JPS6121701B2 - - Google Patents

Info

Publication number
JPS6121701B2
JPS6121701B2 JP55006346A JP634680A JPS6121701B2 JP S6121701 B2 JPS6121701 B2 JP S6121701B2 JP 55006346 A JP55006346 A JP 55006346A JP 634680 A JP634680 A JP 634680A JP S6121701 B2 JPS6121701 B2 JP S6121701B2
Authority
JP
Japan
Prior art keywords
carrier
alkali metal
catalyst
silver
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55006346A
Other languages
Japanese (ja)
Other versions
JPS56105750A (en
Inventor
Masashi Mitsuhata
Fumio Watanabe
Toshihiko Kumazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP634680A priority Critical patent/JPS56105750A/en
Publication of JPS56105750A publication Critical patent/JPS56105750A/en
Publication of JPS6121701B2 publication Critical patent/JPS6121701B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレンを分子状酸素により接触気
相酸化してエチレンオキシドを製造する際に使用
される銀触媒に関するものである。 工業的にエチレンを分子状酸素により接触気相
酸化してエチレンオキシドを製造するに際し使用
される触媒には、その性能として高活性、高選択
性および耐久性が要求される。 これらの要求に対し、その性能を改善する目的
で今日迄種々検討がなされており、反応促進剤、
担体、銀化合物等の改良に多くの努力が払われて
きた。中でも反応促進剤に関する報告は、たとえ
ば特開昭40―9605号、特開昭49―30286号、特開
昭49―87609号、特開昭50―50307号、特開昭50―
74589号、特開昭50―90591号など数多く出されて
おり、それらは限定された範囲内のアルカリ金属
を添加することにより性能向上を計つているもの
である。 しかしながらこれ等の大部分は確に選択率に関
してはある程度改良されているが活性、耐久性に
ついてはまだまだ検討すべき点が多い、また選択
率についてもまだ不充分であり活性と共に合せ考
慮していかねばならない。 本発明者等はこれ等のことを考慮し鋭意検討し
た結果これ迄当分野の工業的規模において用いら
れていた担体より大きな比表面積を有する担体を
用いて、より多量の特定化されたアルカリ金属を
他の金属との錯化合物の形で添加することによ
り、これ迄になく、高活性、高選択性、耐久性の
触媒を開発した。 このことを以下に詳細に述べる。 エチレンの気相酸化により酸化エチレンを製造
する際に用いられる触媒が銀触媒であり、そのほ
とんどが担体を使用した担持触媒であることは言
うまでもないことである。また用いられる担体が
アルミナ主成分の多孔質粒状担体であることも周
知である。 しかしながら単にアルミナ主成分の多孔質粒状
担体と言つても千差万別で比表面積、細孔分布、
比細孔容積、粒径、形状により大いに違い、これ
らの物性が触媒の性能に及ぼす影響は大きい。従
つてどのような物性の担体を選ぶかは当業者にと
つて大きな問題である。 中でも担体の比表面積は細孔径に関係し触媒性
能に与える影響は大きく大いに留意しなければな
らない。 すなわち、活性、耐久性の面から考えると、触
媒比表面積は大きい方が望ましく、そのためには
担体比表面積は大きい方が良いが、担体比表面積
を大きくする為には担体材料のアルミナ粒子は小
さいものを選ぶ必要がある。そのことは必然的に
小さな細孔径の形成を意味する。このことはガス
の拡散、滞留、反応熱の除去、担体露出面積の増
大という点から考えると不利であり、選択率の低
下につながる。 したがつて、必ずしも担体の比表面積は大きい
方が良いとばかりは言えず自ずと制限が出てく
る。 これまでの工業的規模に採用されている大部分
の担体の比表面積は1m2/g以下であり、さらに
は0.5m2/g以下である。例外的に1m2/g以上
の担体を使つた例もあるが1m2/g以下のものよ
り選択率は低い。 本発明者等はこれらの欠点を無くすべく検討し
た結果1m2/g以上の大きな比表面積の担体を用
いても選択率の低下を招くことなく、さらに向上
させ且つ高活性、耐久性を維持促進させる方法を
発見した。 それは簡単に言えば担体構成材料の改良と、増
量されたアルカリ化合物と他の金属化合物との錯
化合物により達成される。 すなわち、比較的大きな比表面積の担体の使用
による前述のような不利益は担体の低ナトリウム
含有化によりなくなり、より一層の選択率、耐久
性の向上の為にはアルカリ金属錯化合物が有効で
あることが見出された。 さらに詳述するならば、 担体比表面積の増大による不利益は前述の如く
細孔径の微少化によるガスの拡散、滞留、反応熱
除去等への悪影響、担体露出面の増大等が考えら
れるが、これらのどの部分に関係するかは解らな
いが、担体の低ナトリウム含有化により、結果と
してそのような不利益がなくなることは驚くべき
ことである。 10m2/g以下の比表面積の担体はその製法から
くる理由からか0.07重量%以上のナトリウム分
(主にNa2O)を含んでいることが普通である。 これまで酸化エチレン製造用銀触媒につかわれ
てきた担体のほとんどはこのような担体であり、
担体成分についてはα―アルミナ主体ということ
だけであまり考慮はなされていない。ましてその
中の不純物的存在のナトリウム分についてのみ考
慮することなど全くされていない。 しかしならが本発明によれば、担体中のナトリ
ウム分は触媒性能に微妙に影響し、特に従来当分
野で通常使われている比表面積0.5m2/g以下の
担体ではその影響は比表面積が小さくなる程小さ
いが、比表面積0.5m2/g以上の担体になると大
きくなり、これまでその選択率の低さゆえに使わ
れなかつた比表面積1m2/g以上の担体も使用可
能となるばかりでなく、さらには優位にさえな
る。 そのことは実施例でもわかるように同じ1.5
m2/gの比表面積の担体でも0.07重量%以下の低
ナトリウム含有量の担体とそうでない担体では、
他の物性も多少関係あるにしてもアルカリ金属を
添加した触媒にしたときの選択率が実に8%以上
も差があることは驚くべきことである。 このことがどういう作用によるか、本発明者等
には分らないし又特別な論をなすつもりはない。
ただし反応促進剤として積極的に加えられる場合
もあるナトリウムが担体中には出来るだけ少い方
が良いということ、またアルカリ金属を添加しな
い触媒の選択率の差が約4%であること、さらに
また文献に、アルミナやシリカへの金属イオンの
吸着がpHに強く依存すること、これ等のことを
考慮に入れて考えると、担体中のナトリウム成分
は銀およびアルカリ金属含有溶液を担体へ含浸す
る際に、担体内のpH分布に関係し、銀或いはそ
れ以上にアルカリ金属の析出分布に強い影響を与
えることが考えられる。そのことが触媒性能に関
係してくると思える。その意味では担体中のカリ
ウム成分(主にK2O)も関係すると考えられる
が、本発明者等の実験によれば、カリウム含量は
従来と同じでもナトリウム成分を減らすことによ
つて充分の効果が得られている。しかしながら担
体中にはカリウム成分もK2Oとして0.1重量%以
上含まれており、ナトリウムと同じようにカリウ
ムも0.07重量%以下にすることにより効果が上が
ることは考えられる。 したがつて1m2/g以上の比表面積の担体の使
用によつて後述の実施例に見られる如く活性、耐
久性の向上がはかれ、そこにアルカリ金属を添加
することにより、さらにこれまでになく高活性、
高選択性、耐久性である性能の触媒が調製される
が、添加されるアルカリ金属(化合物)について
は、本発明の特徴であるアルカリ金属錯化合物が
有効であることが注目に値する。 アルカリ金属化合物を添加した触媒は、これま
でその使用期間中に性能、特に選択率の劣化が著
しく、その対策に多くの努力が払われてきた。し
かしながらまだ解決するまでには至つていない。 本発明者等はこの点を考慮し種々検討した結
果、アルカリ金属化合物として、アルカリ金属と
他の金属の錯化合物を選ぶことによりかなり改善
されることを見出した。すなわちアルカリ金属と
ホウ素あるいはモリブデンあるいはタングステン
からなる少なくとも一種の錯化合物例えばホウ酸
セシウム、モリブデン酸セシウム、タングステン
酸セシウムを添加することにより選択率の劣化は
従来のアルカリ金属添加触媒に比し著しく鈍化さ
れ且つ若干の選択率の向上さえ見られた。また最
高の選択率を示すアルカリ金属の触媒への添加量
が、他のアルカリ金属化合物よりも、上記錯化合
物の方が少くてよい場合がある。これ等のことが
どうしてそうなるのかわからないが、アルカリ金
属とホウ素の錯化合物の場合とアルカリ金属とモ
リブデンの錯化合物およびアルカリ金属とタング
ステンの錯化合物の場合は少しその作用が違うよ
うに思える。アルカリ金属とホウ素の錯化合物の
場合は活性の向上がみられ反応温度の低下による
効果と考えられるが、アルカリ金属とモリブデン
またはタングステンの錯化合物の場合は逆に活性
が低下し反応温度が上昇しているにもかかわらず
上記の効果が見られることは何か他の要因が働い
ているのであろう。 これ等アルカリ金属錯化合物の適当な添加量は
これまでの文献等に開示されたアルカリ金属化合
物の量を越えた範囲にあることも注目される。 アルカリ金属化合物の最適な添加量が担体の表
面積の増加と共に多くなることは既にいくつかの
文献に見られる。 本発明者等の実験によれば担体の比表面積が従
来の如き1m2/g以下での変化であれば、従来文
献に見られる程度の添加範囲である程度の比例関
係が見られるが、担体比表面積が大きくなれば従
来の範囲を越えた点で議論せねばならないことが
分つた。このことに対し我々は特別な論を成すつ
もりはないけれども、比表面積が大きくなつた場
合、前記したように担体の微少細孔の効果により
酸化エチレンの異性化反応や燃焼反応の比率が表
面積に従来のような比例的でなく非常に大きくな
るため、それ等の反応に抑制効果のあるアルカリ
金属が多量に必要となるのであろう。 本発明におけるアルカリ金属錯化合物もそその
例外ではなく、アルカリ金属錯化合物基準で完成
触媒1キログラムあたり0.01〜0.05グラム当量と
従来の触媒の範囲を越えた添加量となつている。
また錯化合物を形成しているアルカリ金属以外の
金属の添加量は錯化合物の構造とアルカリ金属の
添加量により決まつてしまうが、アルカリ金属の
0.5〜2倍になるように錯化合物の構造は選らば
れるべきである。好ましいアルカリ金属の錯化合
物としてはホウ酸アルカリ、モリブデン酸アルカ
リ、タングステン酸アルカリ等の錯化合物があ
る。 もちろんカリウム錯化合物、ルビジウム錯化合
物についてもセシウム錯化合物と同様のことが言
えるが、カリウム錯化合物はルビジウム錯化合物
よりも、ルビジウム錯化合物はセシウム錯化合物
よりも、最適添加量範囲は多い方にあり、また選
択率に対する効果も小さい。カリウム錯化合物の
より好ましい範囲は完成された触媒1キログラム
あたり0.02〜0.04グラム当量、ルビジウム錯化合
物のそれは0.015〜0.035グラム当量である。 したがつてセシウム錯化合物の添加が選択率の
点から言つて一番好ましい訳であるが、選択率の
使用期間中の減衰傾向はカリウム錯化合物、ルビ
ジウム錯化合物、セシウム錯化合物の順に大きく
なつており、その点から言うとカリウム錯化合物
が一番好ましいことになる。このことからカリウ
ム、ルビジウム、セシウム各錯化合物を組合わせ
て使用することも良い。その場合も二種あるいは
三種のアルカリ金属錯化合物の添加量は合量で完
成された触媒1キログラムあたり0.01〜0.05キロ
グラム当量である。 触媒の調製法は従来公知の方法どれもが使用で
きるが、一般的には分解性銀塩の水溶液あるいは
有機溶媒溶液、例えば硝酸銀水溶液、無機有機酸
銀のアンモニア溶液あるいは有機アミン溶液、乳
酸銀水溶液、等を前記の如き担体に含浸する。ア
ルカリ金属錯化合物は銀より先に担体に析出させ
ておいてもよいが工程が一つ増加することになる
ので銀溶液と同時に含浸する方がよい。次いで含
浸担体を加熱し分解物を分解し触媒とするか、還
元性雰囲気中で還元分解し触媒とする方法が使用
できる。 以上のことをより具体的に述べるならば、エチ
レンを分子状酸素により気相接触酸化してエチレ
ンオキシドを製造する際に使用する銀触媒におい
て多孔質耐火物担体としてナトリウム含量が0.07
重量%以下、1〜5m2/g好ましくは1〜3m2
gの比表面積、25〜60%の見掛気孔率0.2〜0.5
ml/gの比細孔容積、3〜20mmの粒径のα―アル
ミナ粒状担体を使用し、これに有機酸銀のアミン
溶液等の分解性銀溶液を含浸後、100〜300℃に加
熱し還元あるいは熱分解する。銀は触媒に対し5
〜25重量%、好ましくは10〜20重量%を微粒状に
担体内外表面に析出させる。アルカリ金属錯化合
物は好ましくはホウ酸のアルカリ金属錯化合物、
モリブデン酸のアルカリ金属錯化合物あるいはタ
ングステン酸のアルカリ金属錯化合物、具体的に
最も好ましくはホウ酸セシウム、タングステン酸
セシウムあるいはタングステン酸セシウムの水溶
液あるいはアルコール性溶液を0.01〜0.05グラム
当量、好ましくは0.01〜0.03グラム当量を銀溶液
に加えて銀と同時に析出させるか、または銀に先
立つて担体に析出させておく。 該アルカリ金属錯化合物含有銀触媒は最終的に
空気流により100〜400℃で24〜100時間で賦活化
し触媒を完成させる。 この方法で調製された銀触媒を使用してエチレ
ンを分子状酸素により酸化して酸化エチレンを製
造する方法において、採用出来得る条件は、これ
までこの分野で知られている全ての条件が採用で
きるが、製造規模における一般的な条件、すなわ
ち原料ガス組成としてエチレン0.5〜40容量%、
酸素3〜10容量%、二酸化炭素5〜30容量%、残
部が窒素、アルゴン、水蒸気等の不活性ガスおよ
びメタン、エタン等の低級炭化水素類さらにまた
反応抑制剤としての二塩化エチレン、塩化ジフニ
エル等のハロゲン化合物0.1〜10ppmよりなり、
反応温度150〜300℃、空間速度3000〜10000hr-1
(STP)、圧力2〜40Kg/cm2G等が好適に採用でき
る。 以下さらに具体的にするために実施例、比較例
を挙げて詳細に説明するが、本発明はその主旨に
反しない限りこれらの実施例に限定されるもので
はない。 なお本文および実施例、比較例中に記載する変
化率、選択率は次式により算出されたものであ
る。 変化率(%)=反応したエチレンのモル数/原料ガス中のエチレンのモル数×100 選択率(%)=エチレンオキシドに変化したエチレンのモル数/反応したエチレンのモル数×100 実施例 1 酢酸銀690gを熱水600mlにとかした溶液を、氷
冷したエタノールアミン560mlに滴下し、よく撹
拌しこれに18.5重量%ホウ酸セシウム水溶液50ml
を加えて、含浸溶液を調製した。この溶液を見掛
け気孔率56%、BET比表面積1.54m2/g、比細孔
容積0.34ml/g、粒径5mmの予め加熱したナトリ
ウム含量が0.05重量%(主にNa2Oとして)以下
のα―アルミナ担体4000mlに含浸させた。ついで
ゆるやかに撹拌しながら80〜120℃で2時間加熱
した。 この触媒を内径25.0mm管長11000mmのステンレ
ス製反応管に充填し、その外側を熱媒により100
℃から徐々に240℃まで昇温しながら空気を触媒
層に流通させ240℃で24時間空気により触媒を賦
活化した。次いで熱媒温度を180℃まで降温し、
空気流の代りにエチレン20容量%、酸素8容量
%、炭酸ガス7容量%残余が窒素、メタン、エタ
ン、アルゴン等の不活性ガス及び二塩化エチレン
1ppmからなる原料混合ガスを導入し、反応圧力
24Kg/cm2G、空間速度5500hr-1(STP)熱媒温度
を234℃まで昇温し反応を行つた。その結果は表
―1に示す。 比較例 1 実施例1において使用する担体を、見掛けの気
孔率53%、BET比表面積1.51m2/g、比細孔容積
0.31ml/g、粒径5mmのナトリウム含量が0.40重
量%(主にNa2Oとして)のα―アルミナ担体を
使用する以外は実施例1と同じように触媒を調製
し、反応温度(熱媒温度)を242℃とする以外は
同じように反応させた。その結果は表―1に示
す。 比較例 2 実施例1において18.5重量%ホウ酸セシウム水
溶液50mlの代りに17.5重量%硝酸セシウム水溶液
50mlを加える以外は実施例1と全く同じように触
媒を調製し、反応温度を237℃とする以外は同じ
ように反応させた。その結果は表―1に示す。
The present invention relates to a silver catalyst used in the production of ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen. Catalysts used industrially to produce ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen are required to have high activity, high selectivity, and durability. In response to these demands, various studies have been made to date to improve the performance of reaction accelerators,
Many efforts have been made to improve carriers, silver compounds, etc. Among them, reports on reaction accelerators include, for example, JP-A-40-9605, JP-A-49-30286, JP-A-49-87609, JP-A-50-50307, and JP-A-Sho 50-
There have been many publications such as No. 74589 and JP-A No. 50-90591, which aim to improve performance by adding alkali metals within a limited range. However, although the selectivity of most of these has certainly been improved to some extent, there are still many points to be considered regarding activity and durability, and selectivity is still insufficient and should not be considered in conjunction with activity. Must be. Taking these matters into consideration, the present inventors conducted intensive studies and found that a larger amount of specified alkali metal could be obtained by using a carrier having a larger specific surface area than the carriers that had been used on an industrial scale in this field. By adding this compound in the form of a complex compound with other metals, we have developed a catalyst with unprecedented high activity, high selectivity, and durability. This will be discussed in detail below. It goes without saying that the catalyst used to produce ethylene oxide by gas-phase oxidation of ethylene is a silver catalyst, and most of them are supported catalysts using a carrier. It is also well known that the carrier used is a porous granular carrier based on alumina. However, even though it is simply a porous granular carrier mainly composed of alumina, there are a wide variety of specific surface areas, pore distributions,
It varies greatly depending on specific pore volume, particle size, and shape, and these physical properties have a large influence on the performance of the catalyst. Therefore, it is a big problem for those skilled in the art to select a carrier with physical properties. Among these, the specific surface area of the carrier is related to the pore diameter and has a large effect on the catalyst performance, so great care must be taken. In other words, from the standpoint of activity and durability, it is desirable that the specific surface area of the catalyst be large, and for that purpose the specific surface area of the carrier should be large, but in order to increase the specific surface area of the carrier, the alumina particles of the carrier material should be small. I need to choose something. That necessarily means the formation of small pore sizes. This is disadvantageous in terms of gas diffusion, retention, removal of reaction heat, and increase in the exposed area of the carrier, leading to a decrease in selectivity. Therefore, it cannot necessarily be said that the larger the specific surface area of the carrier, the better, and there are limitations. The specific surface area of most of the carriers employed on an industrial scale to date is 1 m 2 /g or less, and even 0.5 m 2 /g or less. Although there are exceptional cases in which a carrier of 1 m 2 /g or more is used, the selectivity is lower than that of a carrier of 1 m 2 /g or less. The present inventors investigated to eliminate these drawbacks, and as a result, they were able to further improve the selectivity without causing a decrease in selectivity even when using a carrier with a large specific surface area of 1 m 2 /g or more, and maintain and promote high activity and durability. I found a way to do it. Simply put, this can be achieved by improving the material constituting the carrier and increasing the amount of a complex compound with an alkali compound and another metal compound. In other words, the disadvantages mentioned above due to the use of a carrier with a relatively large specific surface area are eliminated by lowering the sodium content of the carrier, and alkali metal complex compounds are effective for further improving selectivity and durability. It was discovered that To be more specific, as mentioned above, the disadvantages of increasing the specific surface area of the carrier include negative effects on gas diffusion, retention, reaction heat removal, etc. due to miniaturization of the pore size, and an increase in the exposed surface of the carrier. Although we do not know which part of these is related, it is surprising that such disadvantages can be eliminated by reducing the sodium content of the carrier. A carrier with a specific surface area of 10 m 2 /g or less usually contains 0.07% by weight or more of sodium (mainly Na 2 O), probably due to its manufacturing method. Most of the supports that have been used for silver catalysts for producing ethylene oxide are of this type.
Not much consideration has been given to the carrier component, as it is mainly α-alumina. Furthermore, no consideration is given to the impurity of sodium in the water. However, according to the present invention, the sodium content in the carrier has a subtle effect on the catalyst performance, and especially in the case of carriers with a specific surface area of 0.5 m 2 /g or less, which are conventionally used in this field, this effect is due to the specific surface area. The smaller the carrier, the smaller it becomes, but it becomes larger when the carrier has a specific surface area of 0.5 m 2 /g or more, and it is now possible to use carriers with a specific surface area of 1 m 2 /g or more, which were previously unused due to their low selectivity. It can even become an advantage. As can be seen in the example, the same 1.5
Even if the carrier has a specific surface area of m 2 /g, the carrier has a low sodium content of 0.07% by weight or less and the carrier has a low sodium content of 0.07% by weight or less.
Even though other physical properties may be related to some extent, it is surprising that there is a difference of more than 8% in selectivity when using a catalyst containing an alkali metal. The inventors do not know what effect this has, and do not intend to make any particular argument.
However, it is important to note that it is better to have as little sodium as possible in the carrier, which is sometimes actively added as a reaction accelerator, and that the difference in selectivity between catalysts without alkali metals is approximately 4%. In addition, it is stated in the literature that the adsorption of metal ions on alumina and silica is strongly dependent on pH, and taking into account these factors, the sodium component in the carrier impregnates the carrier with a solution containing silver and alkali metals. In this case, it is thought that it is related to the pH distribution within the carrier and has a stronger influence on the precipitation distribution of alkali metals than silver or more. This seems to be related to catalyst performance. In this sense, the potassium component (mainly K 2 O) in the carrier is thought to be involved, but according to the experiments of the present inventors, sufficient effects can be obtained by reducing the sodium component even if the potassium content remains the same as before. is obtained. However, the carrier also contains a potassium component in the form of K 2 O in an amount of 0.1% by weight or more, and it is conceivable that, like sodium, the effect can be improved by reducing potassium to 0.07% by weight or less. Therefore, by using a carrier with a specific surface area of 1 m 2 /g or more, the activity and durability can be improved as seen in the examples below, and by adding an alkali metal thereto, it is possible to improve the activity and durability. Highly active,
A catalyst with high selectivity and durability is prepared, and it is noteworthy that the alkali metal complex compound, which is a feature of the present invention, is effective as the alkali metal (compound) added. Catalysts to which alkali metal compounds have been added have hitherto been subject to significant deterioration in performance, particularly selectivity, during their use, and many efforts have been made to counter this problem. However, the problem has not yet been resolved. The inventors of the present invention have conducted various studies in consideration of this point, and have found that a considerable improvement can be achieved by selecting a complex compound of an alkali metal and another metal as the alkali metal compound. That is, by adding at least one type of complex compound consisting of an alkali metal and boron, molybdenum, or tungsten, such as cesium borate, cesium molybdate, or cesium tungstate, the deterioration of selectivity is significantly slowed down compared to conventional catalysts containing alkali metals. Moreover, even a slight improvement in selectivity was observed. Further, the amount of the alkali metal that exhibits the highest selectivity added to the catalyst may be smaller in the case of the complex compound than in other alkali metal compounds. I don't know why these things happen, but it seems that the effects are slightly different between complex compounds of alkali metals and boron, complex compounds of alkali metals and molybdenum, and complex compounds of alkali metals and tungsten. In the case of a complex compound of an alkali metal and boron, an improvement in activity is observed, which is thought to be due to the effect of lowering the reaction temperature, but in the case of a complex compound of an alkali metal and molybdenum or tungsten, on the contrary, the activity decreases and the reaction temperature increases. The fact that the above effects are seen despite the fact that some other factors are at play may be the reason. It is also noted that the appropriate amount of these alkali metal complex compounds to be added is in a range that exceeds the amount of alkali metal compounds disclosed in previous literature. It has already been found in some literature that the optimum amount of the alkali metal compound added increases as the surface area of the carrier increases. According to experiments conducted by the present inventors, if the specific surface area of the carrier changes by 1 m 2 /g or less, as in the conventional case, a certain degree of proportionality can be seen within the range of addition found in conventional literature. It has become clear that as the surface area increases, we must discuss matters beyond the conventional scope. Although we do not intend to make any special argument regarding this, when the specific surface area becomes large, the ratio of isomerization reaction and combustion reaction of ethylene oxide increases due to the effect of the micropores of the carrier as mentioned above. Since the reaction becomes very large and not proportional as in the conventional case, a large amount of alkali metal, which has the effect of suppressing such reactions, is probably required. The alkali metal complex compound in the present invention is no exception, and the amount added is 0.01 to 0.05 gram equivalent per kilogram of the finished catalyst based on the alkali metal complex compound, which exceeds the range of conventional catalysts.
Furthermore, the amount of metals other than alkali metals that form a complex compound is determined by the structure of the complex compound and the amount of alkali metals added.
The structure of the complex compound should be chosen so that it is 0.5 to 2 times as large. Preferred alkali metal complex compounds include complex compounds such as alkali borates, alkali molybdates, and alkali tungstates. Of course, the same can be said for potassium complex compounds and rubidium complex compounds as for cesium complex compounds, but the optimal addition range for potassium complex compounds is higher than that for rubidium complex compounds, and for rubidium complex compounds than for cesium complex compounds. , and the effect on selectivity is also small. A more preferred range of potassium complex compound is 0.02 to 0.04 gram equivalent per kilogram of finished catalyst, and that of rubidium complex compound is 0.015 to 0.035 gram equivalent. Therefore, addition of a cesium complex compound is the most preferable from the viewpoint of selectivity, but the tendency for the selectivity to decline during the period of use increases in the order of potassium complex compound, rubidium complex compound, and cesium complex compound. Therefore, from this point of view, potassium complex compounds are the most preferable. For this reason, it is also good to use a combination of potassium, rubidium, and cesium complex compounds. In that case as well, the amount of the two or three alkali metal complex compounds added is 0.01 to 0.05 kg equivalent per 1 kg of the finished catalyst. Any conventionally known method can be used to prepare the catalyst, but generally an aqueous solution or an organic solvent solution of a decomposable silver salt, such as an aqueous silver nitrate solution, an ammonia solution or an organic amine solution of inorganic organic acid silver, or an aqueous silver lactate solution is used. , etc. are impregnated into the carrier as described above. The alkali metal complex compound may be precipitated on the carrier before the silver, but since this increases the number of steps by one, it is better to impregnate the carrier at the same time as the silver solution. Next, the impregnated carrier may be heated to decompose the decomposed product to form a catalyst, or the impregnated carrier may be reductively decomposed in a reducing atmosphere to form a catalyst. To describe the above more specifically, in the silver catalyst used when producing ethylene oxide by gas-phase catalytic oxidation of ethylene with molecular oxygen, the sodium content as a porous refractory carrier is 0.07.
Weight% or less, 1 to 5 m 2 /g, preferably 1 to 3 m 2 / g
g specific surface area, 25-60% apparent porosity 0.2-0.5
An α-alumina granular carrier with a specific pore volume of ml/g and a particle size of 3 to 20 mm is used, and after impregnating it with a decomposable silver solution such as an amine solution of organic acid silver, it is heated to 100 to 300°C. Reduce or thermally decompose. Silver is 5 to the catalyst
~25% by weight, preferably 10-20% by weight, is deposited in the form of fine particles on the inner and outer surfaces of the carrier. The alkali metal complex compound is preferably an alkali metal complex compound of boric acid,
An aqueous solution or alcoholic solution of an alkali metal complex compound of molybdic acid or an alkali metal complex compound of tungstic acid, most preferably cesium borate, cesium tungstate, or cesium tungstate, is added in an amount of 0.01 to 0.05 gram equivalent, preferably 0.01 to 0.03 gram equivalents are added to the silver solution and precipitated simultaneously with the silver, or precipitated onto the support prior to the silver. The alkali metal complex compound-containing silver catalyst is finally activated by an air stream at 100 to 400°C for 24 to 100 hours to complete the catalyst. In the method of producing ethylene oxide by oxidizing ethylene with molecular oxygen using the silver catalyst prepared by this method, all the conditions known in this field can be adopted. However, the typical conditions at the production scale, i.e. 0.5 to 40% ethylene by volume as the raw gas composition,
3 to 10% by volume of oxygen, 5 to 30% by volume of carbon dioxide, the balance being nitrogen, inert gas such as argon, water vapor, etc., and lower hydrocarbons such as methane, ethane, and also ethylene dichloride and diphenyl chloride as reaction inhibitors. Consists of 0.1 to 10 ppm of halogen compounds such as
Reaction temperature 150~300℃, space velocity 3000~10000hr -1
(STP), a pressure of 2 to 40 Kg/cm 2 G, etc. can be suitably employed. The present invention will be described in detail below using Examples and Comparative Examples to make it more specific, but the present invention is not limited to these Examples unless it goes against the gist thereof. Note that the rate of change and selectivity described in the main text, Examples, and Comparative Examples were calculated using the following formula. Rate of change (%) = Number of moles of ethylene reacted/Number of moles of ethylene in raw material gas x 100 Selectivity (%) = Number of moles of ethylene converted to ethylene oxide/Number of moles of ethylene reacted x 100 Example 1 Acetic acid A solution of 690 g of silver dissolved in 600 ml of hot water was added dropwise to 560 ml of ice-cooled ethanolamine, stirred well, and 50 ml of an 18.5% by weight cesium borate aqueous solution was added.
was added to prepare an impregnating solution. This solution had an apparent porosity of 56%, a BET specific surface area of 1.54 m 2 /g, a specific pore volume of 0.34 ml/g, a particle size of 5 mm, and a preheated solution with a sodium content of 0.05% by weight or less (mainly as Na 2 O). It was impregnated into 4000ml of α-alumina carrier. Then, the mixture was heated at 80 to 120°C for 2 hours while stirring gently. This catalyst was packed into a stainless steel reaction tube with an inner diameter of 25.0 mm and a tube length of 11,000 mm, and the outside of the tube was heated to 100 mm using a heat medium.
Air was passed through the catalyst layer while gradually increasing the temperature from 0.degree. C. to 240.degree. C., and the catalyst was activated by air at 240.degree. C. for 24 hours. Next, the heating medium temperature was lowered to 180℃,
Instead of the air flow, 20% by volume of ethylene, 8% by volume of oxygen, and 7% by volume of carbon dioxide with the remainder being nitrogen, an inert gas such as methane, ethane, or argon, and ethylene dichloride.
A raw material mixed gas consisting of 1 ppm is introduced, and the reaction pressure is
The reaction was carried out at a temperature of 24 Kg/cm 2 G, a space velocity of 5500 hr -1 (STP), and the heating medium temperature was raised to 234°C. The results are shown in Table-1. Comparative Example 1 The carrier used in Example 1 had an apparent porosity of 53%, a BET specific surface area of 1.51 m 2 /g, and a specific pore volume.
A catalyst was prepared in the same manner as in Example 1, except that an α-alumina support with a sodium content of 0.40 wt% (mainly as Na 2 O) with a particle size of 5 mm and a particle size of 0.31 ml/g was used. The reaction was carried out in the same manner except that the temperature (temperature) was 242°C. The results are shown in Table-1. Comparative Example 2 In Example 1, 17.5% by weight cesium nitrate aqueous solution was used instead of 50 ml of 18.5% by weight cesium borate aqueous solution.
A catalyst was prepared in exactly the same manner as in Example 1, except that 50 ml was added, and the reaction was carried out in the same manner, except that the reaction temperature was 237°C. The results are shown in Table-1.

【表】 比較例 3〜4 比較例1および2においてアルカリ金属化合物
を添加しないこと以外は比較例1,2と同じよう
に触媒を調製し、反応温度を表―2に示す温度と
する以外は比較例1および2と同じように反応さ
せた。その結果は表―2に示す。(比較例3は比
較例1に、比較例4は比較例2にもとずく)
[Table] Comparative Examples 3 to 4 Catalysts were prepared in the same manner as in Comparative Examples 1 and 2, except that no alkali metal compound was added in Comparative Examples 1 and 2, and the reaction temperature was set to the temperature shown in Table 2. The reaction was carried out in the same manner as in Comparative Examples 1 and 2. The results are shown in Table 2. (Comparative example 3 is based on comparative example 1, comparative example 4 is based on comparative example 2)

【表】 実施例 2〜10 表―3に示す条件以外は実施例1と同じような
方法を用いて触媒を調製した。反応もまた実施例
1と同様の条件でおこなつた。その結果は表―3
に示す。 比較例 5〜7 表―3に示す条件以外は実施例1と同じような
方法を用いて触媒を調製した。反応もまた実施例
1と同様の条件でおこなつた。その結果は表―3
に示す。
[Table] Examples 2 to 10 Catalysts were prepared using the same method as in Example 1 except for the conditions shown in Table 3. The reaction was also carried out under the same conditions as in Example 1. The results are shown in Table 3.
Shown below. Comparative Examples 5 to 7 Catalysts were prepared using the same method as in Example 1 except for the conditions shown in Table 3. The reaction was also carried out under the same conditions as in Example 1. The results are shown in Table 3.
Shown below.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ナトリウム成分が0.07重量%以下、比表面積
が1〜5m2/gのα―アルミナ主成分担体を完成
触媒に対し5〜25重量%の銀担持率となる如き分
解性銀溶液に、完成触媒1キログラムあたり0.01
〜0.05グラム当量のアルカリ金属ホウ酸塩、アル
カリ金属モリブデン酸塩および/またはアルカリ
金属タングステン酸塩を含む含浸液で含浸処理を
行ない、加熱し還元または熱分解して製造された
ことを特徴とするエチレンオキシド製造用銀触
媒。
1 Add an α-alumina main component carrier with a sodium content of 0.07% by weight or less and a specific surface area of 1 to 5 m 2 /g to a decomposable silver solution such that the silver loading ratio is 5 to 25% by weight relative to the finished catalyst. 0.01 per kilogram
It is characterized by being produced by performing an impregnation treatment with an impregnating solution containing ~0.05 gram equivalent of alkali metal borate, alkali metal molybdate and/or alkali metal tungstate, followed by heating and reduction or thermal decomposition. Silver catalyst for ethylene oxide production.
JP634680A 1980-01-24 1980-01-24 Silver catalyst for production of ethylene oxide Granted JPS56105750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP634680A JPS56105750A (en) 1980-01-24 1980-01-24 Silver catalyst for production of ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP634680A JPS56105750A (en) 1980-01-24 1980-01-24 Silver catalyst for production of ethylene oxide

Publications (2)

Publication Number Publication Date
JPS56105750A JPS56105750A (en) 1981-08-22
JPS6121701B2 true JPS6121701B2 (en) 1986-05-28

Family

ID=11635808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP634680A Granted JPS56105750A (en) 1980-01-24 1980-01-24 Silver catalyst for production of ethylene oxide

Country Status (1)

Country Link
JP (1) JPS56105750A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116745U (en) * 1983-01-27 1984-08-07 株式会社協立 damper device
AU586048B2 (en) * 1985-11-12 1989-06-29 Nippon Shokubai Kagaku Kogyo Co. Ltd. Silver catalyst for production of ethylene oxide and method for manufacture thereof
US5057481A (en) * 1987-02-20 1991-10-15 Union Carbide Chemicals And Plastics Technology Corporation Catalyst composition for oxidation of ethylene to ethylene oxide
US4908343A (en) * 1987-02-20 1990-03-13 Union Carbide Chemicals And Plastics Company Inc. Catalyst composition for oxidation of ethylene to ethylene oxide
US5407888A (en) * 1992-05-12 1995-04-18 Basf Aktiengesellschaft Silver catalyst
EP0937498B1 (en) * 1998-02-20 2004-08-18 Nippon Shokubai Co., Ltd. Silver catalyst for production of ethylene Oxide, method for production thereof, and method for production of ethylene oxide
CA2343836C (en) 1998-09-14 2007-12-04 Shell Internationale Research Maatschappij B.V. Epoxidation catalyst carrier, preparation and use thereof
US7504525B2 (en) 1998-09-14 2009-03-17 Shell Oil Company Catalyst composition
US7232786B2 (en) 1998-09-14 2007-06-19 Shell Oil Company Catalyst composition
WO2000015333A1 (en) 1998-09-14 2000-03-23 Shell Internationale Research Maatschappij B.V. Process for removing ionizable species from catalyst surface to improve catalytic properties
US7232918B2 (en) 2001-11-06 2007-06-19 Shell Oil Company Catalyst composition
TWI346574B (en) 2003-03-31 2011-08-11 Shell Int Research A catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition
US6858560B2 (en) 2003-04-23 2005-02-22 Scientific Design Co., Inc. Ethylene oxide catalyst
JP2007175649A (en) * 2005-12-28 2007-07-12 Japan Energy Corp Solid acid, its manufacturing method, and solid acid catalyst
CN104437662B (en) * 2013-09-16 2016-11-23 中国石油化工股份有限公司 The method preparing silver catalyst alpha-alumina supports
WO2019245859A1 (en) 2018-06-21 2019-12-26 The J. David Gladstone Institutes Generation of a population of hindbrain cells and hindbrain-like organoids from pluripotent stem cells
US11772082B1 (en) 2018-06-21 2023-10-03 Avn Corporation Catalyst supports—composition and process of manufacture

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367169A (en) * 1941-02-11 1945-01-09 Gardner Thermal Corp Process for treatment of olefins
US3461140A (en) * 1964-03-12 1969-08-12 Basf Ag Production of ethylene oxide
US3664970A (en) * 1969-04-17 1972-05-23 Halcon International Inc Ethylene oxide catalyst
US3888889A (en) * 1972-06-27 1975-06-10 Bp Chem Int Ltd Process for propylene oxide
JPS5090591A (en) * 1974-01-09 1975-07-19
US4007135A (en) * 1973-05-12 1977-02-08 Imperial Chemical Industries Limited Promoted silver catalyst for producing alkylene oxides
GB1498335A (en) * 1975-03-22 1978-01-18 Bayer Ag Fertilisers for providing plants with micro-nutrients
US4094889A (en) * 1976-03-05 1978-06-13 Imperial Chemical Industries Limited Restoring selectivity of alkali metal promoted silver catalysts and production of olefine oxides
GB2014133A (en) * 1978-02-10 1979-08-22 Ici Ltd Production of alkylene oxides using a silver catalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367169A (en) * 1941-02-11 1945-01-09 Gardner Thermal Corp Process for treatment of olefins
US3461140A (en) * 1964-03-12 1969-08-12 Basf Ag Production of ethylene oxide
US3664970A (en) * 1969-04-17 1972-05-23 Halcon International Inc Ethylene oxide catalyst
US3888889A (en) * 1972-06-27 1975-06-10 Bp Chem Int Ltd Process for propylene oxide
US4007135A (en) * 1973-05-12 1977-02-08 Imperial Chemical Industries Limited Promoted silver catalyst for producing alkylene oxides
JPS5090591A (en) * 1974-01-09 1975-07-19
GB1498335A (en) * 1975-03-22 1978-01-18 Bayer Ag Fertilisers for providing plants with micro-nutrients
US4094889A (en) * 1976-03-05 1978-06-13 Imperial Chemical Industries Limited Restoring selectivity of alkali metal promoted silver catalysts and production of olefine oxides
GB2014133A (en) * 1978-02-10 1979-08-22 Ici Ltd Production of alkylene oxides using a silver catalyst

Also Published As

Publication number Publication date
JPS56105750A (en) 1981-08-22

Similar Documents

Publication Publication Date Title
US4368144A (en) Silver catalyst for production of ethylene oxide
JPS6121701B2 (en)
TWI409258B (en) Process for production of an olefin oxide
JP2637537B2 (en) Silver catalyst for producing ethylene oxide and method for producing the same
US4916243A (en) New catalyst composition and process for oxidation of ethylene to ethylene oxide
JP4172827B2 (en) Method for producing ethylene oxide catalyst
US4248740A (en) Process for preparing silver-supported catalyst for the production of ethylene oxide
JPS60216844A (en) Silver catalyst for producing ethylene oxide
TWI428328B (en) Ethylene oxide production using fixed moderator concentration
JPS6155416B2 (en)
US4774222A (en) Catalyst for oxidation of ethylene to ethylene oxide and process for preparing the catalyst
GB1572168A (en) Hydrogenation catalyst and process
US11400437B2 (en) Catalyst for the oxidation of ethylene to ethylene oxide
JP2013533103A (en) Method for preparing epoxidation catalyst
JP2013534465A (en) Carrier for ethylene oxide catalyst
CN104857996A (en) Process for treating a carrier, process for preparing a catalyst, the catalyst, and use of the catalyst
US11213806B1 (en) Catalyst supports—composition and process of manufacture
JPS6045637B2 (en) Method for producing ethylene oxide
JP2997039B2 (en) Selective monoepoxidation of styrene, styrene analogs and styrene derivatives to the corresponding oxides with molecular oxygen
GB2043481A (en) Catalyst composition and process for oxidation of ethylene to ethylene oxide
JPH01165540A (en) Production of diaryl ether and diaryl sulfide
JP3233652B2 (en) Silver catalyst for ethylene oxide production
JPS6234419B2 (en)
JPS6231983B2 (en)
JPS6366837B2 (en)