JPS61218176A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS61218176A
JPS61218176A JP60058187A JP5818785A JPS61218176A JP S61218176 A JPS61218176 A JP S61218176A JP 60058187 A JP60058187 A JP 60058187A JP 5818785 A JP5818785 A JP 5818785A JP S61218176 A JPS61218176 A JP S61218176A
Authority
JP
Japan
Prior art keywords
photovoltaic
electrode
photovoltaic device
current
photovoltaic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60058187A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
宏 伊東
Tamotsu Hatayama
畑山 保
Hidetoshi Nozaki
野崎 秀俊
Koji Nakagawa
中川 公史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60058187A priority Critical patent/JPS61218176A/en
Publication of JPS61218176A publication Critical patent/JPS61218176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce the variable range of the output power produced by the variation of spectrum of the solar light energy by arranging the third electrode in the part for connecting two photovoltaic elements composed of the materials having a different band gap. CONSTITUTION:After forming en electrode 56 on a back side of a P-type crystalline Si 54, an N-type amorphous Si layer 58 is formed to form the second photovoltaic element 52 on which a transparent conductive film 60 is formed. Then the P, I and N-layers of amorphous silicon 62, 64, and 66 and a transparent electrode 68 are formed to compose the first photovoltaic element 50. The lead-out electrodes 70 and 72 are formed on the transparent conductive films 60 and 68. The electrodes 72 and 56 are connected to load connection terminals 74 and 76 and the electrode 70 is connected to a current source (not shown in the drawing). Thus a difference between two elements 50 and 52 can be eliminated so that the variable range of the output power due to the spectrum variation of solar light energy is reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光起電力装置に係り、特に2個の光起電力素子
を直列に接続した光起電力装置(タンデム型光起電力装
置)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a photovoltaic device, and particularly to a photovoltaic device in which two photovoltaic elements are connected in series (tandem photovoltaic device).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

非晶質Siを光起電力素子に応用することが活発化して
いる。特lこ広い波長分布をもつ太陽光エネルギーを電
気エネルギーに効率良く変換するためic非晶質8i 
(ハフ FギヤyプEgが1.7〜10geV)と、バ
ンドギャップが異なる材料、例えば結晶Si(Eg=t
、xeV)とを組合せ技術が開発されている。
Application of amorphous Si to photovoltaic devices is becoming more active. In particular, IC amorphous 8i is used to efficiently convert sunlight energy with a wide wavelength distribution into electrical energy.
(Hough F gap Eg is 1.7 to 10 geV) and materials with different band gaps, such as crystalline Si (Eg = t
, xeV) is being developed.

このような構造の光起電力素子においては、非晶質Si
が低温で堆積可能であるため、容易に上記の非晶質S1
を用いた素子と、結晶Siを用いた素子を直列に接続し
、上部からn −i −p −n −pと接合させるこ
とができる。即ち第4図において基板となる結晶8i(
21(通常はp−型の8i(単結晶及び多結晶のいずれ
もが使用可能)を用いる)の下部に裏面電極(4)を形
成したのち、n−型の非結晶Si層(6)(微結晶相を
含んで良い)を形成して第2の光起電力素子(8)を形
成する。更にQll 、α2及びα4よりなる第1の光
起電力素子αeをこの上部に連続的に形成する(これら
α荀、a″3 、 C1Oの層は非晶質8iあるいは微
結晶Si相より主としてなり、n −fJlあるいはp
−型に必要なドープが行われてn −i −p接合をな
している)。更にこの上に透明導電膜αυ及び集電電極
■を形成し、この電極部及び(4)間より光起電力を外
部に取り出す。
In a photovoltaic device with such a structure, amorphous Si
can be deposited at low temperatures, it is easy to deposit the above amorphous S1.
An element using crystalline Si and an element using crystalline Si can be connected in series and joined to n-i-p-n-p from above. That is, in FIG. 4, the crystal 8i (
21 (usually p-type 8i (both single crystal and polycrystalline types can be used)) is formed on the bottom of the back electrode (4), and then an n-type amorphous Si layer (6) ( (which may include a microcrystalline phase) to form a second photovoltaic element (8). Furthermore, a first photovoltaic element αe consisting of Qll, α2 and α4 is continuously formed on top of this (these αx, a″3 and C1O layers are mainly composed of amorphous 8i or microcrystalline Si phase). , n −fJl or p
- type is doped to form an n-i-p junction). Furthermore, a transparent conductive film αυ and a current collecting electrode (4) are formed on this, and the photovoltaic force is taken out from between this electrode part and (4).

このような構成にした場合の特徴は、外部に取り出せる
光起電力特性は第1の素子(8)と第2の素子αGの特
性を合成したものである。具体的には開放端電圧は、第
1の素子(8)と第2の素子αQが直列に接続されてい
るため足しあわされて得られる。
A feature of this configuration is that the photovoltaic force characteristics that can be extracted to the outside are a combination of the characteristics of the first element (8) and the second element αG. Specifically, since the first element (8) and the second element αQ are connected in series, the open circuit voltage is obtained by adding them together.

しかし、電流については外部回路に流れる電流が、より
小さい電流を発生する素子によって制限されるという問
題点があった。そのためにある太陽光スペクトル(通常
はAM−1)で第1の素子(8)と第2の素子a5とし
て発生する電流が等しくなるようにこの光起電素子を設
計すると、雲の存在や、午前あるいは午後の場合のよう
に大気による吸収が増えてAir Mass値が増加す
る場合に第1の素子(8)と第2の素子ae!こ発生す
る電流が整合しなくなることがあった。
However, there is a problem in that the current flowing to the external circuit is limited by an element that generates a smaller current. Therefore, if this photovoltaic element is designed so that the currents generated by the first element (8) and the second element a5 are equal in a certain sunlight spectrum (usually AM-1), the presence of clouds, When absorption by the atmosphere increases and the Air Mass value increases, as in the morning or afternoon, the first element (8) and the second element ae! In some cases, the generated currents were not matched.

〔発明の目的〕[Purpose of the invention]

本発明は上記した問題点に鑑みなされたもので、太陽光
エネルギーのスペクトル変動、即ちAirMa s s
値の変動に対して生ずる出力電力の変動の幅を小さくし
、安定した出力を有する光起動装置を提供するものであ
る。
The present invention has been made in view of the above-mentioned problems, and is based on the spectral fluctuations of sunlight energy, that is, AirMas ss.
It is an object of the present invention to provide a photoactivation device that reduces the range of fluctuations in output power caused by fluctuations in value and has stable output.

〔発明の概要〕[Summary of the invention]

本発明は第1図の等価回路で示される光起電力装置を得
るものである。即ち第1の光起電力素子(至)と第2の
光起電力素子32)とが直列に接続されており、これら
の光起電力は負気34)に供給される。
The present invention provides a photovoltaic device shown in the equivalent circuit of FIG. That is, the first photovoltaic element (to) and the second photovoltaic element 32) are connected in series, and these photovoltaic forces are supplied to the negative air 34).

またこれらの光起電力素子(至)及cX32)において
生ずる光電流の差(光電流は光の入射時に電流源(36
)及び(38)において、入射光スペクトル及び入射光
量に従って生成する)を打ち消すように、第1の素子(
至)と第2の素置32)の中間にある電極を通して電流
源(40舷り電流を流入させる。もしこのような電流源
(40磨具備しない場合には第1の素置30)及び第2
の素+C32)こおいて発生する光電流に差があると、
それぞれの素子を構成するダイオードあるいはシャント
抵抗に流れる電流が調節されて負気34)に流出する電
流の大きさを、より小さい電流に近い値とするようにな
る。即ち、この場合には電流源(36)あるいは(38
)において発生する電流の一部は外部に取り出されるこ
となく浪費されてしまう。
In addition, the difference in photocurrent generated in these photovoltaic elements (to) and cX32) (the photocurrent is caused by the current source (36
) and (38), the first element (
A current source (40 broadside current is introduced through an electrode located between the first device 30) and the second device 32). 2
element +C32) If there is a difference in the photocurrent generated at
The current flowing through the diode or shunt resistor constituting each element is adjusted, so that the magnitude of the current flowing into the negative air 34) is brought to a value close to a smaller current. That is, in this case, the current source (36) or (38
) is wasted without being taken out to the outside.

〔発明の効果〕〔Effect of the invention〕

本発明による光起電力素子を用いることにより太陽光の
照射下における入射光スペクトルの変動に伴う出力変動
の幅を小さくすることが可能となる。即ち、日の出−南
中−日没に応じて、光起電力素子に入射する光はその通
過する大気層のちがいにより到達パワーが異なると同時
に、そのスペクトルも変化する( Air Mass値
が異なる)。2個の光起電力素子を直列に接続すること
により利用し得る太陽光スペクトルの領域を拡大するこ
とが可能となったが相対出力が最大となる状態で第1の
素子と第2の素子とから発生する光電流が等しくなるよ
うに設計した光起電力素子においては、Air Mas
s値が変化すると、これらの光電流の間にアンバランス
を生じ、上記したように小さい光電流で制限される電流
の大きさしか外部回路へ取り出せない。そこで本発明の
素子のように電流源を用意し、このアンバランス分を解
消するように光起電力、素子の中間部より電流を流入さ
゛せると、外部回路に取りだせる電流の大きさの変化の
割合を小さくすることが可能となり、1日の出力をより
平均化することが可能となり、負荷の状態を変化させる
ことが少くなる。
By using the photovoltaic element according to the present invention, it is possible to reduce the range of output fluctuations caused by fluctuations in the incident light spectrum under sunlight irradiation. That is, depending on sunrise, sunrise, and sunset, the arriving power of the light incident on the photovoltaic element differs depending on the atmospheric layer through which it passes, and at the same time, its spectrum also changes (the Air Mass value differs). By connecting two photovoltaic elements in series, it has become possible to expand the range of the sunlight spectrum that can be used. In a photovoltaic device designed so that the photocurrent generated from the Air Mas
When the s value changes, an imbalance occurs between these photocurrents, and as described above, only the magnitude of the current limited by the small photocurrent can be taken out to the external circuit. Therefore, if a current source is prepared as in the device of the present invention and a photovoltaic force is introduced from the middle of the device to eliminate this imbalance, the magnitude of the current that can be taken out to the external circuit changes. This makes it possible to further average the daily output, which reduces the need to change the load state.

〔発明の実施例〕[Embodiments of the invention]

本発明に係る光起電力装置の実施例を図面を参照して説
明する。
Embodiments of the photovoltaic device according to the present invention will be described with reference to the drawings.

第2図にこの光起電力装置の断面構造図を示す。FIG. 2 shows a cross-sectional structural diagram of this photovoltaic device.

この装置では結晶質の8 i (Eg =1.1 e 
V路用いた光起電力素子50廷非晶質の水素を含む8i
(Eg=1、BeV)を用いた光起電力素子52)とを
直列に接続している。具体的にはp−型の結晶%31(
54)の裏面に電板56房形成したのちn−型の非結晶
質Si層(58)(微結晶相を含んでも良い)を形成し
て第2の光起電力素子52階形成する。この上に透明導
電嵐60)を形成する。更に、この上に(62) 、(
64)反訳66辿りなる第1の光起電力木−7−C5の
を連続的に形成する(これら(66)、(64)、(6
2)の層は非晶質Siあるいは微結晶8i相より主とし
て構成されており、n −fJあるいはp−Itに必要
なドープが行われてn −i −p接合をなしている)
。更にこの上記に再び透明導電[68′Xt形成する。
In this device, crystalline 8 i (Eg = 1.1 e
Photovoltaic device using V path 8i containing 50 amorphous hydrogen
(Photovoltaic element 52) using Eg=1, BeV) are connected in series. Specifically, p-type crystal %31 (
After 56 strands of electric plates are formed on the back surface of 54), an n-type amorphous Si layer (58) (which may contain a microcrystalline phase) is formed to form a 52-layer second photovoltaic element. A transparent conductive storm 60) is formed on this. Furthermore, on top of this (62), (
64) Continuously form the first photovoltaic tree-7-C5 consisting of 66 traces (these (66), (64), (6
The layer 2) is mainly composed of amorphous Si or microcrystalline 8i phase, and is doped as necessary for n-fJ or p-It to form an n-i-p junction.)
. Further, a transparent conductor [68'Xt] is formed again above this.

2層の透明導電[60)及び(68)の上部に取り出し
電[70)及■72)を形成する。この光起電力素子の
上下の電板72)及■56)より出た端承74)及び(
76]ま負荷lこ接続される。一方中関電枢70)より
出た端−R78)は電流源に接続される。
On top of the two transparent conductive layers [60) and (68), lead-out conductors [70] and (72) are formed. The terminal fittings 74) and () protruding from the upper and lower electric plates 72) and (56) of this photovoltaic element
76] A load is connected. On the other hand, the end -R78) coming out from the Nakaseki power supply center 70) is connected to a current source.

第1図に示すような電流鈑40)は例えば以下の構成例
の如く構成される。即ち第2図に示すと同様な光起電力
装置を用いて端−FC74) −(78)間及び端子(
78) −(76)間にあたる電極間に同一の抵抗負荷
を付加すると、この端子間にはそれぞれの光起電力素子
より発生する光電流に応じた電圧が発生する。
The current plate 40) as shown in FIG. 1 is configured, for example, as shown in the following configuration example. That is, using a photovoltaic device similar to that shown in FIG.
When the same resistance load is applied between the electrodes between 78) and (76), a voltage corresponding to the photocurrent generated by each photovoltaic element is generated between these terminals.

この電圧差を増幅器に通し、電流出力を取り出す。This voltage difference is passed through an amplifier to obtain a current output.

この電流の大きさは、第2図に示す光起電力装置の第1
の光起電力素子50)と第2の光起電力木−7(52)
の発生電流の差に比例しており、増幅器の増幅率を調整
することにより、この差と等しい電流の大きさにするこ
とができる。この電流を端刊78)より流入させると第
1図等価回路に示す如き回路が形成できる。
The magnitude of this current is determined by the first
photovoltaic element 50) and second photovoltaic tree-7 (52)
The magnitude of the current can be made equal to this difference by adjusting the amplification factor of the amplifier. If this current is allowed to flow through the terminal 78), a circuit as shown in the equivalent circuit of FIG. 1 can be formed.

具体的にこの光起電力装置を太陽光照射下に町いた場合
の1日の出力変動を第3図に示す。光起電力装置はAM
  1 、100mW/cyn照射下、即ち正午におけ
る日照下で最適となるよう設計している。
Specifically, Fig. 3 shows the daily output fluctuations when this photovoltaic device is placed in the street under sunlight irradiation. The photovoltaic device is AM
1. It is designed to be optimal under irradiation of 100 mW/cyn, that is, under sunlight at noon.

午前及び午後のある時点において到達するまでlこ通過
する大気の厚さの変化によりAM−2,75mW/lを
示す状態が生じたとする。(太陽の移動にともない連続
的に変化しているが計算の都合上、この時点を選んでい
る。)この場合、太陽光のうち短波長成分は大気に吸収
されて減少し、−刃長波長光は減少が少ない。この場合
には下表のように第1の光起電力素子とa!2の光起電
力素子で発生ずる電流は変化し、その結果第3図に示す
ように第1の光起電力木+<50)からの相対出力は曲
線aの如く第2の光起電力木−7(52)からの相対出
力は曲線すの如く変動する。
Suppose that a change in the thickness of the atmosphere through which it is reached at some point in the morning and afternoon creates a condition exhibiting AM-2, 75 mW/l. (Although it changes continuously as the sun moves, this point was chosen for calculation reasons.) In this case, the short wavelength component of the sunlight is absorbed by the atmosphere and decreases, and the -long wavelength component of the sunlight is absorbed by the atmosphere. Light decreases less. In this case, as shown in the table below, the first photovoltaic element and a! The current generated by the second photovoltaic element changes, and as a result, as shown in Figure 3, the relative output from the first photovoltaic tree +<50) changes from the second photovoltaic tree as shown by curve a. The relative output from -7 (52) varies like a curve.

従来型の装置(第4図)の場合には第3図aの曲線に従
って変動するが、本発明の装置(第2図)の場合には第
3図すの曲線に従って出力が得られ変動の幅を小さくす
ることができる。
In the case of the conventional device (Fig. 4), the output fluctuates according to the curve shown in Fig. 3 a, but in the case of the device of the present invention (Fig. 2), the output is obtained according to the curve shown in Fig. The width can be reduced.

以上に述べた如く第3の電極より電流を流入できるよう
にすることにより、相対出力の変動を減少させられるよ
うになり、従来に比して負荷での利用電力を増加させる
ことができる。
As described above, by allowing current to flow from the third electrode, fluctuations in relative output can be reduced, and the power used by the load can be increased compared to the conventional case.

ここで用いる電流源としては上記した方法による以外に
照射光スペクトルと第1の光起電力素子及び第2の光起
電力素子の光起電力特性により、各種の方法番こより必
要な電流値を導き出しそれを第3の電極を通じて流入さ
せれば良いことは言うまでもない。
As for the current source used here, in addition to the method described above, the necessary current value can be derived from various method numbers based on the irradiation light spectrum and the photovoltaic power characteristics of the first photovoltaic element and the second photovoltaic element. Needless to say, it is preferable to let it flow in through the third electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による光起電力装置の等価回路を示す
図、第2図は、本発明による光起電力装置の断面構造を
示す図、第3図は、第2図に示す光起電力装置の特性を
示す図、第4図は、従来例を示す図である。 30.50・・・第1の光起電力素子、32 、52・
・・第2の光起電力素子、36,38.40・・・電流
源、34・・・負荷、56,70,72・・・電極。 代理人 弁理士 則 近 憲 佑(ほか1名)第1図 第2図 第3図 第  4 図
FIG. 1 is a diagram showing an equivalent circuit of the photovoltaic device according to the present invention, FIG. 2 is a diagram showing the cross-sectional structure of the photovoltaic device according to the present invention, and FIG. 3 is a diagram showing the photovoltaic device shown in FIG. FIG. 4, which is a diagram showing the characteristics of the power device, is a diagram showing a conventional example. 30.50...first photovoltaic element, 32, 52.
...Second photovoltaic element, 36, 38.40... Current source, 34... Load, 56, 70, 72... Electrode. Agent Patent Attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)バンドギャップの異なる複数の半導体材料を用い
て構成される第1及び第2の光起電力素子を直列に接続
した光起電力装置に於いて、前記第1及び第2の光起電
力素子の接続部分に第3の電極が設けられ、前記第1の
光起電力素子と前記第2の光起電力素子で各発生する光
電流の差を打ち消し、前記第1及び第2の各光起電力素
子に流れる電流を等しくするように前記第3の電極より
電流を流入させる手段を具備することを特徴とする光起
電力装置。
(1) In a photovoltaic device in which first and second photovoltaic elements configured using a plurality of semiconductor materials with different band gaps are connected in series, the first and second photovoltaic elements A third electrode is provided at the connection portion of the element, and cancels out the difference in photocurrent generated between the first photovoltaic element and the second photovoltaic element, and A photovoltaic device characterized by comprising means for causing current to flow from the third electrode so as to equalize the current flowing through the electromotive force element.
(2)前記第1の光電力素子が少くともSiを含む非晶
質半導体材料より形成されていることを特徴とする特許
請求の範囲第1項記載の光起電力装置。
(2) The photovoltaic device according to claim 1, wherein the first photovoltaic element is made of an amorphous semiconductor material containing at least Si.
(3)前記第2の光起電力装置が、結晶質のSiを用い
て形成されていることを特徴とする特許請求の範囲第1
項記載の光起電力装置。
(3) Claim 1, wherein the second photovoltaic device is formed using crystalline Si.
The photovoltaic device described in Section 1.
JP60058187A 1985-03-25 1985-03-25 Photovoltaic device Pending JPS61218176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60058187A JPS61218176A (en) 1985-03-25 1985-03-25 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058187A JPS61218176A (en) 1985-03-25 1985-03-25 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS61218176A true JPS61218176A (en) 1986-09-27

Family

ID=13077012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058187A Pending JPS61218176A (en) 1985-03-25 1985-03-25 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61218176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076175B2 (en) 2008-02-25 2011-12-13 Suniva, Inc. Method for making solar cell having crystalline silicon P-N homojunction and amorphous silicon heterojunctions for surface passivation
DE102010025848A1 (en) * 2010-07-01 2012-01-05 Josef Steger solar module
DE102011115028A1 (en) * 2011-10-07 2013-04-11 Ewe-Forschungszentrum Für Energietechnologie E. V. Photovoltaic multiple solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076175B2 (en) 2008-02-25 2011-12-13 Suniva, Inc. Method for making solar cell having crystalline silicon P-N homojunction and amorphous silicon heterojunctions for surface passivation
US8945976B2 (en) 2008-02-25 2015-02-03 Suniva, Inc. Method for making solar cell having crystalline silicon P—N homojunction and amorphous silicon heterojunctions for surface passivation
DE102010025848A1 (en) * 2010-07-01 2012-01-05 Josef Steger solar module
DE102011115028A1 (en) * 2011-10-07 2013-04-11 Ewe-Forschungszentrum Für Energietechnologie E. V. Photovoltaic multiple solar cell

Similar Documents

Publication Publication Date Title
US4461922A (en) Solar cell module
TW221525B (en)
US4513168A (en) Three-terminal solar cell circuit
US5990415A (en) Multilayer solar cells with bypass diode protection
US10084106B2 (en) Areal current matching of tandem solar cells
US8088991B2 (en) Three-terminal two-junction photovoltaic cells and method of use
Mitchell et al. Cuinse/sub 2/cells and modules
Boer et al. Materials for solar photovoltaic energy conversion
NL2019226B1 (en) Solar panel with four terminal tandem solar cell arrangement
JPS59124772A (en) Hetero-junction photovoltaic cell of crystal system semiconductor and amorphous semiconductor
JPS61218176A (en) Photovoltaic device
JPS60783A (en) Manufacture of solar battery element
JP2002343986A (en) Solar battery
US6057506A (en) Variable current-voltage TPV device for use in a thermophotovoltaic energy conversion system
Barnett et al. Polycrystalline silicon‐film™ solar cells: Present and future
JP2936269B2 (en) Amorphous solar cell
JPS58130578A (en) Selenium optical battery
Islam Thin Film Solar Charge controller: A research paper for commercialization of Thin film Solar Cell
Potter et al. Current‐voltage response of tandem junction solar cells
JPS6130079A (en) Photovoltaic element
JPH0444433B2 (en)
Masu et al. A monolithic GaAs solar cell array
JPH0314053Y2 (en)
Fraas et al. Tandem gallium solar cell voltage-matched circuit performance projections
JPS59181581A (en) Photoelectric converter