炉出口排ガス中のco′m度がある一定濃度(例: 3
0ppm )以下と・なるように燃焼用二次空気を送入
するといった方法を用いることにより対処できる。また
、別゛の方法として、焼却炉出ロガス渇U(TIG−4
)が一定(例:900℃)となるように、燃焼用二次空
気量を制御することにより、排ガス中米燃ガスの完全燃
焼と炉温制御をあわせて行うことも可能である。
By the way, due to combustion control using combustion exhaust gas, the concentration of unburned gas in the exhaust gas at the incinerator outlet increases! There may be cases where the decomposition (Co, CH4, etc.) increases, but in response to this, the secondary combustion air should be Alternatively, the CO'm degree in the exhaust gas at the incinerator outlet may be at a certain concentration (e.g. 3
This can be dealt with by introducing secondary air for combustion so that the amount is below 0 ppm. In addition, as another method, incinerator log gas exhaustion U (TIG-4
) is constant (eg 900° C.) by controlling the amount of secondary air for combustion, it is also possible to achieve complete combustion of the exhaust Central American fuel gas and control the furnace temperature at the same time.

以上、炉内各部の温度を計測、制御することにより焼却
炉内の燃焼を制御する方法について述べたが、温度検知
器を用いず各々のゾーンのガス濃度(例、02濃度、C
O2濃度、CO濃度、炭化水素St度、(l!りを計測
し、そのm麿が、各ゾーンの設定値(例二乾燥熱分解ガ
ス化ゾーン02濃度10%、発炎燃焼ゾーン02111
度5%、おき燃焼ゾーン02濃度 10%)となるよう
に、各ゾーンへの燃焼排ガス吹込量を各々制御してもよ
い。
Above, we have described a method for controlling combustion in an incinerator by measuring and controlling the temperature of each part of the furnace.
O2 concentration, CO concentration, hydrocarbon St degree, (l!
The amount of combustion exhaust gas blown into each zone may be controlled so that the concentration of the combustion exhaust gas is 5%, and the concentration of the combustion zone 02 is 10%.

なお、本発明は、焼却炉内において燃料の乾燥ゾーン、
熱分解・ガス化ゾーン、発炎燃焼ゾーン、おき燃焼ゾー
ンが存在する各種の焼却炉に適用可能である。また、燃
焼1tlJIIlに用いる燃焼排ガスとしては、焼却炉
出口の排ガスでも集じん器出口の排ガスでも、洗煙装置
(乾式または湿式)出口排ガス等のいずれの燃焼排ガス
でもよい。
Note that the present invention provides a fuel drying zone in an incinerator,
It can be applied to various types of incinerators that include a pyrolysis/gasification zone, a flaming combustion zone, and an ignited combustion zone. Further, the combustion exhaust gas used in the combustion 1tlJIIl may be any combustion exhaust gas, such as exhaust gas at the incinerator outlet, exhaust gas at the dust collector outlet, or exhaust gas at the smoke cleaning device (dry type or wet type) outlet.

発明の効果 以上、本発明方法によれば、次の効果を得ることができ
る。
Effects of the Invention According to the method of the present invention, the following effects can be obtained.

(1)  高発熱量燃料の燃焼に対しては、燃料投入後
ずくに着火、燃焼する現象が制御できる。
(1) Regarding the combustion of high calorific value fuel, it is possible to control the phenomenon of ignition and combustion immediately after the fuel is input.

その結果、炉床、炉壁へのタリンカ付着や炉床、炉壁の
損傷が防止できるとともに、火炎温度の低下に一忙いN
Oxの発生量をy制御できる。
As a result, it is possible to prevent tarinka from adhering to the hearth and furnace walls and damage to the hearth and furnace walls, and to reduce the flame temperature.
The amount of Ox generated can be controlled.

Q) 低発熱恒燃料の燃焼に対しては、発炎燃焼ゾーン
における急激な発炎燃焼が防止でき、炉床や炉壁へのタ
リンカ付着や炉床、炉壁の損傷が防止できるとともに、
火炎温度の低下に伴いNOxの発生量を抑制できる。さ
らに、火炎が乾燥ゾーン側に広がることにより、炉床上
の燃料の着火を早め、乾燥ゾーン、熱分解・ガス化ゾー
ンの増加を防止できるとともに安定させる効果が得られ
る。
Q) For combustion of low heat constant fuel, rapid flaming combustion in the flaming combustion zone can be prevented, tarinka adhesion to the hearth and furnace walls, and damage to the hearth and furnace walls can be prevented.
The amount of NOx generated can be suppressed as the flame temperature decreases. Furthermore, by spreading the flame toward the drying zone, the ignition of the fuel on the hearth is accelerated, and an increase in the drying zone and thermal decomposition/gasification zone can be prevented and stabilized.

(3)  また、空気三段送入方式によって未燃ガスの
完全燃焼を行うので、性状変動の激しいごみ等の燃焼に
対しても焼却炉内の各ゾーンの制御が可能となり、炉床
、炉空間を十分に活用した燃焼が実施できる。この結果
、発炎燃焼ゾーンにおける急激な発炎燃焼が防止できる
。このため、炉床、炉壁へのタリン力付着や炉床、炉壁
の損傷が防止できるとともに、火炎温度の低下に伴いN
Oxの発生量を制御できる。
(3) In addition, since unburned gas is completely combusted using a three-stage air supply system, it is possible to control each zone within the incinerator even when burning garbage, etc. whose properties fluctuate widely, allowing the hearth, Combustion can be carried out making full use of space. As a result, rapid flaming combustion in the flaming combustion zone can be prevented. Therefore, it is possible to prevent talin force adhesion to the hearth and furnace walls and damage to the hearth and furnace walls, and as the flame temperature decreases, N
The amount of Ox generated can be controlled.

(4)  さらに、プラスチック等の熱分解速度の大ぎ
い燃料に対して、その熱分解速度を抑1ijj するこ
とにより、発生熱分解ガス量の変動を制御し、その熱分
解ガスが完全燃焼するのに必要な燃焼用二次空気量を焼
却炉出口02等の31測直に基づいて供給することによ
り、排ガス中の未燃ガスを完全燃焼することが可能とな
る。この結果、プラスチック等の熱分解速度の大きい燃
料の燃焼に際して、発生する未燃カーボン、C01CH
4といった未燃ガス成分の減少が可能となり、これらの
未燃成分と排ガス中に含まれるHCρ、SOx等の有害
ガスとの共存ににって引ぎ起こされる焼却炉内耐火物の
浸食や、ボイラデユープの腐食を防止することが可能と
なる。
(4) Furthermore, by suppressing the thermal decomposition rate of fuels such as plastics that have a high thermal decomposition rate, fluctuations in the amount of generated thermal decomposition gas can be controlled and the complete combustion of the thermal decomposition gas can be prevented. By supplying the required amount of secondary air for combustion based on the 31 measurements of the incinerator outlet 02, etc., it becomes possible to completely burn the unburned gas in the exhaust gas. As a result, unburnt carbon, C01CH, is generated when burning fuel with a high thermal decomposition rate such as plastic.
This makes it possible to reduce unburned gas components such as 4, and prevents erosion of the refractories inside the incinerator caused by the coexistence of these unburned components and harmful gases such as HCρ and SOx contained in the exhaust gas. It becomes possible to prevent corrosion of the boiler duplex.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来例を示す焼却炉縦断
面図、第3図〜第5図はそれぞれ本発明方法の一実施例
を示1゛焼却炉縦断面図である。 1・・・焼却炉、2・・・乾燥火格子、3・・・燃焼火
格子、4・・・後燃焼火格子、5・・・焼却物、9.1
0・・・空気ノズル、10・・・排ガスノズル
FIGS. 1 and 2 are longitudinal sectional views of an incinerator, respectively, showing a conventional example, and FIGS. 3 to 5 are longitudinal sectional views of an incinerator, each showing an embodiment of the method of the present invention. 1... Incinerator, 2... Drying grate, 3... Combustion grate, 4... Post-combustion grate, 5... Incinerated material, 9.1
0...Air nozzle, 10...Exhaust gas nozzle

Claims (1)

【特許請求の範囲】[Claims] 1、焼却炉内の乾燥ゾーン熱分解・ガス化ゾーン、発炎
燃焼ゾーン、おき燃焼ゾーンを形成する各火格子の下方
から燃焼用一次空気を送入するとともに、前記火格子上
方の空気上流側部分に燃焼排ガスを送入して焼却物の燃
焼を行い、さらに前記火格子上方の空間下流側部分に燃
焼用二次空気を送入して未燃ガスの完全燃焼を行うこと
を特徴とする燃焼排ガスを用いた燃焼制御方法。
1. Primary air for combustion is introduced from below each grate forming the drying zone pyrolysis/gasification zone, flaming combustion zone, and arbor combustion zone, and the air upstream side above the grate. The method is characterized in that combustion exhaust gas is fed into the part to burn the incinerated material, and secondary air for combustion is fed into the downstream part of the space above the grate to completely burn the unburned gas. Combustion control method using combustion exhaust gas.
JP14345384A 1984-07-10 1984-07-10 Combustion controlling method utilizing combustion exhaust gas Granted JPS6122115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14345384A JPS6122115A (en) 1984-07-10 1984-07-10 Combustion controlling method utilizing combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14345384A JPS6122115A (en) 1984-07-10 1984-07-10 Combustion controlling method utilizing combustion exhaust gas

Publications (2)

Publication Number Publication Date
JPS6122115A true JPS6122115A (en) 1986-01-30
JPH0531045B2 JPH0531045B2 (en) 1993-05-11

Family

ID=15339052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14345384A Granted JPS6122115A (en) 1984-07-10 1984-07-10 Combustion controlling method utilizing combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPS6122115A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193847A (en) * 1992-12-28 1994-07-15 Kubota Corp Combustion controller for incinerator
JPH06313534A (en) * 1993-04-20 1994-11-08 Martin Gmbh Fuer Umwelt & Energietech Incinerating method of combustible
WO2014132532A1 (en) * 2013-02-28 2014-09-04 日立造船株式会社 Recirculated exhaust gas supply control method for stoker furnace, and stoker furnace
CN105008802B (en) * 2013-02-28 2016-11-30 日立造船株式会社 The EGR gas supply control method of grate furnace and grate furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147030A1 (en) * 2012-03-29 2013-10-03 日立造船株式会社 Combustion driving method in incinerator
JP2015169405A (en) * 2014-03-10 2015-09-28 日立造船株式会社 Angle variable type gas blowing-in device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193847A (en) * 1992-12-28 1994-07-15 Kubota Corp Combustion controller for incinerator
JPH06313534A (en) * 1993-04-20 1994-11-08 Martin Gmbh Fuer Umwelt & Energietech Incinerating method of combustible
WO2014132532A1 (en) * 2013-02-28 2014-09-04 日立造船株式会社 Recirculated exhaust gas supply control method for stoker furnace, and stoker furnace
JP2014167353A (en) * 2013-02-28 2014-09-11 Hitachi Zosen Corp Stoker furnace recirculated exhaust gas supply control method and stoker furnace
CN105008802A (en) * 2013-02-28 2015-10-28 日立造船株式会社 Recirculated exhaust gas supply control method for stoker furnace, and stoker furnace
CN105008802B (en) * 2013-02-28 2016-11-30 日立造船株式会社 The EGR gas supply control method of grate furnace and grate furnace

Also Published As

Publication number Publication date
JPH0531045B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
BG106652A (en) Solid fuel burner and combustion method using solid fuel burner
JPS5837415A (en) Nox decreasing incinerator
JPS62169921A (en) Stable combustion of fluidized bed furnace
KR960010601B1 (en) Opposed fired rotary kiln
JP5861880B2 (en) Waste incinerator and waste incineration method
US4986199A (en) Method for recovering waste gases from coal partial combustor
JP3887149B2 (en) Stoker furnace and incineration method using the same
JPS6122115A (en) Combustion controlling method utilizing combustion exhaust gas
JP3247066B2 (en) Freeboard temperature control method for fluidized bed incinerator.
JP2642568B2 (en) Secondary combustion method of refuse incinerator
Lee et al. Co-firing of paper sludge with high-calorific industrial wastes in a pilot-scale nozzle-grate incinerator
JPS5915709A (en) Steam generator with fluidized-bed combustion chamber
JP3430873B2 (en) Waste incinerator
JP3364112B2 (en) Incinerator and its combustion method
EP1500875A1 (en) Method of operating waste incinerator and waste incinerator
JP3598882B2 (en) Two-stream waste incinerator and its operation method
JP3014953B2 (en) Incinerator
JPH0247649B2 (en) ROOTARIKIRUNNIOKERUNENSHOHAIGASUOMOCHIITANENSHOSEIGYOHOHO
JPS6243084B2 (en)
JPS61208422A (en) Combustion control method using combustion exhaust gas in rotary kiln
JP2008224144A (en) Waste incinerating method
JP2733201B2 (en) Garbage incineration equipment
JP2004169955A (en) Waste incinerator and method of operating the same
JPS6357683B2 (en)
JP2004077087A (en) Waste incinerator