JPS6121980A - Zrb2 composite sintered body - Google Patents

Zrb2 composite sintered body

Info

Publication number
JPS6121980A
JPS6121980A JP59141401A JP14140184A JPS6121980A JP S6121980 A JPS6121980 A JP S6121980A JP 59141401 A JP59141401 A JP 59141401A JP 14140184 A JP14140184 A JP 14140184A JP S6121980 A JPS6121980 A JP S6121980A
Authority
JP
Japan
Prior art keywords
sintered body
weight
sic
oxidation resistance
zrb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59141401A
Other languages
Japanese (ja)
Other versions
JPS6337068B2 (en
Inventor
音次郎 木田
優 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59141401A priority Critical patent/JPS6121980A/en
Priority to US06/751,528 priority patent/US4636481A/en
Priority to DE8585108300T priority patent/DE3569365D1/en
Priority to EP85108300A priority patent/EP0170889B1/en
Publication of JPS6121980A publication Critical patent/JPS6121980A/en
Publication of JPS6337068B2 publication Critical patent/JPS6337068B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はZrB1(2硼化ジルコニウム)質複合焼結体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a ZrB1 (zirconium diboride) composite sintered body.

一般的に金属硼化物セラミックスは高融点で高硬度、高
強度、高耐蝕の特徴を有し、従来から切削工具、熱機関
部品材料などとして用いられているが、実際に実用化さ
れているものの多くはチタンの硼化物であって、ジルコ
ニウムの硼化物は殆んど実用化されていないのが実状で
ある。
In general, metal boride ceramics have the characteristics of high melting point, high hardness, high strength, and high corrosion resistance, and have traditionally been used as cutting tools and heat engine parts materials, but although they have not been put into practical use yet. Most of them are titanium borides, and the reality is that zirconium borides are hardly ever put into practical use.

本発明のZrB1質複合焼結体は、高融点、高強度、高
耐蝕、高硬度、導電性、耐酸化性等の優れた特徴を有す
るので両温耐蝕性部材、機憾部材、発熱体電極、誘導炉
用ルツボ等に広く使用できる材料である。
The ZrB1 composite sintered body of the present invention has excellent characteristics such as high melting point, high strength, high corrosion resistance, high hardness, electrical conductivity, and oxidation resistance, so it can be used as both temperature corrosion resistant members, mechanical members, and heating element electrodes. It is a material that can be widely used for induction furnace crucibles, etc.

(−従来の技術) ZrB1質の複合焼結一体として現在広く実用化されて
いるものは殆んどないが特許などには種々のものが捷案
されている。
(-Prior Art) There are currently very few ZrB1 composite sintered bodies that are in widespread practical use, but various patents have been proposed.

即ち、焼結助剤又は複合材などのZ rBl焼結体にお
ける副成分としてはMo811などの珪化物、TaN 
、 HfHなどの窒化物、’Zr01などの酸化物、8
10 、 B40などの炭化物、種々の金属などが知ら
れている。
That is, the subcomponents in the ZrBl sintered body such as sintering aids or composite materials include silicides such as Mo811 and TaN.
, nitrides such as HfH, oxides such as 'Zr01, 8
10, carbides such as B40, and various metals are known.

(発明が解決しようとする問題点) 例えば珪化物については特公昭3B−6098にZr8
−が、また米国特許第3705112号にMofi−な
どが開示されているが、これらのB1系化合物は高温雰
囲気下での焼結で溶融又は分解するため組織が多孔質で
結晶粒の成長が大きくなることが多く、そのため強度も
、耐蝕性も十分でないことが多いし、耐酸化性も8 l
 ogの皮膜としての効果が予測されるがこれらの副成
分のみで空気中での使用には十分でない。
(Problems to be solved by the invention) For example, regarding silicides, Zr8 is disclosed in Japanese Patent Publication No. 3B-6098
-, Mofi-, etc. are disclosed in U.S. Patent No. 3,705,112, but these B1 compounds melt or decompose during sintering in a high-temperature atmosphere, resulting in a porous structure and large crystal grain growth. Therefore, the strength and corrosion resistance are often insufficient, and the oxidation resistance is also 8 l.
Although the effect of og as a film is expected, these subcomponents alone are not sufficient for use in air.

つぎに窒化物については、米国特許第3505374に
TaMが開示されなどしているが、高。
Next, regarding nitrides, TaM is disclosed in US Pat. No. 3,505,374, but it is expensive.

硬度、高強度の点では優れているが、高温耐蝕部材、発
熱体、電極、誘導炉ルツボ等の高温酸化雰囲気下で使用
する場合、耐酸化性、耐スポール性、耐蝕性などの点で
十分ではない。
Although it has excellent hardness and high strength, it has insufficient oxidation resistance, spalling resistance, and corrosion resistance when used in high-temperature oxidizing atmospheres such as high-temperature corrosion-resistant parts, heating elements, electrodes, induction furnace crucibles, etc. isn't it.

つぎに炭化物については米国特許第3775157に8
10が開示されなどしているが、810のみでは耐酸化
性の点で不十分であり、又米国特許第3325300に
開示されているMoS −−)−B、C又はMailB
 +〇IC十B4Cの添加ではMo811が焼結温度よ
シ低融点であり、焼結中に融けて分解したシ、粒成長を
促進するなど組織を多孔質化するため高密度化しに〈〈
そのため耐酸化性も十分ではない。
Next, regarding carbides, U.S. Patent No. 3,775,157 and 8
10 has been disclosed, but 810 alone is insufficient in terms of oxidation resistance, and MoS --)-B, C or MailB disclosed in U.S. Pat. No. 3,325,300.
+〇With the addition of IC1 and B4C, Mo811 has a lower melting point than the sintering temperature, and if it melts and decomposes during sintering, it will promote grain growth and make the structure porous, thereby increasing the density.
Therefore, the oxidation resistance is also not sufficient.

また米国特許第5525500にはEIIO及び又はB
40も開示されているが、この特許はZr%−MO8t
、系においてさらにこれらの添加成分を加えたものであ
シ、本質的に前述したようにMo8−などのSl  系
化合物を含む焼結体は十分緻密にな!l)K<<’強度
も耐酸化性も、十分でない。
Also, US Patent No. 5,525,500 includes EIIO and/or B
40 is also disclosed, but this patent discloses Zr%-MO8t
By adding these additional components to the system, essentially, as described above, a sintered body containing a Sl-based compound such as Mo8 becomes sufficiently dense! l) K<<' Neither strength nor oxidation resistance is sufficient.

このような点に鑑み、優れた特質を備えていながらその
特質を生かしきれず極めて限られた用途にしか実際釦使
われていないZr%質焼結体について、従来の問題点を
克服すべく研究を進めた結果、優れた高密度、高強度、
耐酸化性、耐蝕性さらには耐スポール性などの諸性能を
兼ね備えかついくつかについてはその特質を著しく向上
せしめた焼結体の開発に成功したのである。
In view of these points, we are conducting research to overcome the conventional problems with Zr% sintered bodies, which have excellent properties but are not fully utilized and are actually used for buttons only in extremely limited applications. As a result of progressing, we have achieved excellent high density, high strength,
They succeeded in developing a sintered body that has various properties such as oxidation resistance, corrosion resistance, and spalling resistance, and has significantly improved some of these properties.

(問題を解決するための手段) 即ち、本発明は副成分としてEIIO及びB4Cを少く
ともそれぞれ重量−で1%以上含み、これらの合量が2
〜50重量%であって残部が実質的に10重量%までの
TiBfiで置き換えうるZrBzからなるZr%質焼
結体を要旨とするものである。
(Means for solving the problem) That is, the present invention contains EIIO and B4C as subcomponents at least 1% or more by weight each, and the total amount of these is 2.
The gist of the present invention is a Zr% sintered body made of ZrBz which can be replaced with TiBfi in an amount of up to 50% by weight, with the remainder being substantially up to 10% by weight.

本発明に用いるZrB1は例えば酸化ジルコニウム、酸
化硼素およびカーボンの混合物を高温で反応させること
によシ得られ、本焼結体の製造には可及的に純度の高い
ものを用いるのが好ましく、また粒径も可及的に小さい
粉末が好ましい。
ZrB1 used in the present invention can be obtained, for example, by reacting a mixture of zirconium oxide, boron oxide, and carbon at high temperature, and it is preferable to use one with as high purity as possible for producing the present sintered body. Further, a powder having a particle size as small as possible is preferable.

具体的には純度99−以上、平均粒径10/Am特には
5μm以下のものがそれである。
Specifically, it has a purity of 99 or more and an average particle size of 10/Am, particularly 5 μm or less.

、また副成分として存在せしめるSiC及びB4Cにつ
いては、焼結体としてそのような化合物として所定量が
存在していればよいので、出発原料としてはどのような
形態のものとして配合してもよいが、SIC及びB4c
以外の原料を使用した場合には焼結゛段階で特別な配慮
が必要となるため、通常配合原料としてSiC及びB4
Cとして調整しておくQがよい。
Also, regarding SiC and B4C, which are present as subcomponents, it is sufficient that they are present in a predetermined amount as such compounds in the sintered body, so they may be blended in any form as starting materials. , SIC and B4c
If other raw materials are used, special consideration is required in the sintering stage, so SiC and B4 are usually used as blended raw materials.
It is better to adjust Q as C.

とのSiC及びB4C原料についても可及的に純度の高
いものが好ましく通常99%以上のものがよい。
The raw materials for SiC and B4C are preferably as high in purity as possible, usually 99% or higher.

原料混合物は通常これら3種の微粉末を均一に混合する
事により調整するが、粉砕混合を目的として超微粉砕し
ても同様である。一般に混合原料の粒度は10μm以下
がよく好ましくは平均粒径1μm以下にまで十分調整し
ておくことである。
The raw material mixture is usually prepared by uniformly mixing these three types of fine powders, but the same effect can be obtained by ultrafinely pulverizing them for the purpose of pulverizing and mixing. Generally, the particle size of the mixed raw material is preferably 10 μm or less, and preferably the average particle size is sufficiently adjusted to 1 μm or less.

本発明焼結体はこれらの混合物を例えば黒鉛型に充填し
、真空中又はアルゴン、ヘリウム、−酸化炭素々どの中
性或は還元性の゛雰囲気下で、ホットプレスするか、上
記混合物をラバープレスで成形したものを常圧焼成する
か50〜2000に9/、、?程度の加圧下で焼成する
かいずれでも焼結可能である。
The sintered body of the present invention can be produced by filling a graphite mold with the above mixture and hot-pressing the mixture in vacuum or in a neutral or reducing atmosphere such as argon, helium, or carbon oxide, or by pressing the mixture into a rubber mold. Is it 50 to 2000 9/,,, to bake the molded one with normal pressure? Sintering can be performed by firing under a certain degree of pressure.

湖、焼成温度は1600〜2200T、、焼成時間は3
0分〜1時間程度が適当である。
Lake, firing temperature is 1600-2200T, firing time is 3
Approximately 0 minutes to 1 hour is appropriate.

本発明焼結体における副成分の割合は焼結体中において
重量%(以下同じ)で2〜50%であシ、残部は実質的
KZr%からなっているものであるが、このzrB!の
一部をZ r%の特質を損わない程度の少量を他の成分
例えばTiB、等で置換することは差支えない。具体的
にいえばzrB!の10重量まではT I B、で置き
換えることが出来る。
The proportion of the subcomponents in the sintered body of the present invention is 2 to 50% by weight (the same applies hereinafter), and the remainder is substantially KZr%, but this ZrB! There is no problem in substituting a small amount of Zr% with other components such as TiB, etc., to the extent that the characteristics of Zr% are not impaired. Specifically speaking, zrB! Up to 10 weights of can be replaced by T I B.

賞、副成分としてはSiCとB40以外は不可避的不純
物を除いて可及的に少量、特に8量 系化合物の存在は
極めて好ましくないなどのため、に制限することが必要
である。
It is necessary to limit the amount of components other than SiC and B40 to as small a quantity as possible, excluding inevitable impurities, especially as the presence of octameric compounds is extremely undesirable.

即ち、具体的にはZrB1 (TIB!含む)とElI
OとB4Cの合量以外の成分は3重量%以下にとどめる
を必要とする。
That is, specifically ZrB1 (including TIB!) and ElI
Components other than the total amount of O and B4C need to be kept at 3% by weight or less.

副成分としてのB40及びsicはそれぞれ少くとも1
チ以上必要であるが、これはn4cが1−以下では高密
度化が困難であシ、耐酸化性、高耐蝕の特徴が十分発揮
されず、81Cが19g以下では耐酸化性が十分でなく
高密度化も難かしくなるなどのためである。
B40 and sic as subcomponents each contain at least 1
However, if n4c is less than 1-, it is difficult to increase the density, and the characteristics of oxidation resistance and high corrosion resistance are not fully exhibited, and if 81C is less than 19g, oxidation resistance is insufficient. This is because increasing the density becomes difficult.

B10の存在が何故に耐酸化性の向上を本焼結体におい
てもたらされるのかについては明らかでないが、B4C
との併用によシ使用下において高粘性の−01−810
%系の皮膜が形成されるためであろうと考えられ、この
ようなことは本焼結体が発熱体のような用途にも十分耐
用しうろことを示している。
It is not clear why the presence of B10 improves the oxidation resistance in this sintered body, but B4C
-01-810 with high viscosity when used in combination with
It is thought that this is due to the formation of a %-based film, and this fact indicates that the present sintered body can be used sufficiently as a heating element.

一部B40及び810はそれぞれが焼結体中において半
分量程度まで存在せしめることが可能であるが、B、C
が50−を越えると耐酸化性が低下し、810が50チ
を越えると耐スポール性−高耐蝕性の効果も発揮されな
ズカるので好ましくなく、いずれにしても耐熱性を損う
なども含めてZrB1質の特質を本質的に損うことにな
るので、B4CとSiCの合量として5oftでにとど
める必要がある。
Part of B40 and 810 can be present in the sintered body up to half the amount, but B, C
When 810 exceeds 50, the oxidation resistance decreases, and when 810 exceeds 50, the effects of spall resistance and high corrosion resistance are not achieved, which is undesirable, and in any case, heat resistance may be impaired. Since including this will essentially impair the characteristics of ZrB1 quality, it is necessary to limit the total amount of B4C and SiC to 5of.

同、これらの範囲においてさらに望ましい範囲はSSC
とB40はそれぞれがいずれも5チ以上で合量が10チ
以上望むらくは20%以上とすることである。またSi
CとB4Cの割合は前者が10〜60es1後者が90
〜40qbとすることである。
The more desirable range among these ranges is SSC.
and B40 should each be at least 5 inches, with a total amount of at least 10 inches, preferably at least 20%. Also, Si
The ratio of C and B4C is 10-60es1 for the former and 90es for the latter
~40qb.

このような本発明の焼結体は組織的にはZr%結晶を主
成分とし、この間をB40及びStaが強度に結合して
いる緻密なものであって、ZrB1結晶は極めて微細な
結晶で存在し、その特質を存分に発揮せしむるに至って
いる。
The sintered body of the present invention has a dense structure in which the main component is Zr% crystals, with B40 and Sta strongly bonded between them, and the ZrB1 crystals exist as extremely fine crystals. However, it has come to the point where it is able to fully demonstrate its characteristics.

具体的にいえば本発明焼結体におけるZ rBl結晶は
その大部分が粒径10μm以下として存在しているもの
である。
Specifically, most of the ZrBl crystals in the sintered body of the present invention exist with a grain size of 10 μm or less.

(発明の効果) このようにして得られる本発明焼結体は前述してきたよ
うに高密度で耐酸化性、耐スポニル性、高強度、耐蝕性
に優れた導電性のある緻密な焼結体であるため特に空気
中で使用するような高温耐蝕部材、発熱体、ルツボ等に
最適でおり、その他機械部品材料、工具等にも適用可能
であってZrB2質焼結体の特質を発揮した種々の用途
に使用できるものであってその実用的価値は多大である
(Effects of the Invention) As described above, the sintered body of the present invention thus obtained is a dense sintered body with high density, excellent oxidation resistance, sponyl resistance, high strength, and corrosion resistance, and has excellent conductivity. Therefore, it is particularly suitable for high-temperature corrosion-resistant parts used in air, heating elements, crucibles, etc., and can also be applied to other mechanical parts materials, tools, etc., and can be used in a variety of applications that exhibit the characteristics of ZrB2 sintered bodies. It can be used for many purposes, and its practical value is great.

(実施例) 0実施例1 ZrB1粉末(純度99チ以上)85重量部、B40粉
末純度9”191r10部、SiC粉末(純度99チ)
5部を十分に混合粉砕すべく、ポットミルを使用しエタ
ノール溶媒中でSSCボールを用い3日間粉砕混合した
。得られた粉末を工・(ボレーターでアルコール除去し
て十分乾燥し、平均粒径α15μの粉末を得た この粉
末を黒鉛型に充填しアルゴン雰囲気下で350 kli
l/ tw’の圧力下2000℃で30分間加熱して焼
結体を得た。
(Example) 0 Example 1 ZrB1 powder (purity 99cm or higher) 85 parts by weight, B40 powder purity 9"191r 10 parts, SiC powder (purity 99cm)
In order to sufficiently mix and pulverize 5 parts, they were pulverized and mixed for 3 days using a pot mill in an ethanol solvent using an SSC ball. The obtained powder was processed (alcohol was removed with a volator and thoroughly dried to obtain a powder with an average particle size of α15μ. This powder was packed into a graphite mold and heated at 350 kli under an argon atmosphere.
A sintered body was obtained by heating at 2000°C for 30 minutes under a pressure of l/tw'.

得られた焼結体の特性は相対密度98チ曲げ強度78ゆ
/−1耐酸化性(注1)変化なし、硬度HV  (注2
)210okg/−であった。またこの焼結体における
ZrBz結晶の大きさはその殆んどが5μ以下であって
、分析値は試料組成の割合を殆んど変シがなかった。(
粉砕ボールからのSIO混入混入2変程 0実施例2〜6.11〜15及び比較例1〜3;実施例
1と同様な方法で焼結体を得た。
The properties of the obtained sintered body are as follows: relative density: 98 cm, bending strength: 78 Y/-1, oxidation resistance (Note 1): no change, hardness: HV (Note 2):
) 210 kg/-. In addition, most of the ZrBz crystals in this sintered body had a size of 5 μm or less, and the analytical values showed that there was almost no change in the proportion of the sample composition. (
Incorporation of SIO from the grinding balls 2 steps 0 Examples 2 to 6. 11 to 15 and Comparative Examples 1 to 3: A sintered body was obtained in the same manner as in Example 1.

0実施例7〜10は実施例1と同様のZrB1 、 B
4(3及び810粉末の所定黛をラバープレスを用いて
2000 kl / dで成形し、これを特定の焼結条
件(雰囲気はアルゴン、時間は1時間)で焼結して得た
0 Examples 7 to 10 were the same as in Example 1 with ZrB1, B
4(3) and 810 powder were molded at 2000 kl/d using a rubber press and sintered under specific sintering conditions (argon atmosphere, 1 hour).

各焼結体の特性を示すと次の通りである。The characteristics of each sintered body are as follows.

2 5   5 2000550  .98    7
0 2000  釘詠し315  15  j800 
 y    99   912300   p4  2
0  20   tt   tt    99   1
05 2500   r5  30  5   y  
 tt    99    83 2400   N6
  40   5   g   tt    99  
  90 2700   rt7 10  5 210
0常圧  96   53 1900   IF8  
Ao   S   rt   tt    98   
62 2500   N9  15  15 2000
  tt    99    74  2tJOOpl
o  20  20    tt   n    99
    85  2200    N11  20  
 2 1800350   98    61  22
00    N12  2  10 20110  #
    9!    65 1900   rt13 
 15  15 18(10,p     99   
 98  2800    N3  15   5  
1800   n     97     45  2
000    s秦表記するもの以外は、実施例13及
び比較例5を除いて、不可避的不純物は別として全てz
rB!であシ、記載の量は100重量からZrBzを差
し引いた残部である。
2 5 5 2000550. 98 7
0 2000 Nagiyomi 315 15 j800
y 99 912300 p4 2
0 20 tt tt 99 1
05 2500 r5 30 5 y
tt 99 83 2400 N6
40 5 g tt 99
90 2700 rt7 10 5 210
0 normal pressure 96 53 1900 IF8
Ao S rt tt 98
62 2500 N9 15 15 2000
tt 99 74 2tJOOpl
o 20 20 tt n 99
85 2200 N11 20
2 1800350 98 61 22
00 N12 2 10 20110 #
9! 65 1900 rt13
15 15 18 (10, p 99
98 2800 N3 15 5
1800 n 97 45 2
000 s Other than those indicated, except for Example 13 and Comparative Example 5, all z except for unavoidable impurities.
rB! Yes, the stated amount is the remainder after subtracting ZrBz from 100 weight.

同、実施例13はZrB1の5重量%をT I B、に
置きかえたもの、比較例3はこの外にMo811  を
10−加えたものである。
Similarly, in Example 13, 5% by weight of ZrB1 was replaced with TIB, and in Comparative Example 3, 10% of Mo811 was added in addition to this.

親焼結体中における重量割合は、試料組成の割合と粉砕
ボールからの8IC混入2%程度のほかは殆んど差異は
なく、各実施例によシ得られた焼結体はいずれも緻密質
でZrB2結晶はその殆んどが10p以下であった。(
尚、比較例1はZrBzとB4Cの混合物を乾式粉砕混
合し平均粒径10μ程度としたものを使用したのでSi
Cは混入されていない。) (注1)耐酸化性は電気炉中1300℃×12hr 保
持後の重量増加率の程度 (注2)硬度は常温におけるマイクロビッカース硬度H
V をユ/−ソ表わした値である。
There is almost no difference in the weight ratio in the parent sintered body except for the sample composition and the 2% of 8IC mixed in from the grinding balls, and the sintered bodies obtained in each example are all dense. In terms of quality, most of the ZrB2 crystals were 10p or less. (
In addition, in Comparative Example 1, a mixture of ZrBz and B4C was dry-pulverized and mixed to have an average particle size of about 10μ, so Si
C is not mixed. ) (Note 1) Oxidation resistance is the degree of weight increase after holding in an electric furnace at 1300℃ x 12 hours (Note 2) Hardness is micro Vickers hardness H at room temperature
This is the value of V expressed in yu/- yuoso.

Claims (1)

【特許請求の範囲】 1、副成分としてSiC及びB_4Cを少くともそれぞ
れ重量%で1%以上含み、これらの合量が2〜50重量
%であつて残部が実質的に10重量%までのTiB_2
で置き換えうるZrB_2からなるZrB_2質複合焼
結体。 2、SiCとB_4Cの合量が10重量%以上である特
許請求の範囲第1項記載の焼結体。 3、BiCとB_4Cの合量が20重量%以上である特
許請求の範囲第2項記載の焼結体。 4、10重量%までのTiB_2で置き換えうるZrB
_2とSiCとB_4Cの合量以外の成分が3重量%以
下である特許請求の範囲第1項乃至第3項いずれか記載
の焼結体。 S、SiC及びB_4Cがそれぞれ5重量%以上である
特許請求の範囲第2項乃至第4項いずれか記載の焼結体
。 6、SiCとB_4Cの割合が前者10〜60重量%、
後者が90〜40重量%である特許請求の範囲第1項又
は第5項記載の焼結体。 7、ZrB_2結晶はその大部分が粒径10μ以下であ
る特許請求の範囲第1項記載の焼結体。
[Claims] 1. TiB_2 containing at least 1% by weight each of SiC and B_4C as subcomponents, the total amount of these being 2 to 50% by weight, and the balance being substantially up to 10% by weight.
ZrB_2 composite sintered body made of ZrB_2 which can be replaced with ZrB_2. 2. The sintered body according to claim 1, wherein the total amount of SiC and B_4C is 10% by weight or more. 3. The sintered body according to claim 2, wherein the total amount of BiC and B_4C is 20% by weight or more. 4. ZrB which can be replaced by up to 10% by weight of TiB_2
The sintered body according to any one of claims 1 to 3, wherein the content of components other than the total amount of _2, SiC, and B_4C is 3% by weight or less. The sintered body according to any one of claims 2 to 4, wherein each of S, SiC, and B_4C is 5% by weight or more. 6. The ratio of SiC and B_4C is 10 to 60% by weight,
The sintered body according to claim 1 or 5, wherein the latter is 90 to 40% by weight. 7. The sintered body according to claim 1, wherein most of the ZrB_2 crystals have a grain size of 10 μm or less.
JP59141401A 1984-07-10 1984-07-10 Zrb2 composite sintered body Granted JPS6121980A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59141401A JPS6121980A (en) 1984-07-10 1984-07-10 Zrb2 composite sintered body
US06/751,528 US4636481A (en) 1984-07-10 1985-07-03 ZrB2 composite sintered material
DE8585108300T DE3569365D1 (en) 1984-07-10 1985-07-04 Zrb2 composite sintered material
EP85108300A EP0170889B1 (en) 1984-07-10 1985-07-04 Zrb2 composite sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141401A JPS6121980A (en) 1984-07-10 1984-07-10 Zrb2 composite sintered body

Publications (2)

Publication Number Publication Date
JPS6121980A true JPS6121980A (en) 1986-01-30
JPS6337068B2 JPS6337068B2 (en) 1988-07-22

Family

ID=15291143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141401A Granted JPS6121980A (en) 1984-07-10 1984-07-10 Zrb2 composite sintered body

Country Status (1)

Country Link
JP (1) JPS6121980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014487A (en) * 2011-07-06 2013-01-24 Miyagawa Kasei Ind Co Ltd Method for producing conductive ceramics
CN106363544A (en) * 2015-07-24 2017-02-01 株式会社迪思科 Cutting grinding apparatus with boron compound added

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014487A (en) * 2011-07-06 2013-01-24 Miyagawa Kasei Ind Co Ltd Method for producing conductive ceramics
CN106363544A (en) * 2015-07-24 2017-02-01 株式会社迪思科 Cutting grinding apparatus with boron compound added

Also Published As

Publication number Publication date
JPS6337068B2 (en) 1988-07-22

Similar Documents

Publication Publication Date Title
US4636481A (en) ZrB2 composite sintered material
JPS6121980A (en) Zrb2 composite sintered body
JPS6316358B2 (en)
JPS6346031B2 (en)
JPS6337069B2 (en)
JP2858965B2 (en) Aluminum oxide sintered body
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPS6144768A (en) High strength boride sintered body
JPS6339542B2 (en)
JPS61117153A (en) Manufacture of alumina sintered body
JPS62288171A (en) Zrb2 base composite sintered body
JP2801455B2 (en) Silicon nitride sintered body
JPS6337066B2 (en)
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
JPS61286268A (en) Electroconductively variable zrb2 base composite sintered body
JPS62119168A (en) High anticorrosion high thermal shock resistance zrb2 base composite sintered body
JP3106208B2 (en) Silicon nitride sintered body and method for producing the same
JPS6148484A (en) Zrb2 base composite sintered body
JPS6144769A (en) High strength zrb2 composite sintered body
JPS597669B2 (en) Metal boride-zirconium oxide ceramic materials
JPH0350160A (en) Highstrength carbon material having good electrical conductivity
JPH02160668A (en) High-temperature-high-strength silicon nitride sintered compact and production thereof
JPS6339543B2 (en)
JPH09169570A (en) Silicon nitride composite sintered compact
Nishio et al. High strength high toughness TiB 2 ceramics