JPS61218918A - Method for measuring vibromotive force of engine etc. - Google Patents

Method for measuring vibromotive force of engine etc.

Info

Publication number
JPS61218918A
JPS61218918A JP6172385A JP6172385A JPS61218918A JP S61218918 A JPS61218918 A JP S61218918A JP 6172385 A JP6172385 A JP 6172385A JP 6172385 A JP6172385 A JP 6172385A JP S61218918 A JPS61218918 A JP S61218918A
Authority
JP
Japan
Prior art keywords
engine
center
acceleration
gravity
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6172385A
Other languages
Japanese (ja)
Other versions
JPH0376850B2 (en
Inventor
Toru Yonezawa
徹 米沢
Minoru Okubo
稔 大久保
Hiroshi Karita
苅田 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP6172385A priority Critical patent/JPS61218918A/en
Publication of JPS61218918A publication Critical patent/JPS61218918A/en
Publication of JPH0376850B2 publication Critical patent/JPH0376850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Engines (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To measure vibromotive force at high accuracy by calculating acceleration around the center of gravity of an object from at least six parallel acceleration obtained from an acceleration sensor, and calculating six components of force around the center of gravity, and calculating vibromotive force of the object. CONSTITUTION:The vibromotive force measuring device is provided with an elastic supporting system 2 that supports an engine 1, an object of measurement, acceleration sensors 3, 3... attached on the surface of the engine 1 at plural positions in one of three directions, X, Y, Z, and a computer 4 that introduces detection signals of acceleration sensors 3 and makes specified arithmetic processing. The result of operation of the computer 4 is displayed in CRT 5, and necessary indication is operated to the computer 4 by a keyboard 6. A rotation sensor 7 that detects rotational frequency of the engine 1 and a top sensor 8 that detects top position of the engine 1 are provided opposite to each other on a gear 10 attached to a crank shaft 9 which is a driving shaft of the engine 1.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、内燃機関やモータ等の原動機、あるいは該原
動機を含む原動機系の起振力を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for measuring the excitation force of a prime mover such as an internal combustion engine or a motor, or a prime mover system including the prime mover.

〈従来技術〉 機関単体の振動評価を行なう場合や、防振計算を行なう
場合には、機関の起振力を測定する必要がある。機関の
起振力とは、クランク軸のような駆動軸の中心に作用す
る力である。
<Prior Art> When evaluating the vibration of a single engine or performing anti-vibration calculations, it is necessary to measure the vibration excitation force of the engine. The vibrational force of an engine is a force that acts on the center of a drive shaft such as a crankshaft.

従来、この起振力は、直接的に実測する手法が開発され
ていないので、釣り合いの式を解くことによって、求め
られていた。
Conventionally, this excitation force has been determined by solving a balance equation, since no method has been developed to directly measure it.

これに対して、近年、機関の起振力を直接に測定する装
置が開発されているが、この装置は、機関の達成振動を
非連成化し、その振動加速度から起振力を測定するもの
であって、測定の準備段階において機関を含む系に種々
の工夫を加える必要があった。すなわち、機関を含む系
の重心と起振中心とが一致するように、また慣性主軸の
X方向が機関のクランク軸となり慣性主軸のy方向が水
平となるように、系に付加マスを取り付け、さらに、系
の重心とその支持系の弾性中心、お上び慣性主軸と支持
系の弾性主軸とがそれぞれ一致するように支持系を工夫
しなければならなかった。
In response to this, in recent years, a device has been developed that directly measures the vibrational force of the engine, but this device decouples the vibration achieved by the engine and measures the vibrational force from the vibration acceleration. Therefore, it was necessary to make various improvements to the system including the engine during the preparation stage for measurements. In other words, an additional mass is attached to the system so that the center of gravity of the system including the engine coincides with the center of vibration, and the X direction of the principal axis of inertia becomes the crankshaft of the engine, and the Y direction of the principal axis of inertia is horizontal. Furthermore, the support system had to be devised so that the center of gravity of the system coincided with the elastic center of the support system, and the principal axis of inertia coincided with the principal elastic axis of the support system.

そのため、この起振力測定装置では、測定時に上記した
ような種々の条件を満たす必要があるので、汎用性に乏
しく、装置自体が大がかりになり、起振力を得るまでに
時間がかかりすぎる、という問題があった。
Therefore, this excitation force measuring device needs to satisfy the various conditions mentioned above during measurement, so it lacks versatility, the device itself becomes large-scale, and it takes too much time to obtain the excitation force. There was a problem.

〈発明の目的〉 本発明は、上述の問題点に鑑みてなされたものであって
、大がかりな装置を使用せずに、簡単な準備操作により
精度よく起振力を測定することができるようにすること
を目的とする。
<Object of the Invention> The present invention has been made in view of the above-mentioned problems, and has an object to enable accurate measurement of excitation force by simple preparatory operations without using a large-scale device. The purpose is to

〈発明の構成〉 本発明は、上記の目的を達成するために、機関等の測定
対象物を弾性支持系で支持するとともに、該対象物の複
数位置でx、y、zの3方向のうちのいくつかの方向に
加速度センサを取り付けたのち、前記加速度センサから
得られた少なくとも6個の並進加速度から剛体動きの式
を用いて対象物の重心周りの6個の加速度を算出し、前
記6個の加速度に質量もしくは慣性モーメントをそれぞ
れ乗じて重心周りの6分力を算出し、前記6分力の作用
点を対象物の重心から対象物の駆動軸の中心に移す演算
処理を行なって対象物の起振力を算出するようにしたも
のである。
<Structure of the Invention> In order to achieve the above object, the present invention supports an object to be measured such as an engine with an elastic support system, and supports the object in three directions x, y, and z at a plurality of positions on the object. After installing acceleration sensors in several directions of the object, six accelerations around the center of gravity of the object are calculated from at least six translational accelerations obtained from the acceleration sensors using a rigid body motion formula, and The 6-component force around the center of gravity is calculated by multiplying the acceleration of the object by the mass or the moment of inertia, and calculation processing is performed to move the point of action of the 6-component force from the object's center of gravity to the center of the drive axis of the object. It is designed to calculate the excitation force of an object.

〈実施例〉 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。第1図は本発明測定方法の実施に供する起振力測
定装置の概略構成図であって、該起振力測定装置は、測
定対象物である機関lを支持する弾性支持系2と、機関
lの表面の複数位置でx、y、zの3方向のうちいずれ
かの方向に取り付けた加速度センサ3.3・・・と、該
加速度センサ3の検出信号を導入して後述する所定の演
算処理を行なうコンピュータ4とを備えている。5はコ
ンピュータ4の演算結果等を表示するCRT、6はコン
ピュータ4に所要の指示をするために操作されるキーボ
ードである。また、7は機関lの回転数を検出する回転
センサ、8は機関lのトップ位置を検出するトップセン
サであって、各センサ7.8は機関lの駆動軸であるク
ランク軸9に取り付けられたギア10に対設されている
<Example> Hereinafter, the present invention will be described in detail based on an example shown in the drawings. FIG. 1 is a schematic configuration diagram of an excitation force measuring device used for carrying out the measuring method of the present invention, and the excitation force measuring device consists of an elastic support system 2 that supports an engine l, which is an object to be measured, and an engine l. Acceleration sensors 3.3... are attached in any one of the three directions x, y, and z at multiple positions on the surface of l, and the detection signals of the acceleration sensors 3 are introduced to perform a predetermined calculation described later. It also includes a computer 4 that performs processing. 5 is a CRT for displaying the calculation results of the computer 4, and 6 is a keyboard operated to give necessary instructions to the computer 4. Further, 7 is a rotation sensor that detects the rotation speed of the engine l, 8 is a top sensor that detects the top position of the engine l, and each sensor 7.8 is attached to the crankshaft 9 that is the drive shaft of the engine l. The gear 10 is provided oppositely to the gear 10.

次に、本発明測定方法の各ステップを第2図のフローチ
ャートに基づいて詳細に説明する。
Next, each step of the measuring method of the present invention will be explained in detail based on the flowchart of FIG.

(ステップnl) 加速度センサ3の検出信号を導入して機関1表面での並
進加速度(6個以上、x 、y 、zの各方向について
それぞれ2個以上)を検出する。その理由は後述する。
(Step nl) A detection signal from the acceleration sensor 3 is introduced to detect translational accelerations (six or more, two or more in each of the x, y, and z directions) on the surface of the engine 1. The reason will be explained later.

(ステップn2) 一般に剛体の振動の場合、加速度と力とが対応するのは
、重心においてのみである。したがって、上記の測定装
置1こおいて機関lの表面に設定された位置で検出され
た加速度と力とは、そのま亥対応づけることができない
(Step n2) Generally, in the case of vibration of a rigid body, acceleration and force correspond only at the center of gravity. Therefore, the acceleration and force detected at a position set on the surface of the engine 1 by the measuring device 1 described above cannot be directly correlated.

そこで、まず、加速度センサ3によって検出された複数
の並進加速度から重心周りの加速度を求めなければなら
ない。
Therefore, first, the acceleration around the center of gravity must be determined from the plurality of translational accelerations detected by the acceleration sensor 3.

重心周りの加速度と任意の位置(検出点Pi)の加速度
との間には、剛体動きの式から次式(1)の関係がある
Between the acceleration around the center of gravity and the acceleration at an arbitrary position (detection point Pi), there is a relationship expressed by the following equation (1) based on the equation of rigid body motion.

検出点での並進加速度をαix、αiy、αiz1同じ
く検出点での回転加速度をδix、 ”jl iy、δ
iz、重心周りの並進加速度をαgx、αgy、αgz
s同じく重心周りの回転加速度をδgx、 3 gy、
δgz、検出点Piの座標をXi、Yi、Ziとすると
、 ・・・(1)式・・・ 上記の式において、 上記の検出点での回転加速度は直
接的に測定することができないが、検出点3点(P i
XP jXP k)の並進加速度から次式(2)により
求められる。
The translational acceleration at the detection point is αix, αiy, αiz1, and the rotational acceleration at the detection point is δix, ”jl iy, δ
iz, the translational acceleration around the center of gravity is αgx, αgy, αgz
s Similarly, the rotational acceleration around the center of gravity is δgx, 3 gy,
δgz, and the coordinates of the detection point Pi are Xi, Yi, Zi, ...Equation (1)... In the above equation, although the rotational acceleration at the above detection point cannot be directly measured, 3 detection points (P i
It is obtained from the translational acceleration of XP jXP k) using the following equation (2).

(αix −a jx)= (Zi−ZD(# y −
(Yi −Yj)# z(αiy −a jy)= −
(Zi −Zy)# x+ (Xi −Xj)M zC
a iz −a kz) = (Yi −Yk) j)
’ x −(Xi −Xk)gy(ただし、−1f−j
−I−k)       ・・・・・・(2)(2)式
を考慮して(1)式を書き換えると、(3)式になる。
(αix −a jx)= (Zi−ZD(# y −
(Yi −Yj)# z(αiy −a jy)= −
(Zi −Zy)# x+ (Xi −Xj)M zC
a iz - a kz) = (Yi - Yk) j)
'x - (Xi -Xk)gy (where -1f-j
-I-k) ...(2) If equation (1) is rewritten in consideration of equation (2), equation (3) is obtained.

Xi、Yi、Ziを検出点Pi(10座標、Xj、Yj
、Zjを検出点Pjの座標、Xk、Yk、Zkを検出点
Pkの座標とすると、 ・・・(3)式・・・ 上記(3)式から、任意の3検出点での直交3方向の並
進加速度を6個測定すれば、重心周りの6個の加速度を
算出しうろことが分かる。
Xi, Yi, Zi are the detection points Pi (10 coordinates, Xj, Yj
, Zj is the coordinate of the detection point Pj, and Xk, Yk, Zk are the coordinates of the detection point Pk. Equation (3)... From the above equation (3), three orthogonal directions at any three detection points It turns out that if we measure six translational accelerations, we can calculate six accelerations around the center of gravity.

しかし、測定された並進加速度には測定誤差がが含まれ
ている、と考えられる。そこで、本発明方法、では、(
3)式を解くのに、最小2乗法を採用して精度の向上を
図った。
However, it is considered that the measured translational acceleration includes measurement errors. Therefore, in the method of the present invention, (
3) To solve the equation, we adopted the least squares method to improve accuracy.

ところで、(3)式の行を測定方向により適当に入れ換
えることにより、6個以上の検出点で測定された並進加
速度と重心周りの並進加速度との関係は、(4)式のよ
うになる。
By the way, by appropriately replacing the lines of equation (3) depending on the measurement direction, the relationship between the translational acceleration measured at six or more detection points and the translational acceleration around the center of gravity becomes as shown in equation (4).

(余白) 上記(4)式をマトリクス表示すると、(5)式のよう
になる。
(Margin) When the above equation (4) is displayed in a matrix, it becomes equation (5).

(αn)=(T)・(αg)    ・・・・・・(5
)上記(5)式において、(αn)は測定点の並進加速
度、(αg)は重心周りの加速度、(T)は変換マトリ
クスである。
(αn)=(T)・(αg) ・・・・・・(5
) In the above equation (5), (αn) is the translational acceleration of the measurement point, (αg) is the acceleration around the center of gravity, and (T) is the transformation matrix.

次に誤差ベクトルを(E)とすると、この誤差ベクトル
は(6)式のように表わすことができる。
Next, let the error vector be (E), this error vector can be expressed as in equation (6).

(E)=(αn)−(T)・(αg) ・・・・・・(
6)最小2乗誤差を最小にするには、 d(E”) (E )/d(αg)=0であるから、(
7)式%式% ]) (7)式より、測定誤差の影響を最小にして重心周りの
6個の加速度を算出する。
(E)=(αn)−(T)・(αg) ・・・・・・(
6) To minimize the least squares error, d(E”) (E)/d(αg)=0, so (
7) Formula % Formula % ]) From formula (7), six accelerations around the center of gravity are calculated while minimizing the influence of measurement errors.

(ステップn3) 剛体の運動方程式は、次式の(8)式の通りである。(Step n3) The equation of motion of the rigid body is as shown in the following equation (8).

(M ) d”(Xg)/dt”+ (C) d(Xg
)/dt+(K)(Xg)−(Fg)sin(ωt) 
 −(8)タタし、CM)は質量マトリクス、(C)は
減衰マトリクス、(K)は剛性マトリクス、(F)は力
のベクトル、ωは角振動数である。
(M) d”(Xg)/dt”+ (C) d(Xg
)/dt+(K)(Xg)−(Fg)sin(ωt)
-(8) Tatami, CM) is the mass matrix, (C) is the damping matrix, (K) is the stiffness matrix, (F) is the force vector, and ω is the angular frequency.

ここで、支持系の剛性が小さく、かつ減衰が小さければ
、換言すると、測定周波数域ωが系の固有振動数ω0よ
り大きければ、前記(8)式は加速度ベクトルを用いて
(9)式のように変形することができる。
Here, if the stiffness of the support system is small and the damping is small, in other words, if the measurement frequency range ω is larger than the natural frequency ω0 of the system, the above equation (8) can be converted to equation (9) using the acceleration vector. It can be transformed as follows.

(Fg)=CM)・(αg)  ・・・・・・(9)こ
こでCM)はマトリクスであり、該マトリクスCM)で
機関質量をm、機関の慣性モーメントを■、機関の慣性
乗積をJとすると、マトリクスCM)は、 である。
(Fg)=CM)・(αg) (9) Here, CM) is a matrix, and in this matrix CM), the engine mass is m, the moment of inertia of the engine is ■, and the product of inertia of the engine Let J be the matrix CM).

したがって、機関の質量および慣性テンソルを測定もし
くは計算により求めれば、重心に作用する力(Fg)は
゛、(9)式より容易に算出できる。
Therefore, if the mass and inertia tensor of the engine are determined by measurement or calculation, the force (Fg) acting on the center of gravity can be easily calculated from equation (9).

(ステップn4) 前述したように、機関の起振力とは、クランク軸中心に
作用する力である。したがって、先に求めた重心Gに作
用する力の作用点をクランク軸中心Pに移動しなければ
ならない。力の作用点を重心から任意の点(この場合は
クランク軸中心)へ移す変換は、次の(10)式で行な
う。
(Step n4) As mentioned above, the excitation force of the engine is a force that acts on the center of the crankshaft. Therefore, the point of application of the force acting on the center of gravity G determined previously must be moved to the crankshaft center P. The conversion to move the point of force application from the center of gravity to an arbitrary point (in this case, the center of the crankshaft) is performed using the following equation (10).

(F)=CD)・(F g)     ・・・・・・(
10)上記の(i o)式で、(F)は起振力、CO3
は変換マトリクスであって、この変換マトリクスCD)
は、 この変換マトリクスCD)で、x、y、zはクランク軸
中心Pの座標である。
(F)=CD)・(F g) ・・・・・・(
10) In the above equation (i o), (F) is the excitation force, CO3
is a transformation matrix, and this transformation matrix CD)
is the transformation matrix CD), where x, y, and z are the coordinates of the crankshaft center P.

上記の(lO)式により機関の起振力が求められる。The excitation force of the engine is determined by the above equation (lO).

第4図の線図に本発明測定方法の測定結果を示す。測定
対象である機関は2気筒立型水冷機関で、その上下方向
起振力を表示している。比較のため、出願人会社で用い
ている精度が検証された計算による算出方法で求めた起
振力を併記している。
The diagram of FIG. 4 shows the measurement results of the measurement method of the present invention. The engine being measured is a two-cylinder vertical water-cooled engine, and its vertical excitation force is displayed. For comparison, the excitation force determined by the calculation method used by the applicant company and whose accuracy has been verified is also shown.

この測定結果からも明らかなように、本発明方法によれ
ば、起振力が精度よく求められることが分かる。
As is clear from this measurement result, according to the method of the present invention, the excitation force can be determined with high accuracy.

〈発明の効果〉 以上のように、本発明によれば、簡単な準備操作により
、検出信号から直接的に起振力を求めることができ、大
がかりな装置を使用せず容易に、かつ精度よく起振力を
測定することができる。
<Effects of the Invention> As described above, according to the present invention, the excitation force can be determined directly from the detection signal by simple preparatory operations, and can be easily and accurately obtained without using large-scale equipment. Excitation force can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明測定方法の実施に供する測定装置の概略
構成図、第2図は本発明測定方法のフローチャート、第
3図は測定の座標系を示す説明図、第4図は実験結果を
示す線図である。 1・・・機関、2・・・弾性支持系、3・・・加速度セ
ンサ、4・・・コンピュータ。
Figure 1 is a schematic configuration diagram of a measuring device used to carry out the measuring method of the present invention, Figure 2 is a flowchart of the measuring method of the present invention, Figure 3 is an explanatory diagram showing the coordinate system of measurement, and Figure 4 shows the experimental results. FIG. 1... Engine, 2... Elastic support system, 3... Acceleration sensor, 4... Computer.

Claims (1)

【特許請求の範囲】[Claims] (1)機関等の測定対象物を弾性支持系で支持するとと
もに、該対象物の複数位置に加速度センサを取り付け、
前記加速度センサの検出信号から対象物の起振力を測定
する方法であって、 前記加速度センサから得られた少なくとも6個の並進加
速度から剛体動きの式を用いて対象物の重心周りの6個
の加速度を算出するステップと、前記6個の加速度に質
量もしくは慣性モーメントをそれぞれ乗じて重心周りの
6分力を算出するステップと、前記6分力の作用点を対
象物の重心から対象物の駆動軸の中心に移す演算処理を
行なって対象物の起振力を算出するステップとを含むこ
とを特徴とする機関等の起振力測定方法。
(1) An object to be measured such as an engine is supported by an elastic support system, and acceleration sensors are attached to multiple positions on the object.
A method of measuring an excitation force of an object from a detection signal of the acceleration sensor, the method comprising: measuring the excitation force of an object from at least six translational accelerations obtained from the acceleration sensor using a rigid body movement equation; a step of calculating the 6-component force around the center of gravity by multiplying each of the 6 accelerations by mass or moment of inertia, and locating the point of action of the 6-component force from the center of gravity of the object to the object's center of gravity. A method for measuring an excitation force of an engine, etc., comprising the step of calculating the excitation force of an object by performing arithmetic processing to move the object to the center of a drive shaft.
JP6172385A 1985-03-25 1985-03-25 Method for measuring vibromotive force of engine etc. Granted JPS61218918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6172385A JPS61218918A (en) 1985-03-25 1985-03-25 Method for measuring vibromotive force of engine etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6172385A JPS61218918A (en) 1985-03-25 1985-03-25 Method for measuring vibromotive force of engine etc.

Publications (2)

Publication Number Publication Date
JPS61218918A true JPS61218918A (en) 1986-09-29
JPH0376850B2 JPH0376850B2 (en) 1991-12-06

Family

ID=13179424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6172385A Granted JPS61218918A (en) 1985-03-25 1985-03-25 Method for measuring vibromotive force of engine etc.

Country Status (1)

Country Link
JP (1) JPS61218918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428141B1 (en) * 2001-09-06 2004-04-30 현대자동차주식회사 Engine behaviour measurement 3 axises deformation system in vehicle
JP2006275637A (en) * 2005-03-28 2006-10-12 Toyota Motor Corp Device and method for measuring engine balance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428141B1 (en) * 2001-09-06 2004-04-30 현대자동차주식회사 Engine behaviour measurement 3 axises deformation system in vehicle
JP2006275637A (en) * 2005-03-28 2006-10-12 Toyota Motor Corp Device and method for measuring engine balance
JP4525415B2 (en) * 2005-03-28 2010-08-18 トヨタ自動車株式会社 Engine balance measuring apparatus and method

Also Published As

Publication number Publication date
JPH0376850B2 (en) 1991-12-06

Similar Documents

Publication Publication Date Title
CN109459061B (en) Micro-inertia measurement unit calibration method, device and computer readable storage medium
CN110108300B (en) IMU regular hexahedron calibration method based on horizontal three-axis turntable
RU2669263C1 (en) Method and device for calibration of inertial measurement modules
RU2368880C1 (en) Test bench for measurement of mass, coordinates of center of masses and tensor of item inertia
KR20150078461A (en) Measuring System of Inertia and Mass Center
CN105478245A (en) Identification method on basis of vibration detection of main shaft and for dynamic unbalance value of auxiliary shaft of double-freedom degree precision centrifugal machine
JP2008516226A (en) Rotor balancing method and apparatus
CN106918438A (en) The measuring method and system of a kind of multi -components power and torque
CN114034885B (en) Method for testing gyroscopic accelerometer on double-shaft centrifuge based on full-error analysis
CN113865583B (en) Accelerometer combination dynamic installation deviation matrix determining and compensating method
US8171789B2 (en) Dynamic balancing apparatus and method using simple harmonic angular motion
RU2683144C1 (en) Method of defining errors of orientation axles of laser gyroscopes and pendulum accelerometers in a strap down inertial navigation system
US8113048B2 (en) Dynamic imbalance detection apparatus and method using linear time-varying angular velocity model
JPS61218918A (en) Method for measuring vibromotive force of engine etc.
CN103837348A (en) Systems and methods for determining mass properties of vehicle components
Kang et al. Development and modification of a unified balancing method for unsymmetrical rotor-bearing systems
CN109847952B (en) Dynamic balance method of double-shaft precision centrifuge turntable based on driving current
CN114184192A (en) Method for obtaining angular velocity measurement channel transfer function of inertial measurement unit
JP6370239B2 (en) Method and apparatus for measuring dynamic imbalance of rotating body
JP3302166B2 (en) Rotary equipment test equipment
US6408675B1 (en) Eccentric error corrector and method of eccentric error correction for acceleration sensor in acceleration generating apparatus
US6647790B2 (en) Fixed-bandwidth correlation window method and system for a self-balancing rotatable apparatus
CN110057357A (en) A kind of distribution method of carrier angular velocity detection micro inertial measurement unit
CN113280975B (en) Large-scale component quality measurement method based on frequency response function quality line
JP2000187042A (en) Correction method for misalignment of multidimensional accelerometer and multidimensional acceleration measuring apparatus provided with the sensor