JPS61221151A - Production of 2,3-naphthalenedicarboxyclic acid - Google Patents

Production of 2,3-naphthalenedicarboxyclic acid

Info

Publication number
JPS61221151A
JPS61221151A JP60062171A JP6217185A JPS61221151A JP S61221151 A JPS61221151 A JP S61221151A JP 60062171 A JP60062171 A JP 60062171A JP 6217185 A JP6217185 A JP 6217185A JP S61221151 A JPS61221151 A JP S61221151A
Authority
JP
Japan
Prior art keywords
cobalt
dimethylnaphthalene
solvent
manganese
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60062171A
Other languages
Japanese (ja)
Other versions
JPH0639445B2 (en
Inventor
Takao Maki
真木 隆夫
Yoshio Asahi
佳男 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP60062171A priority Critical patent/JPH0639445B2/en
Publication of JPS61221151A publication Critical patent/JPS61221151A/en
Publication of JPH0639445B2 publication Critical patent/JPH0639445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled substance useful as an intermediate for organic syntheses with a small amount of a solvent efficiently in high yield, by oxidizing 2,3-dimethylnaphthalene in a high concentration in a liquid phase with molecular oxygen in the presence of a specific catalyst containing essential elements such as cobalt, manganese, etc. CONSTITUTION:2,3-Dimethylnaphthalene as a raw material is oxidized with molecular oxygen in the presence of a catalyst containing cobalt, manganese, zirconium, and bromine as essential components in a solvent, preferably acetic acid preferably <=30wt% 2,3-dimethylnaphthalene of the raw material in the reaction solvent at 60-250 deg.C, preferably 100-180 deg.C at normal pressure - about 300kg/cm<2>, to give the aimed compound. The concentration of the catalyst is preferably about 100-10,000ppm each essential element as the concentration in the solvent. An atomic ratio of bromine to cobalt is importantly kept <=3, preferably <=2.

Description

【発明の詳細な説明】 (a)発明の目的 本発明は2,3−ジメチルナフタレン金液相において分
子状酸素により酸化して2,3−ナフタレンジカルボン
酸を製造する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Object of the Invention The present invention relates to an improvement in the process for producing 2,3-naphthalene dicarboxylic acid by oxidizing 2,3-dimethylnaphthalene in a gold liquid phase with molecular oxygen.

(産業上の利用分野) 本発明は、染料や有機顔料の製造をはじめとする各種の
有機合成用中間体とし、て有用な2.3−ナフタレンジ
カルボン酸を2,3−ジメチルナフタレンより有利に製
造するのに用いることができる。
(Industrial Application Field) The present invention provides 2,3-naphthalene dicarboxylic acid, which is useful as an intermediate for various organic synthesis including the production of dyes and organic pigments, more advantageously than 2,3-dimethylnaphthalene. It can be used for manufacturing.

(従来技術) 従来、2,3−ナツタレンジカルぎン酸は工業的にはア
ントラセンの酸化によファンドラキノンを製造する際の
副生成物として得られていたが、原料的な制約があるの
で、2.3−ジメチルナフタレンの酸化により2.3−
ナツタレンジカルがン酸を製造する方法が提案されるよ
うになった。
(Prior art) Conventionally, 2,3-natutaledicarginic acid has been industrially obtained as a by-product during the production of fundraquinone by oxidation of anthracene, but there are limitations in terms of raw materials. Therefore, the oxidation of 2,3-dimethylnaphthalene produces 2,3-
A method for producing natsuta dicarboxylic acid has been proposed.

たとえば、2,3−ジメチルナフタレンをクロム酸及び
その塩、過マンガン酸塩、硝酸等の酸化剤により酸化し
て2,3−ナフタレンジカルボン酸ヲ得る方法が提案さ
れた。しかし、これらの酸化剤が高価であるうえに、重
金属化合物(クロム酸、クロム酸塩及び過マンガン酸塩
の場合)、又は窒素酸化物(硝酸の場合)等の公害原因
物質を排出する欠点がある。
For example, a method has been proposed to obtain 2,3-naphthalene dicarboxylic acid by oxidizing 2,3-dimethylnaphthalene with an oxidizing agent such as chromic acid and its salts, permanganate, or nitric acid. However, these oxidizing agents are expensive and have the disadvantage of emitting pollutants such as heavy metal compounds (in the case of chromic acid, chromates and permanganates) or nitrogen oxides (in the case of nitric acid). be.

また、特開昭52−7945号公報には、2.3−ジメ
チルナフタレンを酢酸溶媒中でコバルト・マンガン・臭
素触媒を用いて加圧下に空気酸化して2,3−ナフタレ
ンジカルボン酸を製造する方法が記載されているが、こ
の方法は反応系中の原料の2,3−ジメチルナフタレン
濃度を0.5モル/を以下の低濃度に保たないと、2,
3−ナツタレンジカルがン酸の収率が低下するために、
工業的実施の場合に多量の酢酸溶媒を必要とし、能率が
悪く、製品コストが高くなる欠点がある。
Furthermore, JP-A-52-7945 discloses that 2,3-naphthalene dicarboxylic acid is produced by air oxidizing 2,3-dimethylnaphthalene in an acetic acid solvent using a cobalt-manganese-bromine catalyst under pressure. However, this method requires that the concentration of 2,3-dimethylnaphthalene in the raw material in the reaction system be kept at a low concentration of 0.5 mol/or less.
Because the yield of 3-natutalenic acid decreases,
In industrial implementation, a large amount of acetic acid solvent is required, resulting in poor efficiency and high product cost.

(発明が解決しようとする問題点) 本発明は、比較的に少量の反応溶媒を用いた比較的高濃
度の原料基質を含む液相反応系で2.3−ジメチルナフ
タレンを分子状酸素により酸化して、高い収率で2,3
−ナフタレンジカルボン酸を製造できる方法を提供しよ
うとするものである。
(Problems to be Solved by the Invention) The present invention oxidizes 2,3-dimethylnaphthalene with molecular oxygen in a liquid phase reaction system containing a relatively high concentration of raw material substrate using a relatively small amount of reaction solvent. 2,3 in high yield.
- It is an object of the present invention to provide a method for producing naphthalene dicarboxylic acid.

(b)発明の構成 (問題点を解決するための手段) 本発明者等は前記の問題点を解決するために種々研究を
重ねた結果、必須元素としてコバルト、マンガン、ジル
コニウム及び臭素を含有する触媒を用いれば、その目的
を容易に達成できることを知り、本発明に到達したもの
である。
(b) Structure of the Invention (Means for Solving the Problems) As a result of various studies conducted by the present inventors to solve the above-mentioned problems, the present inventors discovered that cobalt, manganese, zirconium, and bromine are included as essential elements. The present invention was developed based on the realization that the purpose could be easily achieved by using a catalyst.

すなわち、本発明の2,3−ナツタレンジカルはン酸の
製造方法は、2,3−ジメチルナフタレンを分子状酸素
により酸化して2,3−ナフタレンジカルボン酸を製造
する際に、必須元素としてコバルト、マンガン、ジルコ
ニウム及び臭素を含有する触媒を用いることを特徴とす
る方法である。
That is, in the method for producing 2,3-naphthalene dicarboxylic acid of the present invention, when producing 2,3-naphthalene dicarboxylic acid by oxidizing 2,3-dimethylnaphthalene with molecular oxygen, This method is characterized by using a catalyst containing cobalt, manganese, zirconium and bromine.

本発明の方法で用いる触媒は必須元素としてコバルト、
マンガン、ジルコニウム及び臭素を含有するものである
が、その触媒が反応系において均一に溶解するのが望ま
しい。触媒形成のために反応系に添加するコバルト化合
物としては、たとえば酢酸コバルト、ナフテン酸コバル
ト、水酸化コバルト、臭化コバルト等が用いられる。ま
た、そのマンガン化合物としては、たとえば酢酸マンガ
ン、オクチル酸マンガン、臭化マンガン等が用いられる
。また、そのジルコニウム化合物としては、たとえば酢
酸ジルコニル、臭化ジルコニウム、炭酸ジルコニル、硝
酸ジルコニル等が用いられる。
The catalyst used in the method of the present invention contains cobalt as an essential element,
Although it contains manganese, zirconium, and bromine, it is desirable that the catalyst be uniformly dissolved in the reaction system. Examples of the cobalt compound added to the reaction system for catalyst formation include cobalt acetate, cobalt naphthenate, cobalt hydroxide, and cobalt bromide. Further, as the manganese compound, for example, manganese acetate, manganese octylate, manganese bromide, etc. are used. Further, as the zirconium compound, for example, zirconyl acetate, zirconium bromide, zirconyl carbonate, zirconyl nitrate, etc. are used.

さらに、その臭素化合物としては、たとえば臭化ナトリ
ウム、臭化カリウム、臭化水素、臭化アンモニウム、テ
トラブロモエタン、臭化ヘンシル等が使用される。
Further, as the bromine compound, for example, sodium bromide, potassium bromide, hydrogen bromide, ammonium bromide, tetrabromoethane, hensyl bromide, etc. are used.

本発明の方法における触媒濃度は、反応溶媒中の濃度と
して、コバルト、マンガン、ジルコニウム及び臭素とも
、通常5〜25,000 ppm程度、好ましくは10
0〜10,000 ppm程度である。そして、コバル
トに対するマンガン及びジルコニウムの原子比はさほど
決定的でなく、たとえばそれぞれ0.05〜5の範囲で
あればよい。コバルトに対する臭素の原子比の上限が極
めて重要であシ、同原子比を3以下、好ましくは2以下
に保つのが望ましい。また、同原子比の下限は、たとえ
ば061程度でも有効である。
The catalyst concentration in the method of the present invention is usually about 5 to 25,000 ppm, preferably about 10 ppm for cobalt, manganese, zirconium, and bromine in the reaction solvent.
It is about 0 to 10,000 ppm. The atomic ratio of manganese and zirconium to cobalt is not so critical, and may range from 0.05 to 5, for example. The upper limit of the atomic ratio of bromine to cobalt is extremely important, and it is desirable to keep the atomic ratio below 3, preferably below 2. Further, the lower limit of the same atomic ratio is, for example, approximately 061.

本発明の製造反応においては溶媒が使用され、その溶媒
としては低級カルゲン酸、特に酢酸が好マシい。酢酸は
ベンゼン、クロルベンゼン等のような不活性溶媒によフ
希釈して使用してもよい。
A solvent is used in the production reaction of the present invention, and lower calgenic acids, particularly acetic acid, are preferred as the solvent. Acetic acid may be diluted with an inert solvent such as benzene, chlorobenzene, etc. before use.

また、溶媒には若干の水が含まれていても差支えがない
Further, there is no problem even if the solvent contains some water.

本発明の方法における酸化剤の分子状酸素としては、通
常、空気を使用するのが便利であるが、適当な不活性ガ
ス(たとえば窒素等)で濃度調節した酸素を用いてもよ
い。
As the molecular oxygen used as the oxidizing agent in the method of the present invention, it is usually convenient to use air, but oxygen whose concentration is adjusted with an appropriate inert gas (eg, nitrogen, etc.) may also be used.

本発明の方法における反応温度は、通常、60〜250
℃、好ましくは100〜180℃であり、反応圧力は常
圧〜30 k!9/cm2程度の範囲から適宜に選択さ
れる。一般に、圧力を高めると2,3−ナフタレンジカ
ルボン酸の収率が向上するが、その反面において溶媒(
酢酸等)と酸素とから爆発性混合物が形成されるおそれ
があるので、反応圧力の選定には充分な注意が必要であ
る。
The reaction temperature in the method of the present invention is usually 60 to 250
℃, preferably 100 to 180℃, and the reaction pressure is normal pressure to 30 k! It is appropriately selected from a range of about 9/cm2. In general, increasing the pressure improves the yield of 2,3-naphthalene dicarboxylic acid, but on the other hand, the solvent (
Since there is a risk that an explosive mixture may be formed from (acetic acid, etc.) and oxygen, sufficient care must be taken in selecting the reaction pressure.

本発明の方法における原料の2,3−ツメチルナフタレ
ン濃度は、反応溶媒中の2.3−ジメチルナフタレン濃
度として30重量−以下であればよく、比較的に高い原
料基質濃度を使用することができる。
The 2,3-dimethylnaphthalene concentration of the raw material in the method of the present invention may be 30% by weight or less as the 2,3-dimethylnaphthalene concentration in the reaction solvent, and a relatively high raw material substrate concentration may be used. can.

本発明の製造反応は、・々ツチ方式、半連続方式及び連
続方式のいずれの態様においても実施することができ、
いずれの場合も、通常、反応系に供給された2、3−−
.2メチルナフタレンが実質的に完全に転換されて、消
失されるまで反応を行なわせる。
The production reaction of the present invention can be carried out in any of the following modes: a...
In either case, the 2,3--
.. The reaction is allowed to run until substantially complete conversion and disappearance of the 2-methylnaphthalene.

本発明の製造反応終了後の反応生成物を冷却すると、2
,3−ナフタレンジカル?ン酸の結晶が析出するので、
濾過又は遠心分離等の手段で母液と容易に分離できる。
When the reaction product after the completion of the production reaction of the present invention is cooled, 2
,3-naphthalenedical? As crystals of phosphoric acid precipitate,
It can be easily separated from the mother liquor by means such as filtration or centrifugation.

2,3−ナフタレンジカル?ン酸の結晶を分離した母液
は溶解変分に相当する若干の2,3−ナフタレンジカル
♂ン酸及び触媒成分を含んでいるので、そのまま或いは
適当な精製処理を施して水分等を分離してから、次回の
反応に再使用することができる。
2,3-naphthalenedical? The mother liquor from which the crystals of phosphoric acid are separated contains a small amount of 2,3-naphthalenedicanic acid corresponding to the dissolved fraction and a catalyst component, so it can be used as it is or after an appropriate purification process to separate moisture, etc. can be reused for the next reaction.

(実施例等) 以下に、実施例及び比較例′f:あげてさらに詳述する
(Examples, etc.) Below, Examples and Comparative Examples 'f' will be described in further detail.

実施例1〜4 比較例1 200プのチタン製オートクレーブに、2.3−ジメチ
ルナフタレン7、 Of 、及び酢酸701117を仕
込み、さらに触媒成分のCo 、 Mn%Zr 、及び
Brの各濃度がそれぞれ第1表に示す濃度になるように
酢酸コバルト、酢酸マンガン、酢酸ジルコニル及び臭化
ナトリウムを仕込み、140℃、8に9/cm2の条件
下で、35L/時間の割合で空気を流通させながら45
分間酸化反応させた。生成した2、3−ナフタレンジカ
ルメン醸を液体クロマトグラフィーにより定景した結果
は第1表に示すとおりであったO ■発明の効果す 本発明の方法は、コバルト・マンガン、・臭素触媒を使
用する従来法と較べて、原料の2,3−ジメチルナフタ
レンを比較的高濃度で含む液相反応系で反応させても2
.3−ナフタレンジカルIン酸の高い収率が得られる。
Examples 1 to 4 Comparative Example 1 A 200-p titanium autoclave was charged with 2,3-dimethylnaphthalene 7, Of, and acetic acid 701117, and the respective concentrations of the catalyst components Co, Mn%Zr, and Br were adjusted to Cobalt acetate, manganese acetate, zirconyl acetate, and sodium bromide were charged to the concentrations shown in Table 1, and heated at 140°C and at a rate of 8 to 9/cm2 while circulating air at a rate of 35 L/hour.
The oxidation reaction was carried out for a minute. The results of liquid chromatography of the produced 2,3-naphthalene dicarmene were as shown in Table 1. Effects of the Invention The method of the present invention uses cobalt, manganese, and bromine catalysts. Compared to the conventional method in which the raw material 2,3-dimethylnaphthalene is reacted in a liquid phase reaction system containing a relatively high concentration, 2
.. High yields of 3-naphthalene dical I phosphoric acid are obtained.

Claims (1)

【特許請求の範囲】 1)2,3−ジメチルナフタレンを液相において分子状
酸素により酸化して2,3−ナフタレンジカルボン酸を
製造する際に、必須元素としてコバルト、マンガン、ジ
ルコニウム及び臭素を含有する触媒を用いることを特徴
とする2,3−ナフタレンジカルボン酸の製造方法。 2)触媒のコバルトに対する臭素の原子比が3以下であ
る特許請求の範囲第1項記載の方法。
[Claims] 1) Contains cobalt, manganese, zirconium and bromine as essential elements when producing 2,3-naphthalene dicarboxylic acid by oxidizing 2,3-dimethylnaphthalene with molecular oxygen in a liquid phase. 1. A method for producing 2,3-naphthalene dicarboxylic acid, which comprises using a catalyst. 2) The method according to claim 1, wherein the atomic ratio of bromine to cobalt in the catalyst is 3 or less.
JP60062171A 1985-03-28 1985-03-28 Method for producing 2,3-naphthalenedicarboxylic acid Expired - Lifetime JPH0639445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062171A JPH0639445B2 (en) 1985-03-28 1985-03-28 Method for producing 2,3-naphthalenedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062171A JPH0639445B2 (en) 1985-03-28 1985-03-28 Method for producing 2,3-naphthalenedicarboxylic acid

Publications (2)

Publication Number Publication Date
JPS61221151A true JPS61221151A (en) 1986-10-01
JPH0639445B2 JPH0639445B2 (en) 1994-05-25

Family

ID=13192406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062171A Expired - Lifetime JPH0639445B2 (en) 1985-03-28 1985-03-28 Method for producing 2,3-naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JPH0639445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277646A (en) * 1987-05-11 1988-11-15 Mitsubishi Gas Chem Co Inc Production of acyloxyaromatic carboxylic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277646A (en) * 1987-05-11 1988-11-15 Mitsubishi Gas Chem Co Inc Production of acyloxyaromatic carboxylic acid

Also Published As

Publication number Publication date
JPH0639445B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US2723994A (en) Oxidation of xylene and toluic acid mixtures to phthalic acids
JPS582222B2 (en) Production method of aromatic polycarboxylic acid
US3845120A (en) Production of acrylic acid by oxidation of acrolein
US3139452A (en) Oxidation of p-xylene to terephthalic acid
JP5055262B2 (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JP3303173B2 (en) Method for producing trimellitic acid
US4835308A (en) Process for producing trimellitic acid
JPS6013740A (en) Production of tetracarboxylic acid
JPS5837300B2 (en) Production method of P-nitrobenzoic acid
JPS61221151A (en) Production of 2,3-naphthalenedicarboxyclic acid
US4510259A (en) Catalysts for the production of maleic anhydride by the oxidation of butane
US4214100A (en) Process for preventing blackening of phthalic acid
JPS58131933A (en) Manufacture of anthraquinone
JPS61210052A (en) Production of 2,3,-naphthalenedicarboxylic acid
US7598415B2 (en) Process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JPS5915895B2 (en) Method for producing aromatic carboxylic acid
JPS5949213B2 (en) Method for producing aromatic dicarboxylic acid
JPH01117842A (en) Production of polyfunctional alkyl-substituted benzoic acid
JP2002205964A (en) Method for producing aromatic carbonyl compound
JPH06211733A (en) Production of 2,6-naphthalene dicarboxylic acid
US3775473A (en) Method for the oxidation of aryl methyl groups to carboxylic acid groups
JP2003320248A (en) Method for preparing oxidation catalyst and method for manufacturing nitrile using the catalyst
JPS63132859A (en) Production of pyruvic acid ester
US4564688A (en) Process for the production of maleic anhydride by the oxidation of butane
KR830002477B1 (en) Method for producing aromatic carboxylic acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term